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Abstract A spanning subgraph F of G is called a path-factor if each component of F is a path. A P≥k-factor of
G means a path-factor such that each component is a path with at least k vertices, where k ≥ 2 is an integer. A
graph G is called a P≥k-factor covered graph if for each e ∈ E(G), G has a P≥k-factor covering e. A graph G is
called a P≥k-factor uniform graph if for any two different edges e1, e2 ∈ E(G), G has a P≥k-factor covering e1
and avoiding e2. In other word, a graph G is called a P≥k-factor uniform graph if for any e ∈ E(G), the graph
G − e is a P≥k-factor covered graph. In this article, we demonstrate that (i) an (r + 3)-edge-connected graph G
is a P≥2-factor uniform graph if its isolated toughness I (G) > r+3

2r+3 , where r is a nonnegative integer; (ii) an

(r +3)-edge-connected graph G is a P≥3-factor uniform graph if its isolated toughness I (G) > 3r+6
2r+3 , where r is

a nonnegative integer. Furthermore, we claim that these conditions on isolated toughness and edge-connectivity
in our main results are best possible in some sense.
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1 Introduction

The graphs discussed here are finite, undirected and simple. Let G be a graph. The vertex set and the edge set of
G are denoted by V (G) and E(G), respectively. Denote by dG(v) the degree of a vertex v in G. Let i(G) and
ω(G) denote the number of isolated vertices and connected components in G, respectively. For any X ⊆ V (G),
G[X ] is the subgraph of G induced on X , and G − X denotes the subgraph G[V (G) \ X ]. For any E ′ ⊆ E(G),
G−E ′ denotes the subgraph derived fromG by removing E ′. A vertex subset X ofG is called an independent set
if G[X ] has no edges. The path and the complete graph with n vertices are denoted by Pn and Kn , respectively.
We use G1 ∨ G2 to denote the join of two disjoint graphs G1 and G2, and G1 ∪ G2 to denote the union of two
disjoint graphs G1 and G2.
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Yang, Ma and Liu [14] introduced the notion of isolated toughness, which is defined by

I (G) = min{ |X |
i(G − X)

: X ⊆ V (G), i(G − X) ≥ 2}

if G is not a complete graph; otherwise, I (G) = +∞.
A spanning subgraph F of G is called a path-factor if each component of F is a path. A P≥k-factor of G

means a path-factor such that each component is a path with at least k vertices, where k ≥ 2 is an integer.
Johnson et al. [7] studied the existence of path-factors in graphs. Egawa and Furuya [3] posed some sufficient

conditions for a graph to admit a path-factor. Asratian and Casselgren [2] derived a sufficient condition for the
existence of path-factors in graphs. Ando et al. [1] verified that a claw-free graph with minimum degree at least k
admits a P≥k+1-factor. Kano, Lee and Suzuki [10] proved that every connected cubic bipartite graph with at least
8 vertices admits a P≥8-factor. Johansson [6] gave an El-Zahár type condition ensuring path-factors in graphs.
Kano, Lu and Yu [11] claimed that a graph G with i(G − X) ≤ 2

3 |X | for any X ⊆ V (G) admits a P≥3-factor.
Zhou [17–19], Zhou, Bian and Pan [20], Zhou, Sun and Liu [23], Zhou, Wu and Bian [24], Zhou, Wu and Xu
[25],and Gao, Wang and Chen [5] presented some sufficient conditions for graphs admitting P≥3-factors with
given properties. Some other results on graph factors see [13,16,21]. Las Vergnas [12] showed a criterion for a
graph with a P≥2-factor.

Theorem 1 ( [12]). A graph G has a P≥2-factor if and only if

i(G − X) ≤ 2|X |
for any X ⊆ V (G).

A graph R is called a factor-critical graph if for any v ∈ V (R), R − v has a 1-factor. A graph H is called a
sun if H = K1, H = K2 or H is the corona of a factor-critical graph R with at least three vertices, namely, H is
derived from R by adding a new vertex u = u(v) together with a new edge vu for each v ∈ V (R). A sun with
at least six vertices is called a big sun. The number of sun components of G is denoted by sun(G). Kaneko [8]
presented a characterization of a graph with a P≥3-factor, and Kano, Katona and Király [9] gave a shorter proof.

Theorem 2 ( [8,9]). A graph G has a P≥3-factor if and only if

sun(G − X) ≤ 2|X |
for any X ⊆ V (G).

A graph G is called a P≥k-factor covered graph if for each e ∈ E(G), G has a P≥k-factor covering e, which
was first defined by Zhang and Zhou [15]. Furthermore, they put forward two characterizations for a graph to a
P≥2-factor covered graph and P≥3-factor covered graph, which are stated as follows.

Theorem 3 ( [15]). A connected graph G is a P≥2-factor covered graph if and only if

i(G − X) ≤ 2|X | − ε1(X)

for any X ⊆ V (G), where ε1(X) is defined by

ε1(X) =

⎧
⎪⎨

⎪⎩

2, i f X is not an independent set;
1, i f X is a nonempty independent set, and G − X admits

a nontrivial component;
0, otherwise.

Theorem 4 ( [15]). A connected graph G is a P≥3-factor covered graph if and only if

sun(G − X) ≤ 2|X | − ε2(X)

for any subset X of V (G), where ε2(X) is defined by

ε2(X) =

⎧
⎪⎨

⎪⎩

2, i f X is not an independent set;
1, i f X is a nonempty independent set, and G − X admits

a non − sun component;
0, otherwise.
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A graph G is called a P≥k-factor uniform graph if for any two different edges e1, e2 ∈ E(G), G has a
P≥k-factor covering e1 and avoiding e2. In other word, a graph G is called a P≥k-factor uniform graph if for any
e ∈ E(G), the graph G − e is a P≥k-factor covered graph. Gao and Wang [4] derived a result on the existence of
P≥3-factor uniform graphs. Zhou, Sun and Liu [22] posed two isolated toughness conditions for a graph to be a
P≥2-factor uniform graph and P≥3-factor uniform graph, which are stated as follows.

Theorem 5 ( [22]). A 3-edge-connected graph G is a P≥2-factor uniform graph if its isolated toughness I (G) >

1.

Theorem 6 ( [22]). A 3-edge-connected graph G is a P≥3-factor uniform graph if its isolated toughness I (G) >

2.

In Theorems 5 and 6, the conditions on I (G) are sharp. However, it is natural to expect that we can weaken
the condition on I (G) if we replace the assumption that G is 3-edge-connected by a stronger assumption. Along
this line, we derive the following results.

Theorem 7 Let r be a nonnegative integer. An (r + 3)-edge-connected graph G is a P≥2-factor uniform graph
if its isolated toughness I (G) > r+3

2r+3 .

Theorem 8 Let r be a nonnegative integer. An (r + 3)-edge-connected graph G is a P≥3-factor uniform graph
if its isolated toughness I (G) > 3r+6

2r+3 .

2 The proof of Theorem 7

Proof of Theorem 7 Theorem 7 holds obviously for a complete graph. Hence, we may assume that G is not a
complete graph.

We proceed by contradiction. Assume that there exists an edge e = uv in G such that G ′ = G − e is not a
P≥2-factor covered graph. It follows from Theorem 3 that

i(G ′ − X) ≥ 2|X | − ε1(X) + 1 (1)

for some vertex subset X of G ′.
The following proof will be divided into three cases by the value of |X |.

Case 1. 0 ≤ |X | ≤ r + 1.
According to (1) and ε1(X) ≤ |X |, we obtain

i(G ′ − X) ≥ 2|X | − ε1(X) + 1 ≥ |X | + 1,

which implies that G ′ − X has at least one isolated vertex w, and so dG ′−X (w) = 0. Thus, we have

dG(w) ≤ dG ′(w) + 1 ≤ dG ′−X (w) + |X | + 1 = |X | + 1 ≤ r + 2,

which contradicts that G is (r + 3)-edge-connected.
Case 2. |X | = r + 2.

In terms of (1) and ε1(X) ≤ 2, we admit

i(G ′ − X) ≥ 2|X | − ε1(X) + 1 ≥ 2|X | − 1. (2)

Note that i(G − X) ≥ i(G ′ − X) − 2. Combining this with (2), we get

i(G − X) ≥ i(G ′ − X) − 2 ≥ 2|X | − 3 = 2(r + 2) − 3 = 2r + 1,

which implies that there exists w ∈ V (G − X) with dG−X (w) = 0. Since G is (r +3)-edge-connected, we have

r + 3 ≤ dG(w) ≤ dG−X (w) + |X | = |X | = r + 2,

which is a contradiction.
Case 3. |X | ≥ r + 3.
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Note that i(G − X) ≥ i(G ′ − X) − 2. It follows from (1) and ε1(X) ≤ 2 that

i(G − X) ≥ i(G ′ − X) − 2 ≥ 2|X | − ε1(X) + 1 − 2 ≥ 2|X | − 3 ≥ 2r + 3. (3)

In light of (3) and the definition of I (G), we derive

I (G) ≤ |X |
i(G − X)

≤ |X |
2|X | − 3

= 1

2
+ 3

4|X | − 6

≤ 1

2
+ 3

4(r + 3) − 6
= 1

2
+ 3

4r + 6

= r + 3

2r + 3
,

which contradicts I (G) > r+3
2r+3 . The proof of Theorem 7 is complete. 
�

Remark 1 We now show that I (G) > r+3
2r+3 in Theorem 7 cannot be weakened to I (G) ≥ r+3

2r+3 .
We construct a graph G = Kr+3 ∨ ((2r + 3)K1) ∪ K2, where r is a nonnegative integer. Then I (G) =

|V (Kr+3)|
i(G−V (Kr+3))

= r+3
2r+3 and G is (r + 3)-edge-connected. Write G ′ = G − e for e ∈ E(K2). Let X = V (Kr+3).

Then |X | = r + 3 and ε1(X) = 2. Thus, we admit

i(G ′ − X) = 2r + 5 > 2r + 4 = 2|X | − ε1(X).

In light of Theorem 3, G ′ is not a P≥2-factor covered graph, and so G is not a P≥2-factor uniform graph.

Remark 2 The condition that G is (r + 3)-edge-connected in Theorem 7 cannot be replaced by G being (r + 2)-
edge-connected.

To show this, we construct a graph G = Kr+2 ∨ ((2r + 1)K1 ∪ K2), where r ≥ 1 is an integer. Then G
is (r + 2)-edge-connected and I (G) = |V (Kr+2)|

i(G−V (Kr+2))
= r+2

2r+1 > r+3
2r+3 . Let G

′ = G − e for e ∈ E(K2) and
X = V (Kr+2). Then ε1(X) = 2, and so

i(G ′ − X) = 2r + 3 > 2r + 2 = 2|X | − ε1(X).

According to Theorem 3, G ′ is not a P≥2-factor covered graph, and so G is not a P≥2-factor uniform graph.

3 The proof of Theorem 8

Proof of Theorem 8 Theorem 8 is true for a complete graph. Therefore, we may assume that G is not a complete
graph.

Theorem 8 holds for r = 0 by Theorem 6. In what follows, we may assume r ≥ 1. We proceed by
contradiction. Assume that there exists an edge e = uv in G such that G ′ = G − e is not a P≥3-factor covered
graph. Then by Theorem 4 we obtain

sun(G ′ − X) ≥ 2|X | − ε2(X) + 1 (4)

for some vertex subset X of G ′.

Claim 1. |X | ≥ r + 2.

Proof If 0 ≤ |X | ≤ r , then it follows from (4) and ε2(X) ≤ |X | that
sun(G ′ − X) ≥ 2|X | − ε2(X) + 1 ≥ |X | + 1 ≥ 1,

which implies that there exists w ∈ V (G ′ − X) such that dG ′−X (w) ≤ 1. Thus, we derive

dG(w) ≤ dG ′(w) + 1 ≤ dG ′−X (w) + |X | + 1 ≤ |X | + 2 ≤ r + 2,

which contradicts that G is (r + 3)-edge-connected.
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If |X | = r + 1, the by (4), ε2(X) ≤ 2 and r ≥ 1, we have

sun(G − X) ≥ sun(G ′ − X) − 2 ≥ 2|X | − ε2(X) + 1 − 2 ≥ 2|X | − 3 = 2r − 1 ≥ 1,

which implies that there exists w ∈ V (G − X) with dG−X (w) ≤ 1, and so

dG(w) ≤ dG−X (w) + |X | ≤ |X | + 1 = r + 2,

which contradicts that G is (r + 3)-edge-connected. Hence, |X | ≥ r + 2. This completes the proof of Claim 1. 
�
Assume that G ′ − X admits a isolated vertices, b K2’s and c big sun components H1, H2, · · · , Hc, where

|V (Hi )| ≥ 6 for 1 ≤ i ≤ c. In terms of (4), ε2(X) ≤ 2 and Claim 1, we infer

sun(G ′ − X) = a + b + c ≥ 2|X | − ε2(X) + 1 ≥ 2|X | − 1 = 2r + 3. (5)

Write Ri for the factor-critical graph of Hi , i = 1, 2, · · · , c. Set Di = V (Ri ) and D =
c⋃

i=1
Di . Obviously,

i(Hi − Di ) = |Di | = |V (Hi )|
2 ≥ 3 and |D| ≥ 3c. Select one vertex from each K2 component of G ′ − X , and

denote the set of such vertices by Q. We denote by W the union of all non-sun components of G ′ − X .
Note that i(G ′ − X) − 2 ≤ i(G − X) ≤ i(G ′ − X). The following proof will be divided into three cases.

Case 1. i(G − X) = i(G ′ − X).
Clearly, u, v /∈ V (aK1) (otherwise, i(G − X) < i(G ′ − X), a contradiction).

Subcase 1.1. u ∈ V (W ).
In this subcase, we get i(G − X − Q − D − u) ≥ a + b + |D|, and so

I (G) ≤ |X ∪ Q ∪ D ∪ {u}|
i(G − X − Q − D − u)

≤ |X | + b + |D| + 1

a + b + |D| .

Combining this with I (G) > 3r+6
2r+3 , we obtain

3r + 6

2r + 3
< I (G) ≤ |X | + b + |D| + 1

a + b + |D| ,

which implies

0 > (3r + 6)a + (r + 3)b + (r + 3)|D| − (2r + 3)|X | − (2r + 3). (6)

It follows from (5), (6), |D| ≥ 3c and Claim 1 that

0 > (3r + 6)a + (r + 3)b + (r + 3)|D| − (2r + 3)|X | − (2r + 3)

≥ (r + 3)a + (r + 3)b + (r + 3)c − (2r + 3)|X | − (2r + 3)

= (r + 3)(a + b + c) − (2r + 3)|X | − (2r + 3)

≥ (r + 3)(2|X | − 1) − (2r + 3)|X | − (2r + 3)

= 3|X | − (3r + 6) = 3(r + 2) − (3r + 6) = 0,

a contradiction.
Subcase 1.2. u /∈ V (W ).

In this subcase, u ∈ V (bK2), or u ∈ Di (1 ≤ i ≤ c), or u ∈ V (Hi ) \ Di (1 ≤ i ≤ c).
Claim 2. I (G) ≤ |X |+b+|D|

a+b+|D| .

Proof If u ∈ V (bK2), then we choose such set Q with u ∈ Q. Thus, we get i(G − X − Q − D) = a + b+ |D|,
and so

I (G) ≤ |X ∪ Q ∪ D|
i(G − X − Q − D)

= |X | + b + |D|
a + b + |D| .

If u ∈ Di (1 ≤ i ≤ c), then we admit i(G − X − Q − D) = a + b + |D|, and so

I (G) ≤ |X ∪ Q ∪ D|
i(G − X − Q − D)

= |X | + b + |D|
a + b + |D| .
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694 S. Zhou et al.

If u ∈ V (Hi ) \ Di (1 ≤ i ≤ c), then there exists w ∈ Di with uw ∈ E(Hi ). Thus, we derive i(G − X −
Q − u − (D \ {w})) = a + b + |D|, and so

I (G) ≤ |X ∪ Q ∪ {u} ∪ (D \ {w})|
i(G − X − Q − u − (D \ {w})) = |X | + b + |D|

a + b + |D| .

We finish the proof of Claim 2.

According to Claim 2 and I (G) > 3r+6
2r+3 , we acquire

3r + 6

2r + 3
< I (G) ≤ |X | + b + |D|

a + b + |D| ,

namely,

0 > (3r + 6)a + (r + 3)b + (r + 3)|D| − (2r + 3)|X |. (7)

It follows from (5), (7), |D| ≥ 3c and Claim 1 that

0 > (3r + 6)a + (r + 3)b + (r + 3)|D| − (2r + 3)|X |
≥ (r + 3)(a + b + c) − (2r + 3)|X |
≥ (r + 3)(2|X | − 1) − (2r + 3)|X |
= 3|X | − (r + 3) = 3(r + 2) − (r + 3) = 2r + 3 > 0,

which is a contradiction.
Case 2. i(G − X) = i(G ′ − X) − 1.

In this case, u ∈ V (aK1) and v /∈ V (aK1), or u /∈ V (aK1) and v ∈ V (aK1). Without loss of generality, let
u ∈ V (aK1) and v /∈ V (aK1). Obviously, a ≥ 1.
Claim 3. I (G) ≤ |X |+b+|D|+1

a+b+|D| .

Proof The proof is similar to that of Claim 2 by discussing v ∈ V (bK2), v ∈ Di , v ∈ V (Hi ) \ Di or v ∈ V (W ).
Claim 3 is verified. 
�
According to Claim 3 and I (G) > 3r+6

2r+3 , we have

3r + 6

2r + 3
< I (G) ≤ |X | + b + |D| + 1

a + b + |D| ,

that is,

(2r + 3)|X | > (3r + 6)a + (r + 3)b + (r + 3)|D| − (2r + 3). (8)

In terms of (5), (8), a ≥ 1 and |D| ≥ 3c, we deduce

(2r + 3)|X | > (3r + 6)a + (r + 3)b + (r + 3)|D| − (2r + 3)

≥ (3r + 6)a + (r + 3)b + (r + 3)c − (2r + 3)

= (r + 3)(a + b + c) + (2r + 3)(a − 1)

≥ (r + 3)(2|X | − 1),

which implies |X | < r+3
3 , which contradicts Claim 1.

Case 3. i(G − X) = i(G ′ − X) − 2.
In this case, u, v ∈ V (aK1), and so a ≥ 2. Thus, we possess i(G − X − Q − v − D) = a + b + |D| − 1,

and so

I (G) ≤ |X ∪ Q ∪ {v} ∪ D|
i(G − X − Q − v − D)

= |X | + b + |D| + 1

a + b + |D| − 1
. (9)

In light of (9) and I (G) > 3r+6
2r+3 , we derive

3r + 6

2r + 3
< I (G) ≤ |X | + b + |D| + 1

a + b + |D| − 1
,
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which implies

(2r + 3)|X | > (3r + 6)a + (r + 3)b + (r + 3)|D| − 5r − 9. (10)

It follows from (5), (10), a ≥ 2 and |D| ≥ 3c that

(2r + 3)|X | > (3r + 6)a + (r + 3)b + (r + 3)|D| − 5r − 9

≥ (3r + 6)a + (r + 3)b + (r + 3)c − 5r − 9

= (r + 3)(a + b + c) + (2r + 3)a − 5r − 9

≥ (r + 3)(2|X | − 1) + 2(2r + 3) − 5r − 9

= 2(r + 3)|X | − 2r − 6,

which implies |X | < 2r+6
3 , which contradicts Claim 1 by r ≥ 1. Theorem 8 is verified. �

Remark 3 In what follows, we claim that I (G) > 3r+6
2r+3 in Theorem 8 cannot be replaced by I (G) > 3r+5

2r+3 .
To explain this, we construct a graph G = Kr+3 ∨ ((2r + 4)K2), where r is a nonnegative integer. We

select one vertex from each K2 component of G − V (Kr+3), and denote the set of such vertices by Y . Then
3r+6
2r+3 > I (G) = |V (Kr+3)∪Y |

i(G−(V (Kr+3)∪Y ))
= 3r+7

2r+4 > 3r+5
2r+3 and G is (r + 4)-edge-connected. Let G ′ = G − e for

e ∈ E((2r + 4)K2). Let X = V (Kr+3). Then |X | = r + 3 and ε2(X) = 2. Thus, we obtain

sun(G ′ − X) = 2r + 5 > 2r + 4 = 2|X | − ε2(X).

In view of Theorem 4, G ′ is not a P≥3-factor covered graph, and so G is not a P≥3-factor uniform graph.

Remark 4 We now claim that 3-edge-connected in Theorem 8 is best possible in some sense.
To show this, we construct a graph G = Kr+1 ∨ ((2r)K2), where r is an integer with 1 ≤ r ≤ 2. We select

one vertex from each K2 component of G − V (Kr+1), and denote the set of such vertices by Y . Then G is
2-edge-connected and I (G) = |V (Kr+1)∪Y |

i(G−(V (Kr+1)∪Y ))
= 3r+1

2r > 3r+6
2r+3 . Write G ′ = G − e for e ∈ E((2r)K2) and

X = V (Kr+1). Then |X | = r + 1 and ε2(X) = 2. Hence, we derive

sun(G ′ − X) = 2r + 1 > 2r = 2|X | − ε2(X).

By virtue of Theorem 4, G ′ is not a P≥3-factor covered graph, and so G is not a P≥3-factor uniform graph.
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