ORIGINAL RESEARCH

Cohomology bounds and Chern class inequalities for stable sheaves on a smooth projective variety

Tohru Nakashim[a](http://orcid.org/0000-0002-9469-8272)

Received: 19 May 2022 / Accepted: 19 July 2022 / Published online: 12 August 2022 © The Indian National Science Academy 2022

Abstract We give effective upper bounds for dimensions of the $(n - 1)$ -th cohomology groups of μ -semistable torsion-free sheaves on a smooth projective variety of dimension *n* defined over an algebraically closed fieled of characteristic zero. As a corollary to this result, we obtain bounds for the dimension of the moduli space of μ -stable vector bundles. We also prove Bogomolov-Gieseker type inequalities for the fourth Chern classes $c_4(E)$ of μ -semistable vector bundles E on a smooth projective fourfold.

Keywords Bogomolov-Gieseker type inequality $\cdot \mu$ -semistable sheaves \cdot Moduli spaces

Mathematics Subject Classification 14J60 · 14F05 · 14J32

1 Introduction

Let *X* be a smooth projective variety defined over an algebraically closed field of characteristic 0 and let *H* be an ample line bundle on *X*. The classical Bogomolov-Gieseker inequality states that $\Delta_H(E) = (2rc_2(E) - (r 1)c_1(E)^2$ · $H^{n-2} \ge 0$ for any torsion-free sheaf *E* of rank *r* and Chern classes $c_i(E)$ on *X* which is μ -semistable with respect to *H*. Recently, some conjectures for the third Chern character ch₃(*E*) of μ -stable sheaves *E* on a threefold have been proposed ($[1]$, $[2]$ $[2]$). We gave explicit bounds for the cohomology groups for μ -semistable sheaves *E* on a threefold and applied them to obtain inequalities for $ch_3(E)$ in [\[6\]](#page-7-2), [\[7\]](#page-7-3). On the other hand, it seems that no Bogomolov-Gieseker type inequality has been known for the top Chern class $c_n(E)$ for μ -semistable sheaves *E* on a variety of dimension $n \geq 4$.

In this note we give an effective bound for the dimension of the cohomology group $Ext^1(E, E_1)$ for μ semistable torsion-free sheaves *E* and E_1 on a smooth projective variety of dimension $n \geq 3$. As in [\[7](#page-7-3)], we prove this by reducing the problem to the three dimensional case using the restriction theorem due to A.Langer ([\[4](#page-7-4)], [\[5\]](#page-7-5)) and a vanishing theorem of H.Sun ([\[8](#page-7-6)]). As a corollary, we obtain upper bounds for the dimension of the moduli of μ -stable vector bundles. We also obtain explicit upper bounds for $c_4(E)$ of μ -semistable bundles *E* in terms of *r*, $c_i(E)$ ($1 \le i \le 3$), $c_i(X)$ and *H* on a smooth projective fourfold.

T. Nakashima (\boxtimes)

Department of Mathematics, Physics and Computer Science, Japan Women's University, Mejirodai, Bunkyoku, Tokyo 112-8681, Japan

E-mail: nakashima@fc.jwu.ac.jp

Communicated by Indranil Biswas.

2 Notations and Preliminaries

In what follows all varieties will be assumed to be defined over an algebraically closed field of characteristic 0. Let *X* be a smooth projective variety of dimension $n > 3$ and let *H* be an ample line bundle on *X*. Let K_X denote the canonical bundle of *X* and let $A^{i}(X)$ denote the codimension *i* Chow group of *X*. For a torsion-free sheaf *E* on *X*, the *slope* μ _{*H*} (E) is defined to be the following number

$$
\mu_H(E) := \frac{c_1(E) \cdot H^{n-1}}{\operatorname{rk} E}.
$$

A torsion-free sheaf E on X is said to be μ -*stable*(resp. μ -*semistable*) with respect to H (or simply H-(semi)stable) if, for any coherent subsheaf $F \subset E$ with $0 < \text{rk } F < \text{rk } E$, we have $\mu_H(F) < \mu_H(E)$ (resp. $\mu_H(F) \leq \mu_H(E)$).

The *discriminant* $\Delta(E) \in A^2(X)$ of *E* is defined as follows.

$$
\Delta(E) = 2rc_2(E) - (r-1)c_1(E)^2.
$$

We set $\Delta_H(E) := \Delta(E) \cdot H^{n-2}$. We recall the following results concerning the restriction of μ -(semi)stable sheaves to divisors ($\overline{5}$).

Proposition 1 Let X be a smooth projective variety X of dimension $n \geq 2$ and let H be a very ample line bundle *on X. Let E be an H-semistable torsion-free sheaf of rank r* ≥ 2 *on X. Let a be an integer with*

$$
\binom{a+n}{n} > \frac{1}{2} \left(\max\{ \frac{r^2 - 1}{4}, 1 \} H^n + 1 \right) \Delta_H(E) + 1.
$$

Then, for general $D \in |aH|$ *, the restriction* $E_{|D}$ *is an H_D-semistable torsion-free sheaf.*

We also need the following vanishing result due to H.Sun which has been proved by techniques of tilt stability ([\[8,](#page-7-6) Corollary 1.9]).

Proposition 2 *Let X be a smooth projective variety X of dimension n* \geq 2 *and H an ample line bundle on X*. *Let E be an H-semistable torsion-free sheaf of rank* $r \geq 2$ *and Chern classes* $c_i(E) = c_i$ *on X. Let*

$$
\overline{\Delta}_H(E) := (c_1(E) \cdot H^{n-1})^2 - 2H^n r \operatorname{ch}_2(E) \cdot H^{n-2}
$$

= $(c_1(E) \cdot H^{n-1})^2 + H^n(\Delta_H(E) - c_1(E)^2 \cdot H^{n-2}).$

Then, for any integer l with

$$
l > \frac{\overline{\Delta}_H(E)}{H^n} - \frac{\mu_H(E)}{H^n},
$$

we have

$$
H^{n-1}(X, E(K_X + lH)) = 0.
$$

Let *X* be a smooth projective variety of dimension $n \geq 2$. For a coherent sheaf *E* of rank *r* and Chern classes c_i and a very ample line bundle *H* on *X*, we define the following numbers depending only on *r*, $c_i(E)$ $(i = 1, \ldots, n)$ and *H*.

$$
a(E, H) := \min\{a \in \mathbb{N} \mid \binom{a+n}{n} > \frac{1}{2} \left(\max\{\frac{r^2 - 1}{4}, 1\} H^n + 1 \right) \Delta_H(E) + 1 \},
$$
\n
$$
c(E, H) := \lfloor \frac{\overline{\Delta}_H(E)}{H^n} - \frac{\mu_H(E)}{H^n} \rfloor + 1.
$$

Here, for a real number x , $\lfloor x \rfloor$ denotes the largest integer less than or equal to x . Let

$$
a_0(E, H) := \lfloor \left\{ \frac{n!}{2} (\max\{ \frac{r^2 - 1}{4}, 1\} H^n + 1) \Delta_H(E) + 1 \right\}^{\frac{1}{n}} \rfloor + 1.
$$

We see that $a_0 := a_0(E, H) \ge a(E, H)$ since

$$
\binom{a_0+n}{n} > \frac{(a_0+1)^n}{n!} > \frac{a_0^n}{n!} > \frac{1}{2} (\max\{\frac{r^2-1}{4}, 1\}H^n + 1)\Delta_H(E) + 1.
$$

Let *X* be a smooth projective threefold and let *H* be a very ample line bundle on *X*. Let E_1 be an *H*-semistable vector bundle of rank r_1 on X. In the rest of this section, we recall the upper bound of dim Ext¹(E , E_1) obtained in [\[7\]](#page-7-3) for *H*-semistable torsion-free sheaves *E* on *X*. We notice that we gave a bound of different type for sheaves on a Calabi-Yau threefold in [\[6](#page-7-2)].

For an *H*-semistable torsion-free sheaf *E* on *X* of rank $r \ge 2$ and Chern classes $c_i(E) = c_i$, let $\chi(E)$ denote the Euler characteristic of *E*. Then Riemann-Roch formula yields

$$
\chi(E) = \frac{1}{6}(c_1(E)^3 - 3c_1(E) \cdot c_2(E) + 3c_3(E)) + \frac{1}{12}c_1(E) \cdot (K_X^2 + c_2(X)) + r\chi(\mathcal{O}_X).
$$

For a line bundle on *L* on *X*, we set $\alpha(E, L) := \chi(E \otimes L) - \chi(E)$. Then we have (cf. [\[7](#page-7-3)]):

$$
\alpha(E, L) = L \cdot \left(\frac{L^2}{6} + \frac{(2c_1(E) - rK_X) \cdot L}{4} + \frac{c_1(E) \cdot (c_1(E) - K_X)}{2} - c_2(E) + \frac{r(K_X^2 + c_2(X))}{12}\right).
$$

We set $E' = E \otimes E_1^{\vee}$ and $l = \max\{a(E', H), c(E', H)\}\)$. We divide into the following six cases.

Case 1-1:
$$
(K_X + lH) \cdot H^2 < 0
$$
 and $\mu_H(E') \ge -(K_X + lH) \cdot H^2$
\nCase 1-2: $(K_X + lH) \cdot H^2 < 0$ and $0 < \mu_H(E') < -(K_X + lH) \cdot H^2$
\nCase 1-3: $(K_X + lH) \cdot H^2 < 0$ and $\mu_H(E') \le 0$
\nCase 2-1: $(K_X + lH) \cdot H^2 \ge 0$ and $\mu_H(E') < -(K_X + lH) \cdot H^2$
\nCase 2-2: $(K_X + lH) \cdot H^2 \ge 0$ and $-(K_X + lH) \cdot H^2 \le \mu_H(E') \le 0$
\nCase 2-3: $(K_X + lH) \cdot H^2 \ge 0$ and $\mu_H(E') > 0$.

Then we have the following bound for dim $Ext^1(E, E_1)(17,$ Theorem 3.3]).

Theorem 3 *Let X, H, E and E₁ be as above and let* $B_i := B_i(E', H, l)$ *. Then we have dim* $Ext^1(E, E_1) \leq B$ *where*

$$
B = \begin{cases} B_1 + B_2 + B_3 & \text{in Case 2-2} \\ B_1 + B_3 & \text{in Case 1-1 and Case 2-3} \\ B_2 + B_3 & \text{in Case 1-3 and Case 2-1} \\ B_3 & \text{in Case 1-2.} \end{cases}
$$

Here Bj are defined as follows.

$$
B_1(E, H, l) = rH^3 \left(\frac{\mu_H(E) + (K_X + lH) \cdot H^2}{H^3} + f(r) + 2 \right),
$$

\n
$$
B_2(E, H, l) = rH^3 \left(-\frac{\mu_H(E)}{H^3} + f(r) + 2 \right),
$$

\n
$$
B_3(E, H, l) = -\alpha (E(K_X), lH)
$$

\n
$$
= -lH \cdot \left(\frac{l^2 H^2}{6} + \frac{l(2c_1(E(K_X)) - rK_X) \cdot H}{4} + \frac{c_1(E(K_X)) \cdot (c_1(E(K_X)) - K_X)}{2} - c_2(E(K_X)) + \frac{r(K_X^2 + c_2(X))}{12} \right).
$$

3 Effective bounds in dimension $n \geq 3$

We shall adopt the notations introduced in the previous section. The purpose of this section is to give effective bounds for several invariants of μ-semistable sheaves on smooth projective variety. Let *X* be a smooth projective variety of dimension $n \geq 3$ and let *H* be a very ample line bundle on *X*. For integers $1 \leq i \leq n-2$ and l_1, l_2, \ldots, l_i , we denote by $Y_i \in |l_1H \cap \cdots \cap l_{i-1}H|$ a general smooth complete intersections of divisors l_1H , l_2H , ..., l_iH . Let $l_1(E, H) := \max\{a_0(E, H), c(E, H)\}\$ and for $2 \le i \le n - 2$, define

$$
l_i = l_i(E, H) := \max\{a_0(E_{|Y_{i-1}}, H_{Y_{i-1}}), c(E_{|Y_{i-1}}, H_{Y_{i-1}})\}.
$$

For $1 \le j \le 3$, let $C_j = C_j(E, H) := B_j(E_{|Y}, H_Y, l_{n-2})$ for general smooth threefold $Y = Y_{n-3} \in |l_1H \cap l_2|$ $\cdots ∩ l_{n-3}H$ |.

Proposition 4 *Let li and Cj be as above. Then*

- *1. For each* $1 \leq i \leq n-2$, l_i depends only on r, $c_1(E)$, $c_2(E)$ and H.
- *2. For* $1 \le j \le 3$, C_j *depends only on r, c*₁(*E*)*, c*₂(*E*)*, c*₁(*X*)*, c*₂(*X*) *and H*.

Proof For any integer $l > 0$ and general smooth $Y \in |lH|$, let $\iota : Y \hookrightarrow X$ denote the inclusion. Then we have

$$
\Delta_{H_Y}(E_{|Y}) = l \Delta_H(E),
$$

$$
\overline{\Delta}_{H_Y}(E_{|Y}) = l^2 \overline{\Delta}_H(E).
$$

Hence we obtain

$$
a_0(E_{|Y}, H_Y) = \lfloor \left\{ \frac{(n-1)!\}{2} (\max\{\frac{r^2 - 1}{4}, 1\} H^n + 1) \Delta_H(E) + 1 \right\}^{\frac{1}{n-1}} \rfloor + 1,
$$

$$
c(E_{|Y}, H_Y) = \lfloor \frac{l\overline{\Delta}_H(E)}{H^n} - \frac{\mu_H(E)}{H^n} \rfloor + 1.
$$

By induction, the claim (1) follows immediately.

We notice that there exists the following exact sequence of tangent bundles on *Y* :

$$
0 \to T_Y \to \iota^* T_X \to N_{Y/X} \to 0
$$

where $N_{Y/X}$ is the normal bundle of *Y* in *X*. Hence the total Chern class of T_Y is given by

$$
c(T_Y) = c(\iota^* T_X)/c(N_{Y/X})
$$

where

$$
c(N_{Y/X}) = \prod_{i=1}^{n-3} (1 + l_i H_Y).
$$

Hence the claim (2) follows. \Box

Let E_1 be an *H*-semistable vector bundle of rank r_1 on *X*. We are interested in estimating dim Ext¹(E , E_1) from above for any *H*-semistable torsion-free sheaf *E* on *X*. Let $E' = E \otimes E_1^{\vee}$. Then *E'* is *H*-semistable by [\[3](#page-7-7), Theorem 3.1.4]. Let $l_i := l_i(E', H)$ for $1 \le i \le n-2$, $l := \sum_{i=1}^{n-2} l_i$ and $C_j := C_j(E', H)$ for $1 \le j \le 3$. As in the case of threefolds, we consider the following six cases.

Case 1-1:
$$
(K_X + lH) \cdot H^{n-1} < 0
$$
 and $\mu_H(E') \ge -(K_X + lH) \cdot H^{n-1}$
\nCase 1-2: $(K_X + lH) \cdot H^{n-1} < 0$ and $0 < \mu_H(E') < -(K_X + lH) \cdot H^{n-1}$
\nCase 1-3: $(K_X + lH) \cdot H^{n-1} < 0$ and $\mu_H(E') \le 0$
\nCase 2-1: $(K_X + lH) \cdot H^{n-1} \ge 0$ and $\mu_H(E') < -(K_X + lH) \cdot H^{n-1}$
\nCase 2-2: $(K_X + lH) \cdot H^{n-1} \ge 0$ and $-(K_X + lH) \cdot H^{n-1} \le \mu_H(E') \le 0$
\nCase 2-3: $(K_X + lH) \cdot H^{n-1} \ge 0$ and $\mu_H(E') > 0$.

Theorem 5 *Let X, H, E and E₁, l_i and C_i be as above. Then we have dim* $Ext^1(E, E_1) \leq C$ *where*

$$
C = \begin{cases} C_1 + C_2 + C_3 & \text{in Case 2-2} \\ C_1 + C_3 & \text{in Case 1-1 and Case 2-3} \\ C_2 + C_3 & \text{in Case 1-3 and Case 2-1} \\ C_3 & \text{in Case 1-2} \end{cases}
$$

Proof For any $1 \le i \le n - 3$ and general smooth $Y_{i+1} \in |l_{i+1}H_{Y_i}|$, we have the exact sequence on Y_i :

$$
0 \to E_{|Y_i}(-l_{i+1}H_{Y_i}) \to E_{|Y_i} \to E_{|Y_{i+1}} \to 0.
$$

By tensoring the above sequence with $E_1^{\vee}(K_{Y_i} + l_{i+1}H)$, we obtain the exact sequence

$$
0 \to E'(K_{Y_i}) \to E'(K_{Y_i} + l_{i+1}H) \to E'(K_{Y_i} + l_{i+1}H)_{|Y_{i+1}} \to 0.
$$

By Proposition 1, E'_{Y_i} is an H_{Y_i} -semistable sheaf on Y_i . Hence Proposition 2 yields $H^{n-i-1}(E'(K_{Y_i} + l_{i+1}H)) = 0$. 0. Then we obtain the surjection

$$
H^{n-i-2}(E'(K_X+l_{i+1}H)|_{Y_i}) \to H^{n-i-1}(E'(K_{Y_i})).
$$

Therefore we have $h^{n-i-1}(E'(K_{Y_i})) \leq h^{n-i-2}(E'(K_{Y_i} + l_{i+1}H_{Y_i})|_{Y_{i+1}})$. Since Serre duality yields

$$
H^{n-i-1}(E'(K_{Y_i})) \cong \text{Ext}^1(E_{|Y_i}, E_{1|Y_i})^{\vee},
$$

$$
H^{n-i-2}(E'(K_{Y_i} + l_{i+1}H_{Y_i})_{|Y_{i+1}}) \cong \text{Ext}^1(E_{|Y_{i+1}}, E_{1|Y_{i+1}})^{\vee},
$$

we obtain dim $\text{Ext}^1(E_{|Y_i}, E_{1|Y_i}) \leq \dim \text{Ext}^1(E_{|Y_{i+1}}, E_{1|Y_{i+1}})$ for all $1 \leq i \leq n-3$. It follows that dim Ext¹(*E*, *E*₁) ≤ dim Ext¹(*E*_{|*Y*}, *E*_{1|*Y*}) for general smooth *Y* = *Y*_{*n*−3} ∈ |*l*₁*H* ∩ ···∩*l*_{*n*−3}*H*|. We have

$$
(K_Y + l_{n-2}H_Y) \cdot H_Y^2 = l'(K_X + lH) \cdot H^{n-1},
$$

$$
\mu_{H_Y}(E'_{|Y}) = l'\mu_H(E')
$$

where $l = \sum_{i=1}^{n-2} l_i$ and $l' = \prod_{i=1}^{n-3} l_i$. Hence, applying Theorem 3 to the threefold *Y* and the *H_Y*-semistable sheaf $E_{|Y}$, we obtain the claim for dim $Ext^1(E, E_1)$.

We notice that the constant *C* in the theorem above depends only on *r*, c_i , c_i (*X*) and *H* and not on the choice of *E*, *Y* .

Corollary 6 *Let X be a smooth projective variety of dimension* $n \geq 3$ *and let H be a very ample line bundle on X. Let* $l_i = l_i(E(-K_X), H)$ *and* $m_i = l_i(E^{\vee}, H)$ *for* $1 ≤ i ≤ n - 2$ *.*

- *1. For any H-semistable torsion-free sheaf <i>E* on *X* of rank r ≥ 2, $c_i(E) = c_i$, we have $h^{n-1}(E) \leq \sum_{j=1}^{3} C_j$ *where* $C_j = C_j(E(-K_X), H)$.
- 2. For any *H*-semistable vector bundle *E* on *X* of rank $r \geq 2$, $c_i(E) = c_i$, we have $h^1(E) \leq \sum_{j=1}^3 D_j$ where $D_i = C_i(E^{\vee}, H)$.

Proof By Serre duality, we have $H^{n-1}(E) = \text{Ext}^{n-1}(\mathcal{O}_X, E) \cong \text{Ext}^1(E, K_X)^\vee$. Hence, applying Theorem 5 to the sheaves *E*, *E*₁ = *K_X*, we obtain (1). If *E* is a vector bundle, then $H^1(E) \cong \text{Ext}^1(E^{\vee}, \mathcal{O}_X)$. Hence we apply
Theorem 3 to E^{\vee} and $E_1 = \mathcal{O}_X$ and obtain (2). Theorem [3](#page-2-0) to E^{\vee} and $E_1 = \mathcal{O}_X$ and obtain (2).

Let *X* be a smooth projective variety of dimension $n \geq 2$ and let *H* be a very ample line bundle on *X*. For a coherent sheaf E on X , the *Mukai vector* $v(E)$ of E is the element of the rational cohomology ring $H^*(X, \mathbb{Q}) := \bigoplus_{i=0}^4 H^{2i}(X, \mathbb{Q})$ defined as follows.

$$
v(E) := \text{ch}(E) \cdot \sqrt{\text{td}(X)}
$$

where td(*X*) denotes the Todd class of *X*. For given $v \in H^*(X, \mathbb{Q})$, let $\mathcal{M}(v)$ denote the moduli space of μ -stable torsion-free sheaves with Mukai vector v. Let $\mathcal{M}(v)$ ₀ $\subset \mathcal{M}(v)$ denote the open subscheme of μ -stable locally free sheaves. Let E_1 be a μ -stable rigid vector bundle on *X*. We define the *Brill-Noether locus* $\mathcal{M}(v)_{i,j}$ *of type* (i, j) as follows.

$$
\mathcal{M}(v)_{i,j} := \{ E \in \mathcal{M}(v) \mid i = \dim \operatorname{Hom}(E_1, E) \text{ and } j = \dim \operatorname{Ext}^1(E, E_1) \}.
$$

We are interested in the *higher dimensional Brill-Noether problem* concerning the existence of these loci. Theorem 5 yields the following

Corollary 7 *Let X be a smooth projective variety of dimension* $n \geq 3$ *and let H be a very ample line bundle on X. Then* $\mathcal{M}(v)_{i,j}$ *is empty if* $i \geq 0$ *and* $j > C$ *where C is the constant in Theorem* 5.

In general, we have the following inequality $(3, Corollary 4.5.2)$

$$
\dim \mathcal{M}_{[E]}(v) \le \dim \operatorname{Ext}^1(E, E).
$$

We notice that effective bounds for dim $\mathcal{M}_{[E]}(v)$ have been investigated for sheaves on a threefold in [\[7](#page-7-3)]. Applying Theorem 5 to $E_1 = E$, we obtain the following result in dimension $n \geq 3$.

Proposition 8 *Let X be a smooth projective variety of dimension n* \geq 3 *and let H be a very ample line bundle on X. For a* μ -stable vector bundle $E \in \mathcal{M}(v)_0$ *on X, let* $l_i := l_i(\mathcal{E}ndE, H)$ (1 $\leq i \leq n-2$) and let $C_j := C_j(\mathcal{E}ndE, H)$ *. Then we have* dim $\mathcal{M}_{[E]}(v) \le \sum_{j=1}^3 C_j$ *.*

4 Chern class inequalities on a fourfold

In this section we obtain an upper bound for the fourth Chern class $c_4(E)$ of μ -semistable bundles on a smooth projective fourfold. First, we recall the following Riemann-Roch formula for sheaves on a fourfold.

Lemma 9 *Let X be a smooth projective fourfold. Let E be a coherent sheaf of rank r with Chern classes ci on X. Then*

$$
\chi(E) = \frac{1}{24} (c_1(E)^4 - 4c_1(E)^2 \cdot c_2(E) + 4c_1(E) \cdot c_3(E) + 2c_2(E)^2 - 4c_4(E))
$$

$$
- \frac{1}{12} (c_1(E)^3 - 3c_1(E) \cdot c_2(E) + 3c_3(E)) \cdot K_X
$$

$$
+ \frac{1}{24} (c_1(E)^2 - 2c_2(E)) \cdot (K_X^2 + c_2(X)) - \frac{1}{24} c_1(E) \cdot K_X \cdot c_2(X) + r_X(\mathcal{O}_X).
$$

We make explicit the constants $l_i(E, H)$ and $c_j(E, H)$ introduced in the previous section for sheaves *E* on a fourfold.

Lemma 10 *Let X be a smooth projective fourfold and let H be a very ample line bundle on X. Let E be a torsion-free sheaf on X. Let* $l_i := l_i(E, H)$ *for* $i = 1$, 2 *and* $C_j := C_j(E, H)$ *for* $1 \leq j \leq 3$ *. Then*

$$
l_1 = \max\{ \lfloor \left\{ 12(\max\{\frac{r^2 - 1}{4}, 1\}H^4 + 1)\Delta_H(E)\right\}^{\frac{1}{4}} \rfloor, \lfloor \frac{\overline{\Delta}_H(E)}{H^4} - \frac{\mu_H(E)}{H^4} \rfloor \} + 1,
$$

$$
l_2 = \max\{ \lfloor \left\{ 3(\max\{\frac{r^4 - 1}{4}, 1\}l_1H^4 + 1)l_1\Delta_H(E)\right\}^{\frac{1}{3}} \rfloor, \lfloor \frac{l_1\overline{\Delta}_H(E)}{H^4} - \frac{\mu_H(E)}{H^4} \rfloor \} + 1
$$

and

$$
C_1 = r l_1 H^4 \left(\frac{\mu_H(E) + (K_X + (l_1 + l_2)H) \cdot H^3}{H^4} + f(r) + 2 \right),
$$

\n
$$
C_2 = r l_1 H^4 \left(-\frac{\mu_H(E)}{H^4} + f(r) + 2 \right),
$$

\n
$$
C_3 = -l_1 l_2 H^2 \cdot \left(\frac{l_2^2 H^2}{6} + \frac{l_2 \{2c_1(E(K_X + l_1 H)) - r(K_X + l_1 H)\} \cdot H}{4} + \frac{c_1(E(K_X + l_1 H)) \cdot \{c_1(E(K_X + l_1 H)) - (K_X + l_1 H)\} }{2} - c_2(E(K_X + l_1 H)) + \frac{r \{(K_X + l_1 H)^2 + c_2(X) + l_1(K_X + l_1 H) \cdot H\}}{12} \right).
$$

Proof Let $\iota : Y \hookrightarrow X$ denote the inclusion map. Since we have $K_Y = (K_X + l_1 H)_{|Y}$ and $c_2(Y) = \iota^*(c_2(X) + l_1 Y)_{|Y}$ $l_1(K_X + l_1)H \cdot H$, the claim follows immediately.

Now we apply Theorem 5 to obtain a bound for the fourth Chern class of μ -semistable bundles on a fourfold.

Theorem 11 *Let X be a smooth projective fourfold and let H be a very ample line bundle on X. Let E be an H*-semistable vector bundle E on X of rank $r \ge 2$, $c_i(E) = c_i$. Let $l_i = l_i(E(-K_X), H)$ and $m_i = l_i(E^{\vee}, H)$ $for i = 1, 2. We define$

$$
F = \frac{1}{4} (c_1(E)^4 - 4c_1(E)^2 \cdot c_2(E) + 4c_1(E) \cdot c_3(E) + 2c_2(E)^2)
$$

$$
- \frac{1}{2} (c_1(E)^3 - 3c_1(E) \cdot c_2(E) + 3c_3(E)) \cdot K_X
$$

$$
+ \frac{1}{4} (c_1(E)^2 - 2c_2(E)) \cdot (K_X^2 + c_2(X)) - \frac{1}{4} c_1(E) \cdot K_X \cdot c_2(X) + 6r_X(\mathcal{O}_X),
$$

$$
C = r l_1 H^4 \left\{ \left(\frac{\mu_H (E(-K_X)) + (K_X + (l_1 + l_2)H) \cdot H^3}{H^4} + f(r) + 2}{2} \right) + \left(\frac{-\frac{\mu_H (E(-K_X))}{H^4} + f(r) + 2}{2} \right) \right\}
$$

$$
- l_1 l_2 H^2 \cdot \left(\frac{l_2^2 H^2}{6} + \frac{l_2 \{2c_1 (E(l_1 H)) - r(K_X + l_1 H)\} \cdot H}{4} + \frac{c_1 (E(l_1 H) \cdot \{c_1 (E(l_1 H) - (K_X + l_1 H)\})}{2}
$$

$$
- c_2 (E(l_1 H) + \frac{r \{ (K_X + l_1 H)^2 + c_2 (X) + l_1 (K_X + l_1 H) \cdot H \}}{12})
$$

and

$$
D = rm_1 H^4 \left\{ \left(\frac{\mu_H(E^\vee) + (K_X + (m_1 + m_2)H) \cdot H^3}{H^4} + f(r) + 2}{2} \right) + \left(\frac{-\frac{\mu_H(E^\vee)}{H^4} + f(r) + 2}{2} \right) \right\}
$$

$$
- m_1 m_2 H^2 \cdot \left(\frac{m_2^2 H^2}{6} + \frac{m_2 \{2c_1 (E^\vee (K_X + m_1 H)) - r(K_X + m_1 H) \} \cdot H}{4} + \frac{c_1 (E^\vee (K_X + m_1 H)) \cdot \{c_1 (E^\vee (K_X + m_1 H)) - (K_X + m_1 H) \} }{2}
$$

$$
- c_2 (E^\vee (K_X + m_1 H)) + \frac{r \{ (K_X + m_1 H)^2 + c_2 (X) + m_1 (K_X + m_1 H) \cdot H \} }{12}).
$$

Then we have $c_4(E) \leq F + 6(C + D)$ *.*

Proof By Corollary 6, we have $h^3(E) \leq C := \sum_{j=1}^3 C_j$ and $h^1(E) \leq D := \sum_{j=1}^3 D_j$ where $C_j =$ $C_j(E(-K_X), H), D_j = C_j(E^{\vee}, H)$. Let $F = 6\chi(E) + c_4(E)$. This yields $\chi(E) \geq -(C + D)$ and hence

$$
c_4(E) = F - 6\chi(E)
$$

\n
$$
\leq F + 6(C + D).
$$

Therefore the claim follows from Lemma 9 and Lemma 10.

We obtain the following bound in the case of abelian fourfolds.

Corollary 12 *Let X be an abelian fourfold and let H be a very ample line bundle on X. Let E be an H semistable vector bundle on X of rank* $r \geq 2$ *on X. Let* $l_i = l_i(E, H)$ *and* $m_i = l_i(E^{\vee}, H)$ *. Then we have*

 $\circled{2}$ Springer

 $c_4(E) \leq F + 6(C + D)$ *where*

$$
F = \frac{1}{4}(c_1(E)^4 - 4c_1(E)^2c_2(E) + 4c_1(E)c_3(E) + 2c_2(E)^2),
$$

\n
$$
C = r l_1 H^4 \left\{ \left(\frac{\mu_H(E) + (l_1 + l_2)H^4}{H^4} + f(r) + 2 \right) + \left(-\frac{\mu_H(E)}{H^4} + f(r) + 2 \right) \right\}
$$

\n
$$
- l_1 l_2 H^2 \cdot \left(\frac{l_2^2 H^2}{6} + \frac{l_2 \{2c_1(E(l_1H)) - r l_1H\} \cdot H}{4} + \frac{c_1(E(l_1H)) \cdot \{c_1(E(l_1H)) - l_1^2H\}}{2} - c_2(E(l_1H)) + \frac{r l_1^2 H^2}{6} \right),
$$

\n
$$
D = r m_1 H^4 \left\{ \left(\frac{-\mu_H(E) + (m_1 + m_2)H) \cdot H^3}{H^4} + f(r) + 2 \right) + \left(\frac{\mu_H(E)}{H^4} + f(r) + 2 \right) \right\}
$$

\n
$$
- m_1 m_2 H^2 \cdot \left(\frac{m_2^2 H^2}{6} - \frac{m_2 \{2c_1(E^\vee(m_1H)) - rm_1H\} \cdot H}{4} + \frac{c_1(E^\vee(m_1H)) \cdot \{c_1(E^\vee(m_1H)) - m_1^2H\}}{2} - c_2(E^\vee(m_1H)) + \frac{rm_1^2 H^2}{6} \right).
$$

We notice that there cannot exist an analogous upper bound for *c*4(*E*) for *H*-semistable *torsion-free sheaves E* on a smooth projective fourfold *X*. Indeed, the following result holds in arbitrary dimension.

Proposition 13 Let X be a smooth projective variety of dimension $n \geq 2$ and H an ample line bundle on *X. Assume that n is even (resp. odd). Then there does not exist an upper (resp. lower) bound for cn*(*E*) *for H*-semistable torsion-free sheaves *E* on *X* in terms of *r*, c_i for $1 \le i \le n - 1$, *H* and $c_i(X)$ *.*

Proof Let *E* be an *H*-semistable torsion-free sheaf on *X* of rank *r*, $c_i(E) = c_i$ and any point $p \in X$, let E_p denote the kernel of the natural evaluation map $E \to \mathcal{O}_p$. Then E_p is an *H*-semistable torsion-free sheaf of rank *r*, $c_i(E_p) = c_i$ for $1 \le i \le n - 1$ and $c_n(E_p) = c_n(E) - (-1)^{n+1}(n-1)!$. Therefore the claim follows by choosing arbitrarily many points of *X*.

Acknowledgements The author was supported by JSPS KAKENHI Grant Number JP20K03544.

References

- 1. A.Bayer, E.Macrì and P.Stellari, The space of stability conditions on Abelian threefolds and some Calabi-Yau threefolds, *Invent. Math.* **206** (2016), 869–933
- 2. A.Bayer, E.Macrì and Y.Toda, Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker inequalities, *J. Algebraic Geom.* **23** (2014), 117–163
- 3. D.Huybrechts and M.Lehn, *The Geometry of Moduli Spaces of Sheaves, Second ed.*, Cambridge University Press, 2010
- 4. A.Langer, Moduli spaces of sheaves and principal G-bundles, *Proc. of Sympos. in Pure Math.* **80**(2010), 273–308
- 5. A.Langer, A note on restriction theorems for semistable sheaves, *Math. Res. Lett.* **17**(2010), 823–832
- 6. T.Nakashima, Higher Brill-Noether loci and Bogomolov-Gieseker inequality, *Archiv Math..* **109** (2017), 335–340
- 7. T.Nakashima, Effective bounds for semistable sheaves on a threefold, *J. Geom. and Phys.* **140**(2019), 271-279
- 8. H.Sun, Tilt-stability, vanishing theorems and Bogomolov-Gieseker type inequalities, *Adv. in Math* **347**(2019), 677–707

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.