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Abstract We give effective upper bounds for dimensions of the (n − 1)-th cohomology groups of μ-semistable
torsion-free sheaves on a smooth projective variety of dimension n defined over an algebraically closed fieled
of characteristic zero. As a corollary to this result, we obtain bounds for the dimension of the moduli space of
μ-stable vector bundles. We also prove Bogomolov-Gieseker type inequalities for the fourth Chern classes c4(E)

of μ-semistable vector bundles E on a smooth projective fourfold.
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1 Introduction

Let X be a smooth projective variety defined over an algebraically closed field of characteristic 0 and let H be
an ample line bundle on X . The classical Bogomolov-Gieseker inequality states that �H (E) = (2rc2(E)− (r −
1)c1(E)2) ·Hn−2 ≥ 0 for any torsion-free sheaf E of rank r and Chern classes ci (E) on X which isμ-semistable
with respect to H . Recently, some conjectures for the third Chern character ch3(E) of μ-stable sheaves E on a
threefold have been proposed ( [1], [2]). We gave explicit bounds for the cohomology groups for μ-semistable
sheaves E on a threefold and applied them to obtain inequalities for ch3(E) in [6], [7]. On the other hand, it seems
that no Bogomolov-Gieseker type inequality has been known for the top Chern class cn(E) for μ-semistable
sheaves E on a variety of dimension n ≥ 4.

In this note we give an effective bound for the dimension of the cohomology group Ext1(E, E1) for μ-
semistable torsion-free sheaves E and E1 on a smooth projective variety of dimension n ≥ 3. As in [7], we prove
this by reducing the problem to the three dimensional case using the restriction theorem due to A.Langer ( [4],
[5]) and a vanishing theorem of H.Sun ( [8]). As a corollary, we obtain upper bounds for the dimension of the
moduli of μ-stable vector bundles. We also obtain explicit upper bounds for c4(E) of μ-semistable bundles E
in terms of r, ci (E) (1 ≤ i ≤ 3), ci (X) and H on a smooth projective fourfold.
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790 T. Nakashima

2 Notations and Preliminaries

In what follows all varieties will be assumed to be defined over an algebraically closed field of characteristic
0. Let X be a smooth projective variety of dimension n ≥ 3 and let H be an ample line bundle on X . Let KX
denote the canonical bundle of X and let Ai (X) denote the codimension i Chow group of X . For a torsion-free
sheaf E on X , the slope μH (E) is defined to be the following number

μH (E) := c1(E) · Hn−1

rk E
.

Atorsion-free sheaf E on X is said to beμ-stable(resp.μ-semistable)with respect to H (or simply H -(semi)stable)
if, for any coherent subsheaf F ⊂ E with 0 < rk F < rk E , we haveμH (F) < μH (E) (resp.μH (F) ≤ μH (E)).

The discriminant �(E) ∈ A2(X) of E is defined as follows.

�(E) = 2rc2(E) − (r − 1)c1(E)2.

We set �H (E) := �(E) · Hn−2. We recall the following results concerning the restriction of μ-(semi)stable
sheaves to divisors ( [5]).

Proposition 1 Let X be a smooth projective variety X of dimension n ≥ 2 and let H be a very ample line bundle
on X. Let E be an H-semistable torsion-free sheaf of rank r ≥ 2 on X. Let a be an integer with

(
a + n

n

)
>

1

2

(
max{r

2 − 1

4
, 1}Hn + 1

)
�H (E) + 1.

Then, for general D ∈ |aH |, the restriction E|D is an HD-semistable torsion-free sheaf.

We also need the following vanishing result due to H.Sun which has been proved by techniques of tilt stability
( [8, Corollary 1.9]).

Proposition 2 Let X be a smooth projective variety X of dimension n ≥ 2 and H an ample line bundle on X.
Let E be an H-semistable torsion-free sheaf of rank r ≥ 2 and Chern classes ci (E) = ci on X. Let

�H (E) : = (c1(E) · Hn−1)2 − 2Hnrch2(E) · Hn−2

= (c1(E) · Hn−1)2 + Hn(�H (E) − c1(E)2 · Hn−2).

Then, for any integer l with

l >
�H (E)

Hn
− μH (E)

Hn
,

we have

Hn−1(X, E(KX + lH)) = 0.

Let X be a smooth projective variety of dimension n ≥ 2. For a coherent sheaf E of rank r and Chern
classes ci and a very ample line bundle H on X , we define the following numbers depending only on r , ci (E)

(i = 1, . . . , n) and H .

a(E, H) := min{a ∈ N |
(
a + n

n

)
>

1

2

(
max{r

2 − 1

4
, 1}Hn + 1

)
�H (E) + 1},

c(E, H) := ��H (E)

Hn
− μH (E)

Hn
� + 1.

Here, for a real number x , �x� denotes the largest integer less than or equal to x . Let

a0(E, H) := �{n!
2

(max{r
2 − 1

4
, 1}Hn + 1)�H (E) + 1

} 1
n � + 1.
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Cohomology bounds and Chern class inequalities… 791

We see that a0 := a0(E, H) ≥ a(E, H) since(
a0 + n

n

)
>

(a0 + 1)n

n! >
an0
n! >

1

2
(max{r

2 − 1

4
, 1}Hn + 1)�H (E) + 1.

Let X be a smooth projective threefold and let H be a very ample line bundle on X . Let E1 be an H -semistable
vector bundle of rank r1 on X . In the rest of this section, we recall the upper bound of dim Ext1(E, E1) obtained
in [7] for H -semistable torsion-free sheaves E on X . We notice that we gave a bound of different type for sheaves
on a Calabi-Yau threefold in [6].

For an H -semistable torsion-free sheaf E on X of rank r ≥ 2 and Chern classes ci (E) = ci , let χ(E) denote
the Euler characteristic of E . Then Riemann-Roch formula yields

χ(E) = 1

6
(c1(E)3 − 3c1(E) · c2(E) + 3c3(E)) + 1

12
c1(E) · (K 2

X + c2(X))

+ rχ(OX ).

For a line bundle on L on X , we set α(E, L) := χ(E ⊗ L) − χ(E). Then we have (cf. [7]):

α(E, L) = L ·
( L2

6
+ (2c1(E) − r KX ) · L

4
+ c1(E) · (c1(E) − KX )

2

− c2(E) + r(K 2
X + c2(X))

12

)
.

We set E ′ = E ⊗ E∨
1 and l = max{a(E ′, H), c(E ′, H)}. We divide into the following six cases.

Case 1-1 : (KX + lH) · H2 < 0 and μH (E ′) ≥ −(KX + lH) · H2

Case 1-2 : (KX + lH) · H2 < 0 and 0 < μH (E ′) < −(KX + lH) · H2

Case 1-3 : (KX + lH) · H2 < 0 and μH (E ′) ≤ 0

Case 2-1 : (KX + lH) · H2 ≥ 0 and μH (E ′) < −(KX + lH) · H2

Case 2-2 : (KX + lH) · H2 ≥ 0 and − (KX + lH) · H2 ≤ μH (E ′) ≤ 0

Case 2-3 : (KX + lH) · H2 ≥ 0 and μH (E ′) > 0.

Then we have the following bound for dim Ext1(E, E1)( [7, Theorem 3.3]).

Theorem 3 Let X, H, E and E1 be as above and let Bi := Bi (E ′, H, l). Then we have dim Ext1(E, E1) ≤ B
where

B =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

B1 + B2 + B3 in Case 2-2

B1 + B3 in Case 1-1 and Case 2-3

B2 + B3 in Case 1-3 and Case 2-1

B3 in Case 1-2.

Here B j are defined as follows.

B1(E, H, l) = r H3
(μH (E)+(KX+lH)·H2

H3 + f (r) + 2

2

)
,

B2(E, H, l) = r H3
(−μH (E)

H3 + f (r) + 2

2

)
,

B3(E, H, l) = −α(E(KX ), lH)

= −lH ·
( l2H2

6
+ l(2c1(E(KX )) − r KX ) · H

4

+ c1(E(KX )) · (c1(E(KX )) − KX )

2
− c2(E(KX ))

+ r(K 2
X + c2(X))

12

)
.
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792 T. Nakashima

3 Effective bounds in dimension n ≥ 3

We shall adopt the notations introduced in the previous section. The purpose of this section is to give effective
bounds for several invariants ofμ-semistable sheaves on smooth projective variety. Let X be a smooth projective
variety of dimension n ≥ 3 and let H be a very ample line bundle on X . For integers 1 ≤ i ≤ n − 2 and
l1, l2, . . . , li , we denote by Yi ∈ |l1H ∩ · · · ∩ li−1H | a general smooth complete intersections of divisors
l1H, l2H, . . . , li H . Let l1(E, H) := max{a0(E, H), c(E, H)} and for 2 ≤ i ≤ n − 2, define

li = li (E, H) := max{a0(E|Yi−1, HYi−1), c(E|Yi−1 , HYi−1)}.
For 1 ≤ j ≤ 3, let C j = C j (E, H) := Bj (E|Y , HY , ln−2) for general smooth threefold Y = Yn−3 ∈ |l1H ∩
· · · ∩ ln−3H |.
Proposition 4 Let li and C j be as above. Then

1. For each 1 ≤ i ≤ n − 2, li depends only on r, c1(E), c2(E) and H.
2. For 1 ≤ j ≤ 3, C j depends only on r, c1(E), c2(E), c1(X), c2(X) and H.

Proof For any integer l > 0 and general smooth Y ∈ |lH |, let ι : Y ↪→ X denote the inclusion. Then we have

�HY (E|Y ) = l�H (E),

�HY (E|Y ) = l2�H (E).

Hence we obtain

a0(E|Y , HY ) = �{ (n − 1)!l
2

(max{r
2 − 1

4
, 1}Hn + 1)�H (E) + 1

} 1
n−1 � + 1,

c(E|Y , HY ) = � l�H (E)

Hn
− μH (E)

Hn
� + 1.

By induction, the claim (1) follows immediately.
We notice that there exists the following exact sequence of tangent bundles on Y :

0 → TY → ι∗TX → NY/X → 0

where NY/X is the normal bundle of Y in X . Hence the total Chern class of TY is given by

c(TY ) = c(ι∗TX )/c(NY/X )

where

c(NY/X ) =
n−3∏
i=1

(1 + li HY ).

Hence the claim (2) follows. ��
Let E1 be an H -semistable vector bundle of rank r1 on X . We are interested in estimating dim Ext1(E, E1)

from above for any H -semistable torsion-free sheaf E on X . Let E ′ = E ⊗ E∨
1 . Then E ′ is H -semistable by [3,

Theorem 3.1.4]. Let li := li (E ′, H) for 1 ≤ i ≤ n − 2, l := ∑n−2
i=1 li and C j := C j (E ′, H) for 1 ≤ j ≤ 3. As

in the case of threefolds, we consider the following six cases.

Case 1-1 : (KX + lH) · Hn−1 < 0 and μH (E ′) ≥ −(KX + lH) · Hn−1

Case 1-2 : (KX + lH) · Hn−1 < 0 and 0 < μH (E ′) < −(KX + lH) · Hn−1

Case 1-3 : (KX + lH) · Hn−1 < 0 and μH (E ′) ≤ 0

Case 2-1 : (KX + lH) · Hn−1 ≥ 0 and μH (E ′) < −(KX + lH) · Hn−1

Case 2-2 : (KX + lH) · Hn−1 ≥ 0 and − (KX + lH) · Hn−1 ≤ μH (E ′) ≤ 0

Case 2-3 : (KX + lH) · Hn−1 ≥ 0 and μH (E ′) > 0.
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Cohomology bounds and Chern class inequalities… 793

Theorem 5 Let X, H, E and E1, li and Ci be as above. Then we have dim Ext1(E, E1) ≤ C where

C =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C1 + C2 + C3 in Case 2-2

C1 + C3 in Case 1-1 and Case 2-3

C2 + C3 in Case 1-3 and Case 2-1

C3 in Case 1-2

Proof For any 1 ≤ i ≤ n − 3 and general smooth Yi+1 ∈ |li+1HYi |, we have the exact sequence on Yi :

0 → E|Yi (−li+1HYi ) → E|Yi → E|Yi+1 → 0.

By tensoring the above sequence with E∨
1 (KYi + li+1H), we obtain the exact sequence

0 → E ′(KYi ) → E ′(KYi + li+1H) → E ′(KYi + li+1H)|Yi+1 → 0.

By Proposition 1, E ′|Yi is an HYi -semistable sheaf on Yi . Hence Proposition 2 yields Hn−i−1(E ′(KYi +li+1H)) =
0. Then we obtain the surjection

Hn−i−2(E ′(KX + li+1H)|Yi ) → Hn−i−1(E ′(KYi )).

Therefore we have hn−i−1(E ′(KYi )) ≤ hn−i−2(E ′(KYi + li+1HYi )|Yi+1). Since Serre duality yields

Hn−i−1(E ′(KYi ))
∼= Ext1(E|Yi , E1|Yi )∨,

Hn−i−2(E ′(KYi + li+1HYi )|Yi+1)
∼= Ext1(E|Yi+1, E1|Yi+1)

∨,

we obtain dim Ext1(E|Yi , E1|Yi ) ≤ dim Ext1(E|Yi+1 , E1|Yi+1) for all 1 ≤ i ≤ n − 3. It follows that
dim Ext1(E, E1) ≤ dim Ext1(E|Y , E1|Y ) for general smooth Y = Yn−3 ∈ |l1H ∩ · · · ∩ ln−3H |. We have

(KY + ln−2HY ) · H2
Y = l ′(KX + lH) · Hn−1,

μHY (E ′|Y ) = l ′μH (E ′)

where l = ∑n−2
i=1 li and l ′ = ∏n−3

i=1 li . Hence, applying Theorem 3 to the threefold Y and the HY -semistable
sheaf E|Y , we obtain the claim for dim Ext1(E, E1). ��

We notice that the constantC in the theorem above depends only on r, ci , ci (X) and H and not on the choice
of E , Y .

Corollary 6 Let X be a smooth projective variety of dimension n ≥ 3 and let H be a very ample line bundle on
X. Let li = li (E(−KX ), H) and mi = li (E∨, H) for 1 ≤ i ≤ n − 2.

1. For any H-semistable torsion-free sheaf E on X of rank r ≥ 2, ci (E) = ci , we have hn−1(E) ≤ ∑3
j=1 C j

where C j = C j (E(−KX ), H).
2. For any H-semistable vector bundle E on X of rank r ≥ 2, ci (E) = ci , we have h1(E) ≤ ∑3

j=1 Dj where
D j = C j (E∨, H).

Proof By Serre duality, we have Hn−1(E) = Extn−1(OX , E) ∼= Ext1(E, KX )∨. Hence, applying Theorem 5 to
the sheaves E , E1 = KX , we obtain (1). If E is a vector bundle, then H1(E) ∼= Ext1(E∨,OX ). Hence we apply
Theorem 3 to E∨ and E1 = OX and obtain (2). ��

Let X be a smooth projective variety of dimension n ≥ 2 and let H be a very ample line bundle on X .
For a coherent sheaf E on X , the Mukai vector v(E) of E is the element of the rational cohomology ring
H∗(X,Q) := ⊕4

i=0H
2i (X,Q) defined as follows.

v(E) := ch(E) · √
td(X)

where td(X) denotes the Todd class of X . For given v ∈ H∗(X,Q), letM(v) denote themoduli space ofμ-stable
torsion-free sheaves with Mukai vector v. Let M(v)0 ⊂ M(v) denote the open subscheme of μ-stable locally
free sheaves. Let E1 be a μ-stable rigid vector bundle on X . We define the Brill-Noether locus M(v)i, j of type
(i, j) as follows.

M(v)i, j := {E ∈ M(v) | i = dimHom(E1, E) and j = dim Ext1(E, E1)}.
Weare interested in thehigher dimensionalBrill-Noether problem concerning the existence of these loci. Theorem
5 yields the following
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794 T. Nakashima

Corollary 7 Let X be a smooth projective variety of dimension n ≥ 3 and let H be a very ample line bundle on
X. Then M(v)i, j is empty if i ≥ 0 and j > C where C is the constant in Theorem 5.

In general, we have the following inequality ( [3, Corollary 4.5.2])

dimM[E](v) ≤ dim Ext1(E, E).

We notice that effective bounds for dimM[E](v) have been investigated for sheaves on a threefold in [7].
Applying Theorem 5 to E1 = E , we obtain the following result in dimension n ≥ 3.

Proposition 8 Let X be a smooth projective variety of dimension n ≥ 3 and let H be a very ample line bundle
on X. For a μ-stable vector bundle E ∈ M(v)0 on X, let li := li (EndE, H) (1 ≤ i ≤ n − 2) and let
C j := C j (EndE, H). Then we have dimM[E](v) ≤ ∑3

j=1 C j .

4 Chern class inequalities on a fourfold

In this section we obtain an upper bound for the fourth Chern class c4(E) of μ-semistable bundles on a smooth
projective fourfold. First, we recall the following Riemann-Roch formula for sheaves on a fourfold.

Lemma 9 Let X be a smooth projective fourfold. Let E be a coherent sheaf of rank r with Chern classes ci on
X. Then

χ(E) = 1

24
(c1(E)4 − 4c1(E)2 · c2(E) + 4c1(E) · c3(E) + 2c2(E)2 − 4c4(E))

− 1

12
(c1(E)3 − 3c1(E) · c2(E) + 3c3(E)) · KX

+ 1

24
(c1(E)2 − 2c2(E)) · (K 2

X + c2(X)) − 1

24
c1(E) · KX · c2(X) + rχ(OX ).

We make explicit the constants li (E, H) and c j (E, H) introduced in the previous section for sheaves E on
a fourfold.

Lemma 10 Let X be a smooth projective fourfold and let H be a very ample line bundle on X. Let E be a
torsion-free sheaf on X. Let li := li (E, H) for i = 1, 2 and C j := C j (E, H) for 1 ≤ j ≤ 3. Then

l1 = max{�{12(max{r
2 − 1

4
, 1}H4 + 1)�H (E)

} 1
4 �, ��H (E)

H4 − μH (E)

H4 �} + 1,

l2 = max{�{3(max{r
4 − 1

4
, 1}l1H4 + 1)l1�H (E)

} 1
3 �, � l1�H (E)

H4 − μH (E)

H4 �} + 1

and

C1 = rl1H
4
(μH (E)+(KX+(l1+l2)H)·H3

H4 + f (r) + 2

2

)
,

C2 = rl1H
4
(−μH (E)

H4 + f (r) + 2

2

)
,

C3 = −l1l2H
2 ·

( l22H2

6
+ l2{2c1(E(KX + l1H)) − r(KX + l1H)} · H

4

+ c1(E(KX + l1H)) · {c1(E(KX + l1H)) − (KX + l1H)}
2

− c2(E(KX + l1H)) + r{(KX + l1H)2 + c2(X) + l1(KX + l1H) · H}
12

)
.

Proof Let ι : Y ↪→ X denote the inclusion map. Since we have KY = (KX + l1H)|Y and c2(Y ) = ι∗(c2(X) +
l1(KX + l1)H) · H), the claim follows immediately. ��

Nowwe apply Theorem 5 to obtain a bound for the fourth Chern class of μ-semistable bundles on a fourfold.
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Theorem 11 Let X be a smooth projective fourfold and let H be a very ample line bundle on X. Let E be an
H-semistable vector bundle E on X of rank r ≥ 2, ci (E) = ci . Let li = li (E(−KX ), H) and mi = li (E∨, H)

for i = 1, 2. We define

F = 1

4
(c1(E)4 − 4c1(E)2 · c2(E) + 4c1(E) · c3(E) + 2c2(E)2)

− 1

2
(c1(E)3 − 3c1(E) · c2(E) + 3c3(E)) · KX

+ 1

4
(c1(E)2 − 2c2(E)) · (K 2

X + c2(X)) − 1

4
c1(E) · KX · c2(X) + 6rχ(OX ),

C = rl1H
4

{(μH (E(−KX ))+(KX+(l1+l2)H)·H3

H4 + f (r) + 2

2

)
+

(−μH (E(−KX ))

H4 + f (r) + 2

2

)}

− l1l2H
2 ·

( l22H2

6
+ l2{2c1(E(l1H)) − r(KX + l1H)} · H

4

+ c1(E(l1H) · {c1(E(l1H) − (KX + l1H)}
2

− c2(E(l1H) + r{(KX + l1H)2 + c2(X) + l1(KX + l1H) · H}
12

)

and

D = rm1H
4

{(μH (E∨)+(KX+(m1+m2)H)·H3

H4 + f (r) + 2

2

)
+

(−μH (E∨)

H4 + f (r) + 2

2

)}

− m1m2H
2 ·

(m2
2H

2

6
+ m2{2c1(E∨(KX + m1H)) − r(KX + m1H)} · H

4

+ c1(E∨(KX + m1H)) · {c1(E∨(KX + m1H)) − (KX + m1H)}
2

− c2(E
∨(KX + m1H)) + r{(KX + m1H)2 + c2(X) + m1(KX + m1H) · H}

12

)
.

Then we have c4(E) ≤ F + 6(C + D).

Proof By Corollary 6, we have h3(E) ≤ C := ∑3
j=1 C j and h1(E) ≤ D := ∑3

j=1 Dj where C j =
C j (E(−KX ), H), Dj = C j (E∨, H). Let F = 6χ(E) + c4(E). This yields χ(E) ≥ −(C + D) and hence

c4(E) = F − 6χ(E)

≤ F + 6(C + D).

Therefore the claim follows from Lemma 9 and Lemma 10. ��

We obtain the following bound in the case of abelian fourfolds.

Corollary 12 Let X be an abelian fourfold and let H be a very ample line bundle on X. Let E be an H-
semistable vector bundle on X of rank r ≥ 2 on X. Let li = li (E, H) and mi = li (E∨, H). Then we have
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796 T. Nakashima

c4(E) ≤ F + 6(C + D) where

F = 1

4
(c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E) + 2c2(E)2),

C = rl1H
4

{(μH (E)+(l1+l2)H4

H4 + f (r) + 2

2

)
+

(−μH (E)

H4 + f (r) + 2

2

)}

− l1l2H
2 ·

( l22H2

6
+ l2{2c1(E(l1H)) − rl1H} · H

4

+ c1(E(l1H)) · {c1(E(l1H)) − l21H}
2

− c2(E(l1H)) + rl21H
2

6

)
,

D = rm1H
4

{(−μH (E)+(m1+m2)H)·H3

H4 + f (r) + 2

2

)
+

(μH (E)

H4 + f (r) + 2

2

)}

− m1m2H
2 ·

(m2
2H

2

6
− m2{2c1(E∨(m1H)) − rm1H} · H

4

+ c1(E∨(m1H)) · {c1(E∨(m1H)) − m2
1H}

2
− c2(E

∨(m1H)) + rm2
1H

2}
6

)
.

We notice that there cannot exist an analogous upper bound for c4(E) for H -semistable torsion-free sheaves
E on a smooth projective fourfold X . Indeed, the following result holds in arbitrary dimension.

Proposition 13 Let X be a smooth projective variety of dimension n ≥ 2 and H an ample line bundle on
X. Assume that n is even (resp. odd). Then there does not exist an upper (resp. lower) bound for cn(E) for
H-semistable torsion-free sheaves E on X in terms of r , ci for 1 ≤ i ≤ n − 1, H and ci (X).

Proof Let E be an H -semistable torsion-free sheaf on X of rank r , ci (E) = ci and any point p ∈ X , let Ep
denote the kernel of the natural evaluation map E → Op. Then Ep is an H -semistable torsion-free sheaf of
rank r , ci (Ep) = ci for 1 ≤ i ≤ n − 1 and cn(Ep) = cn(E) − (−1)n+1(n − 1)!. Therefore the claim follows by
choosing arbitrarily many points of X . ��
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