ORIGINAL RESEARCH

Duality and interpolation for symmetric Banach spaces of noncommutative quasi-martingales

Congbian Mao · Liping Fan · Xiaoyan Zhang · Xin Li

Received: 24 July 2020 / Accepted: 20 June 2022 / Published online: 22 July 2022 © The Indian National Science Academy 2022

Abstract Let *E* be a symmetric Banach space with the Fatou property and $1 < p_E \leq q_E < p$. We prove the duality for symmetric Banach space ${}_p\widehat{E}(\mathcal{M})$ which is a kind of noncommutative quasi-martingale space. As its applications, we discuss concrete description of the symmetric Banach space ${}_p\widehat{E}(\mathcal{M})$ as interpolations of quasi-martingale L_p -spaces.

Keywords Symmetric Banach space · Martingale · Hardy space

Mathematics Subject Classification 46L53 · 46L52 · 60G42

1 Introduction

The theory of noncommutative symmetric spaces has been rapidly developed. Many of the noncommutative martingale results have been transferred to the noncommutative symmetric case. Especially, in [1], J. Yong proved Burkholder-Gundy inequalities for symmetric Banach spaces of noncommutative martingales. In [9], T. N. Bekjan proved the duality for conditional Hardy spaces of martingales in noncommutative symmetric Banach spaces.

The quasi-martingales are generalizations of martingales and play important roles in many different areas of mathematics. In [15], we studied duality theorems for L_p -spaces of noncommutative quasi-martingales. In this paper, we will extend the above results to the noncommutative symmetric case. Let E be a symmetric Banach space on [0, 1] with the Fatou property and $1 < p_E \leq q_E < p$. Then

$$({}_{p}\widehat{E}(\mathcal{M}))^{*} = {}_{p'}\widehat{E}^{\times}(\mathcal{M}),$$

Communicated by Gadadhar Misra.

C. Ma $(\boxtimes) \cdot L$. Fan $\cdot X$. Zhang $\cdot X$. Li

School of Mathematics and Information Science, Xinxiang University, Henan, People's Republic of China E-mail: congbianm@whu.edu.cn

C. Ma · L. Fan · X. Zhang · X. Li School of Mathematics and Statistics, Henan University, Henan, People's Republic of China

C. Ma · L. Fan · X. Zhang · X. Li Department of Mathematics, Xian University of Architecture and Technology, Xian, People's Republic of China

C. Ma · L. Fan · X. Zhang · X. Li School of Mathematics and Information Science, Xinxiang University, Henan, People's Republic of China where ${}_{p}\widehat{E}(\mathcal{M})$ and ${}_{p'}\widehat{E}^{\times}(\mathcal{M})$ denote the symmetric Banach spaces of noncommutative quasi-martingales which we refer to the next section for formal definitions. As applications of this result, we obtain the description of the symmetric space ${}_{p}\widehat{E}(\mathcal{M})$ as interpolations of noncommutative quasi-martingale L_{p} -spaces.

The organization of the paper is as follows. In Section 2, we give some preliminaries and notations on symmetric Banach spaces, quasi-martingale spaces and interpolations. We prove the main results in Section 3.

2 Preliminaries

Let E be a symmetric Banach space on [0, 1]. The Köthe dual of E is the function space defined by setting:

$$E^{\times} = \{ f \in L_0([0,1]) : \int_0^1 |f(t)g(t)| dt < \infty, \forall g \in E \}.$$

When equipped with the norm $||f||_{E^{\times}} := \sup\{\int_0^1 |f(t)g(t)| dt : ||g||_E \le 1\}, E^{\times}$ is a symmetric Banach space. A symmetric Banach space E on [0, 1] is said to have the Fatou property if for every sequence $(x_n)_n$ in E

A symmetric Banach space E on [0, 1] is said to have the Fatou property if for every sequence $(x_n)_n$ in E satisfying $0 \le x_n \uparrow$ and $\sup_n ||x_n||_E < \infty$, the supremum $x = \sup_n x_n$ belongs to E and $||x_n||_E \uparrow ||x||_E$. Note that E has the Fatou property if and only if $E = E^{\times\times}$ isometrically. Examples of symmetric spaces with the Fatou property are separable symmetric spaces and duals of separable symmetric spaces.

For any s > 0 we define the dilation operator D_s on $L_0[0, 1]$ by

$$(D_s f)(t) = f(st)\chi_{[0,1]}(st), t \in [0,1].$$

If E is a symmetric Banach space on [0, 1], then D_s is a bounded linear operator. Define the lower and upper Boyd indices of E by

$$p_E := \lim_{s \to \infty} \frac{\log s}{\log \|D_s\|} \quad \text{and} \quad q_E := \lim_{s \to 0^+} \frac{\log s}{\log \|D_s\|},$$

respectively. It is well known that $1 \le p_E \le q_E \le \infty$ and *E* has non-trivial Boyd indices, whenever $1 < p_E \le q_E < \infty$. We shall need the following duality for Boyd indices:

$$\frac{1}{p_E} + \frac{1}{q_{E^{\times}}} = 1, \ \frac{1}{q_E} + \frac{1}{p_{E^{\times}}} = 1.$$

Let *E* be a symmetric Banach space on [0, 1]. For $0 < r < \infty$, we define $E^{(r)}$ and $E_{(r)}$ by

$$E^{(r)} := \{x : |x|^r \in E\}, \quad ||x||_{E^{(r)}} := \left\| |x|^r \right\|_{E}^{\frac{1}{r}}, E_{(r)} := \{x : |x|^{\frac{1}{r}} \in E\}, \quad ||x||_{E_{(r)}}^{\frac{1}{r}} := \left\| |x|^{\frac{1}{r}} \right\|_{E}^{r},$$

respectively. It is clear from the definitions that $E^{(r)}$, $E_{(r)}$ are symmetric and

$$p_{E_{(r)}} = \frac{1}{r} p_E, \ q_{E_{(r)}} = \frac{1}{r} q_E, \ p_{E^{(r)}} = r p_E, \ q_{E^{(r)}} = r q_E.$$

Let E_i be a quasi Banach idea space on [0, 1], i = 1, 2. The pointwise product space of E_1 and E_2 is defined as

$$E_1 \odot E_2 = \{x : x = x_1 x_2, x_i \in E_i, i = 1, 2\}$$

with a functional $||x||_{E_1 \odot E_2}$ defined by

$$|x||_{E_1 \odot E_2} = \inf\{||x||_{E_1} ||x||_{E_2} : x = x_1 x_2, x_i \in E_i, i = 1, 2\}$$

Note that if E and F are symmetric Banach spaces on [0, 1], then we have the following results (see Theorem 1 in [1]).

(i) If $0 , then <math>(E \odot F)^{(p)} = E^{(p)} \odot F^{(p)}$. (ii) If $1 , then <math>(E^{(p)})^{\times} = (E^{\times})^{(p)} \odot L_{p'}[0, 1]$.

Let \mathcal{M} be a semi-finite von Neumann algebra with a faithful normal semi-finite trace τ . The set of all τ -measurable operators is denoted by $L_0(\mathcal{M})$. For $x \in L_0(\mathcal{M})$, define its generalized singular number by

$$\mu_t(x) = \inf\{\lambda > 0 : \tau(\chi_{(\lambda,\infty)}(|x|)) \le t\}, \ t > 0.$$

For a given symmetric Banach function space E on [0, 1], we define the corresponding noncommutative space by setting:

$$E(\mathcal{M}, \tau) = \{ x \in L_0(\mathcal{M}) : \mu_t(x) \in E \}.$$

Equipped with the norm $||x||_{E(\mathcal{M},\tau)} := ||\mu_t(x)||_E$, the space $E(\mathcal{M},\tau)$ is a Banach space and is referred to as the noncommutative symmetric Banach space associated with (\mathcal{M},τ) corresponding to the function space $(E, ||\cdot||_E)$. Note that if $1 \le p < \infty$ and $E = L_p([0, 1])$, then $E(\mathcal{M}, \tau) = L_p(\mathcal{M}, \tau)$ is the usual noncommutative L_p -space associated with (\mathcal{M}, τ) .

2.1 Noncommutative quasi-martingales

We first recall the general setup for noncommutative martingales. Let $(\mathcal{M}_n)_{n\geq 1}$ be an increasing sequence of von Neumann subalgebras of \mathcal{M} such that the union of the \mathcal{M}_n 's is weak*-dense in \mathcal{M} . For every $n \geq 1$, the restriction $\tau|_{\mathcal{M}_n}$ of τ to \mathcal{M}_n remains semi-finite, still denoted by τ , and we assume that there exists a trace preserving conditional expectation \mathcal{E}_n from \mathcal{M} onto \mathcal{M}_n . In this case, $(\mathcal{M}_n)_{n\geq 1}$ is called a filtration of \mathcal{M} . Note that \mathcal{E}_n extends to a contractive projection from $L_p(\mathcal{M})$ onto $L_p(\mathcal{M}_n)$ for all $1 \leq p \leq \infty$. A noncommutative $E(\mathcal{M})$ -martingale with respect to $(\mathcal{M}_n)_{n\geq 1}$ is a sequence $x = (x_n)_{n\geq 1}$ such that $x_n \in E(\mathcal{M}_n)$ and $\mathcal{E}_n(x_{n+1}) = x_n$ for any $n \geq 1$. Let $||x||_{E(\mathcal{M})} = \sup_{n\geq 1} ||x_n||_{E(\mathcal{M})}$. If $||x||_{E(\mathcal{M})} < \infty$, then x is called a bounded $E(\mathcal{M})$ -martingale. The martingale difference sequence $dx = (dx_n)_{n\geq 1}$ of x is defined by $dx_n = x_n - x_{n-1}$ for $n \geq 1$. Here and in the following, we set $x_0 = 0$ and $\mathcal{E}_0 = \mathcal{E}_1$ for the sake of convenience.

In this paper, we are concerned with the following quasi-martingales in noncommutative symmetric Banach spaces.

Definition 2.1 Let *E* be a symmetric Banach space on [0, 1] and $1 \le p \le \infty$. A noncommutative ${}_{p}E(\mathcal{M})$ -quasi-martingale with respect to $(\mathcal{M}_{n})_{n\ge 1}$ is a sequence $x = (x_{n})_{n\ge 1}$ such that $x_{n} \in E(\mathcal{M}_{n})$ for $n \ge 1$ and (with $\mathcal{E}_{0} = 0, x_{0} = 0$)

$$\sum_{n=1}^{\infty} \|\mathcal{E}_{n-1}(dx_n)\|_{E(\mathcal{M})}^p < \infty.$$

Let $y_n = \sum_{k=1}^n (dx_k - \mathcal{E}_{k-1}(dx_k))$ for $n \ge 1$. We set

$$\|x\|_{p\widehat{E}(\mathcal{M})} := \sup_{n} \|y_{n}\|_{E(\mathcal{M})} + \left(\sum_{n=1}^{\infty} \|\mathcal{E}_{n-1}(dx_{n})\|_{E(\mathcal{M})}^{p}\right)^{\frac{1}{p}}.$$

If $||x||_{p\widehat{E}(\mathcal{M})} < \infty$, then *x* is called a bounded ${}_{p}E(\mathcal{M})$ -quasi-martingale. The quasi-martingale space ${}_{p}\widehat{E}(\mathcal{M})$ is defined as the space of all bounded ${}_{p}E(\mathcal{M})$ -quasi-martingales, equipped with the norm $|| \cdot ||_{p\widehat{E}(\mathcal{M})}$. We remark that if $1 \le q \le \infty$ and $E = L_q([0, 1])$ then ${}_{p}\widehat{E}(\mathcal{M}) = {}_{p}\widehat{L_q}(\mathcal{M})$, where ${}_{p}\widehat{L_q}(\mathcal{M})$ consists of $x = (x_n)_{n\ge 1} \subset L_q(\mathcal{M})$ for which

$$\|x\|_{p\widehat{L_{q}}(\mathcal{M})} = \sup_{n} \|y_{n}\|_{L_{q}(\mathcal{M})} + \left(\sum_{n=1}^{\infty} \|\mathcal{E}_{n-1}(dx_{n})\|_{L_{q}(\mathcal{M})}^{p}\right)^{\frac{1}{p}}$$

Now we define the noncommutative space ${}_{p}G_{E}(\mathcal{M})$ which is used in the proof of our main results.

Definition 2.2 Let *E* be a symmetric Banach space on [0, 1] and $1 \le p \le \infty$. The noncommutative space ${}_{p}G_{E}(\mathcal{M})$ is defined as the subspace of $l_{p}(E(\mathcal{M}))$ consisting of all sequences $dx = (dx_{n})_{n \ge 1}$ such that $x = (x_{n})_{n \ge 1}$ is a predictable ${}_{p}E(\mathcal{M})$ -quasi-martingale with $x_{1} = 0$, and is equipped with the norm

$$||x||_{pG_{E}(\mathcal{M})} = (\sum_{n=1}^{\infty} ||dx_{n}||_{E(\mathcal{M})}^{p})^{\frac{1}{p}}.$$

Note that if $1 \le q \le \infty$ and $E = L_q([0, 1])$ then ${}_pG_E(\mathcal{M}) = {}_pG_q(\mathcal{M})$, where ${}_pG_q(\mathcal{M})$ denotes the space of $x = (x_n)_{n\ge 1} \subset L_q(\mathcal{M})$ for which

$$||dx||_{pG_q(\mathcal{M})} = (\sum_{n=1}^{\infty} ||dx_n||_{L_q(\mathcal{M})}^p)^{\frac{1}{p}}.$$

The following theorem plays an important role in our paper which we call Doob's decomposition.

Theorem 2.3 (Doob's decomposition) Let E be a symmetric Banach space on [0, 1] and $1 \le p \le \infty$. Then each bounded ${}_{p}E(\mathcal{M})$ -quasi-martingale $x = (x_{n})_{n \ge 1}$ can be uniquely decomposed as a sum of two sequences $y = (y_{n})_{n \ge 1}$ and $z = (z_{n})_{n \ge 1}$, where $y = (y_{n})_{n \ge 1}$ is a bounded $E(\mathcal{M})$ -martingale and $z = (z_{n})_{n \ge 1}$ is a predicable ${}_{p}E(\mathcal{M})$ -quasi-martingale with $z_{1} = 0$.

Proof The proof is similar with Lemma 2.2 in [15].

2.2 Interpolations

For a compatible Banach couple (X_0, X_1) , we define the *K*-functional by setting for any $x \in X_0 + X_1$ and t > 0,

$$K_t(x; X_0, X_1) = \inf\{\|x_0\|_{X_0} + t\|x_1\|_{X_1} : x = x_0 + x_1, x_0 \in X_0, x_1 \in X_1\}.$$

The interpolation space $(X_0, X_1)_{E,K}$ is defined as the space of all elements $x \in X_0 + X_1$ such that

$$\|x\|_{(X_0,X_1)_{E,K}} := \left\|\frac{K_t(x;X_0,X_1)}{t}\right\|_E < \infty.$$

We may state the following interpolation result which is needed in the sequel (see Theorem 2.2 in [19] and [20]).

Theorem 2.4 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property and 1 . Then there exists a symmetric Banach space*F*with nontrivial Boyd indices such that

$$E(\mathcal{M}) = (L_p(\mathcal{M}), L_q(\mathcal{M}))_{F,K} \text{ (with equivalent norms).}$$
(2.1)

Proof By Theorem 2.2 in [19], there is a symmetric Banach function space F on [0, 1] such that $f \in E$ if and only if $t \to K_t(f; L_p[0, 1], L_q[0, 1]) \in F$ and there exist a constant C such that

$$C^{-1} \| t \to K_t(f; L_p[0, 1], L_q[0, 1]) \|_F \le \| f \|_E \le C \| t \to K_t(f; L_p[0, 1], L_q[0, 1]).$$
(2.2)

For any $x \in E(\mathcal{M})$, using the results $K_t(\mu(x); L_p[0, 1], L_q[0, 1]) \approx K_t(x; L_p(\mathcal{M}), L_p(\mathcal{M}))$ and $\|\mu(x)\|_E = \|x\|_{E(\mathcal{M})}$, we can extend (2.2) to the noncommutative setting. The proof is completed.

Throughout the paper p' will denote the conjugate index of p.

3 Main results

Our first result in this section is concerned with the dual space of ${}_{p}\widehat{E}(\mathcal{M})$ which is the symmetric Banach space of noncommutative quasi-martingales.

Theorem 3.1 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property and $1 < p_E \le q_E < p$. Then

$$\left({}_{p}\widehat{E}(\mathcal{M})\right)^{*} = {}_{p'}\widehat{E}^{\times}(\mathcal{M})$$

isometrically, with associated duality bracket given by

$$\forall x \in {}_{p}\widehat{E}(\mathcal{M}), \ \forall u \in {}_{p'}\widehat{E}^{\times}(\mathcal{M}), \ (x, u) = \tau(vy) + \sum_{n=1}^{\infty} \tau(d\omega_{n}dz_{n}),$$

where $\mu_n = v_n + \omega_n$ and $x_n = y_n + z_n (n \ge 1)$ are the Doob's decomposition of u and x respectively.

For the proof we need the following Lemma.

Lemma 3.2 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property and $1 < p_E \le q_E < p$. Then

$$E = F \odot E^{\times (\frac{p}{p'})},$$

where $F = (E^{\times (\frac{1}{p'})})^{\times}$ is separable.

Proof From the proof of Lemma 2.1 in [1], we know that $E^{\times (\frac{1}{p'})}$ is reflexive and F is separable. By (ii) of the properties of pointwise product spaces, we have

$$E = (E^{\times})^{\times} = ([E^{\times (\frac{1}{p'})}]^{(p')})^{\times} = ([E^{\times (\frac{1}{p'})}]^{\times})^{(p')} \odot L_p[0,1] = F^{(p')} \odot L_p[0,1].$$

Using the equality $L_1[0, 1] = E \odot E^{\times}$ (see Theorem 1.2 in [1]) and (i) of the properties of pointwise product spaces, we obtain that

$$E = F^{(p')} \odot (F \odot E^{\times (\frac{1}{p'})})^{(p)} = F^{(p')} \odot (F^{(p)} \odot E^{\times (\frac{1}{p'})(p)}) = F \odot E^{\times (\frac{p}{p'})}.$$

The proof is completed.

We also require the following duality result (see Theorem 5.6 in [6]).

Lemma 3.3 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property, then $(E(\mathcal{M}))^* = E^{\times}(\mathcal{M})$ isometrically, with associated duality bracket given by

$$(x, y) = \tau(xy), x \in E(\mathcal{M}), y \in E^{\times}(\mathcal{M}).$$

Now, we concern the dual space of $l_p(E(\mathcal{M}))$ *which is the main ingredient in the proof of Theorem* 3.1.

Lemma 3.4 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property and $1 < p_E \le q_E < p$. Then

$$(l_p(E(\mathcal{M})))^* = l_{p'}(E^{\times}(\mathcal{M}))$$

with equivalent norms.

Deringer

Proof Let $x = (x_n)_{n \ge 1} \in l_p(E(\mathcal{M}))$ and $y = (y_n)_{n \ge 1} \in l_{p'}(E^{\times}(\mathcal{M}))$. Now, we define a linear functional on $l_p(E(\mathcal{M}))$ by

$$l_y(x) = \sum_{n=1}^{\infty} \tau(x_n y_n).$$

Then by Lemma 3.3 and Hölder's inequality,

$$\begin{aligned} \left| \sum_{n=1}^{\infty} \tau(x_n y_n) \right| &\leq \sum_{n=1}^{\infty} |\tau(x_n y_n)| \\ &\leq \sum_{n=1}^{\infty} \|x_n\|_{E(\mathcal{M})} \|y_n\|_{E^{\times}(\mathcal{M})} \\ &\leq (\sum_{n=1}^{\infty} \|x_n\|_{E(\mathcal{M})}^p)^{\frac{1}{p}} (\sum_{n=1}^{\infty} \|y_n\|_{E^{\times}(\mathcal{M})}^{p'})^{\frac{1}{p'}} \\ &= \|x\|_{l_p(E(\mathcal{M}))} \|y\|_{l_{p'}(E^{\times}(\mathcal{M}))}. \end{aligned}$$

Thus the series $\sum_{n=1}^{\infty} \tau(x_n y_n)$ converges absolutely. Therefore, $l_y(x)$ is continuous on $l_p(E(\mathcal{M}))$ and $||l_y|| \le ||y||_{l_{n'}(E^{\times}(\mathcal{M}))}$.

We pass to the converse inclusion. Let $l \in (l_p(E(\mathcal{M})))^*$ of norm one. For every $n \ge 1$, set

$$l_n(x_n) = l(\theta), \ x_n \in E(\mathcal{M}),$$

where $\theta = (\underbrace{0, \dots, 0, x_n}_n, 0, \dots)$. Then

$$|l_n(x_n)| = |l(\theta)| \le ||l|| ||\theta||_{l_p(E(\mathcal{M}))} = ||x_n||_{E(\mathcal{M})}.$$

This implies that $l_n \in (E(\mathcal{M}))^*$. Since $(E(\mathcal{M}))^* = E^{\times}(\mathcal{M})$, the representation theorem allows us to find an element $y_n \in E^{\times}(\mathcal{M})$ such that

$$l_n(x_n) = \tau(x_n y_n), \ x_n \in E(\mathcal{M}).$$

Thus we have that

$$l(x) = \sum_{n=1}^{\infty} l_n(x_n) = \sum_{n=1}^{\infty} \tau(x_n y_n)$$
(3.1)

for any finite sequence $x = (x_n)_{n \ge 1} \in l_p(E(\mathcal{M}))$. We must show that $y = (y_n)_{n \ge 1} \in l_{p'}(E^{\times}(\mathcal{M}))$ and is of norm ≤ 1 . Now, fix an *n*. Note that for any $k \le n$

$$\|y_k\|_{E^{\times}(\mathcal{M})}^{p'} = \|(|y_k|^{p'})^{\frac{1}{p'}}\|_{E^{\times}(\mathcal{M})}^{p'} = \||y_k|^{p'}\|_{E^{\times(\frac{1}{p'})}(\mathcal{M})}^{p'} = \sup\{\tau(a_k|y_k|^{p'}) : a_k \in F(\mathcal{M}), \|a_k\|_{F(\mathcal{M})} \le 1\},\$$

where $(F(\mathcal{M}))^* = E^{\times (\frac{1}{p'})}(\mathcal{M})$. Thus for an arbitrarily given $\varepsilon > 0$, there exists $a_k^{\varepsilon} \in F(\mathcal{M})$ and $||a_k^{\varepsilon}||_{F(\mathcal{M})} \le 1$ such that

$$\|y_k\|_{E^{\times}(\mathcal{M})}^{p'} \le \tau(a_k^{\varepsilon}|y_k|^{p'}) + \frac{\varepsilon}{2^k}.$$
(3.2)

Set $z_k = \frac{1}{\gamma_n} a_k^{\varepsilon} |y_k|^{p'-2} y^*$, where $\gamma_n = (\sum_{k=1}^n \|y_k\|_{E^{\times}(\mathcal{M})}^{p'})^{\frac{1}{p}}$. Then noting that $|y_k|^{p'-2} y^* \in E^{\times (\frac{p}{p'})}$ and by Lemma 3.2, we get $z_k \in E(\mathcal{M})$ and

$$\|z_k\|_{E(\mathcal{M})} \le \frac{1}{\gamma_n} \|a_k^{\varepsilon}\|_{F(\mathcal{M})} \||y_k|^{p'-2} y^*\|_{E^{\times (\frac{p}{p'})}} \le \frac{1}{\gamma_n} \|y_k\|_{E^{\times}(\mathcal{M})}^{p'-1}.$$
(3.3)

Thus we have that

$$\left(\sum_{k=1}^{n} \|z_k\|_{E(\mathcal{M})}^p\right)^{\frac{1}{p}} \le \frac{1}{\gamma_n} (\sum_{k=1}^{n} \|y_k\|_{E^{\times}(\mathcal{M})}^{((p'-1)p)})^{\frac{1}{p}} = \frac{1}{\gamma_n} \left(\sum_{k=1}^{n} \|y_k\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p}} = 1.$$

Let $z^{(n)} = (z_1, \ldots, z_n, 0, \ldots)$. Then $z^{(n)} \in l_p(E(\mathcal{M}))$ and $||z^{(n)}||_{l_p(E(\mathcal{M}))} \le 1$. Using (3.1) and (3.2), we obtain that

$$l(z^{(n)}) = \sum_{k=1}^{n} \tau(z_k y_k)$$

= $\frac{1}{\gamma_n} \sum_{k=1}^{n} \tau(a_k^{\varepsilon} |y_k|^{p'})$
\ge $\frac{1}{\gamma_n} \sum_{k=1}^{n} (\|y_k\|_{E^{\times}(\mathcal{M})}^{p'} - \frac{\varepsilon}{2^k})$
\ge $(\sum_{k=1}^{n} \|y_k\|_{E^{\times}(\mathcal{M})}^{p'})^{\frac{1}{p'}} - \frac{1}{\gamma_n} \varepsilon.$

Thus we have that

$$\left(\sum_{k=1}^{n} \|y_k\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p'}} \leq \frac{1}{\gamma_n} \varepsilon + l(z^{(n)}) \leq 1.$$

It follows that

$$\left(\sum_{n=1}^{\infty} \|y_n\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p'}} \le 1$$

as $n \to \infty$ which implies

$$y \in l_{p'}(E^{\times}(\mathcal{M}))$$
 and $||y||_{l_{p'}(E^{\times}(\mathcal{M}))} \le 1.$

For any $x = (x_n)_{n \ge 1} \in l_p(E(\mathcal{M}))$, let $x^{(n)} = (x_1, \dots, x_n, 0, \dots)$ $(n \ge 1)$. Then

$$\|x - x^{(n)}\|_{l_p(E(\mathcal{M}))} \to 0 \ (n \to \infty).$$

Using (3.1), we have

$$l(x) = \lim_{n \to \infty} l(x^{(n)}) = \lim_{n \to \infty} \sum_{i=1}^{n} \tau(x_i y_i) = \sum_{i=1}^{\infty} \tau(x_i y_i).$$

The proof is completed.

The proof of Theorem 3.1 Let $\mu = (\mu_n)_{n \ge 1} \in {}_{p'}\widehat{E}^{\times}(\mathcal{M})$ and $x = (x_n)_{n \ge 1} \in {}_{p}\widehat{E}(\mathcal{M})$. Let $\mu_n = \nu_n + \omega_n$ and $x_n = y_n + z_n (n \ge 1)$ be the Doob's decomposition of μ and x respectively. Then $y = (y_n)_{n \ge 1}$ is a bounded $E(\mathcal{M})$ -martingale and $\nu = (\nu_n)_{n \ge 1}$ is a bounded $E^{\times}(\mathcal{M})$ -martingale. Thus there exist $y_{\infty} \in E(\mathcal{M})$ and $v_{\infty} \in E^{\times}(\mathcal{M})$ such that $y_n \xrightarrow{E(\mathcal{M})} y_{\infty}, v_n \xrightarrow{E^{\times}(\mathcal{M})} v_{\infty}$. Now we define a linear functional on ${}_p\widehat{E}(\mathcal{M})$ by

$$l_{\mu}(x) = \tau(\nu_{\infty}y_{\infty}) + \sum_{n=1}^{\infty} \tau(d\omega_n dz_n).$$

Deringer

Then by Lemma 3.3 and Hölder's inequality,

$$\begin{aligned} |l_{\mu}(x)| &\leq \|v_{\infty}\|_{E^{\times}(\mathcal{M})} \|y_{\infty}\|_{E(\mathcal{M})} + \sum_{n=1}^{\infty} \|d\omega_{n}\|_{E^{\times}(\mathcal{M})} \|dz_{n}\|_{E(\mathcal{M})} \\ &\leq \|v_{\infty}\|_{E^{\times}(\mathcal{M})} \|y_{\infty}\|_{E(\mathcal{M})} + \left(\sum_{n=1}^{\infty} \|d\omega_{n}\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p'}} \left(\sum_{n=1}^{\infty} \|dz_{n}\|_{E(\mathcal{M})}^{p}\right)^{\frac{1}{p}} \\ &\leq \left(\|v_{\infty}\|_{E^{\times}(\mathcal{M})} + \left(\sum_{n=1}^{\infty} \|d\omega_{n}\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p'}}\right) \left(\|y_{\infty}\|_{E(\mathcal{M})} + \left(\sum_{n=1}^{\infty} \|dz_{n}\|_{E(\mathcal{M})}^{p}\right)^{\frac{1}{p}}\right) \\ &= \|\mu\|_{p'\widehat{E}^{\times}(\mathcal{M})} \|x\|_{p}\widehat{e}(\mathcal{M}). \end{aligned}$$

Thus $l_{\mu}(x)$ is continuous on ${}_{p}\widehat{E}(\mathcal{M})$ and $||l_{\mu}|| \leq ||\mu||_{p'}\widehat{E}^{\times}(\mathcal{M})$.

We pass to the converse inclusion. Let $l \in ({}_{p}\widehat{E}(\mathcal{M}))^{*}$ of norm one. Let l_{1} be the restriction of l on $E(\mathcal{M})$. Noting that $(E(\mathcal{M}))^{*} = E^{\times}(\mathcal{M})$, there exists $\nu \in E^{\times}(\mathcal{M})$ and $\|\nu\|_{E^{\times}(\mathcal{M})} \leq 1$ such that

$$l_1(a) = \tau(av), \ a \in E(\mathcal{M}). \tag{3.4}$$

On the other hand, define a functional on ${}_{p}G_{E}(\mathcal{M})$ by

$$l_2(db) = l(b), db = (db_n)_{n\geq 1} \in {}_pG_E(\mathcal{M}).$$

Then $|l_2(db)| \leq ||l|| ||b||_{p\widehat{E}(\mathcal{M})} = ||db||_{pG_E(\mathcal{M})}$. Thus we have that l_2 is a continuous linear functional on ${}_{p}G_E(\mathcal{M})$ and $||l_2|| \leq 1$. Recall that ${}_{p}G_E(\mathcal{M})$ is the closed subspace of $l_p(E(\mathcal{M}))$. By the Hahn-Banach theorem, l_2 extends to a norm one functional \widetilde{l}_2 on $l_p(E(\mathcal{M}))$. Consequently, by Lemma 3.4, \widetilde{l}_2 is given by a norm one element $\omega' = (\omega'_n)_{n\geq 1}$ of $l_{p'}(E^{\times}(\mathcal{M}))$. Thus

$$l_2(db) = \sum_{n=1}^{\infty} \tau(d\omega'_n db_n) \ db = (db_n)_{n \ge 1} \in {}_p G_E(\mathcal{M}).$$

$$(3.5)$$

Set $\omega_1 = 0$ and $\omega_n = \sum_{k=1}^n \mathcal{E}_{k-1}(\omega'_k) (n \ge 2)$. For any $db = (db_n)_{n\ge 1} \in {}_p G_E(\mathcal{M})$, noting that $db = (db_n)_{n\ge 1}$ is predicable, it follows from (3.5) that

$$l_2(db) = \sum_{n=1}^{\infty} \tau(\mathcal{E}_{n-1}(\omega'_n db_n)) = \sum_{n=1}^{\infty} \tau(db_n \mathcal{E}_{n-1}(\omega'_n)) = \sum_{n=1}^{\infty} \tau(d\omega_n db_n).$$
(3.6)

It is easy to see that $\omega = (\omega_n)_{n \ge 1}$ is predicable with $\omega_1 = 0$ and

$$\left(\sum_{n=1}^{\infty} \|d\omega_n\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p'}} = \left(\sum_{n=1}^{\infty} \|\mathcal{E}_{n-1}(\omega_n')\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p'}} \le \left(\sum_{n=1}^{\infty} \|\omega_n'\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p'}} = 1.$$

Set $\mu_n = \nu_n + \omega_n (n \ge 1)$, where $\nu_n = \mathcal{E}_n(\nu) (n \ge 1)$. Then $\mu = (\mu_n)_{n \ge 1} \in {}_{p'}\widehat{E}^{\times}(\mathcal{M})$ and

$$\|\mu\|_{p'\widehat{E}^{\times}(\mathcal{M})} = \|\nu\|_{E^{\times}(\mathcal{M})} + \left(\sum_{n=1}^{\infty} \|d\omega_n\|_{E^{\times}(\mathcal{M})}^{p'}\right)^{\frac{1}{p'}} \le 2.$$

For any $x = (x_n)_{n \ge 1} \in {}_p \widehat{E}(\mathcal{M})$, let $x_n = y_n + z_n (n \ge 1)$ be its Doob's decomposition. Noting that $y = (y_n)_{n \ge 1}$ is a bounded $E(\mathcal{M})$ -martingale and $dz = (dz_n)_{n \ge 1} \in {}_p G_E(\mathcal{M})$, it follows from (3.4) and (3.6) that

$$l(x) = l_1(y) + l_2(dz) = \tau(y_{\infty}v_{\infty}) + \sum_{n=1}^{\infty} \tau(d\omega_n dz_n)$$

where y_{∞} is the limit of $(y_n)_{n\geq 1}$ in $E(\mathcal{M})$. The proof is completed.

As applications of Theorem 3.1, we shall consider the symmetric space ${}_{p}\widehat{E}(\mathcal{M})$ as interpolations of noncommutative quasi-martingale L_{p} -spaces, which is a generalization of Theorem 2.4.

Theorem 3.5 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property and 1 . Then there exists a symmetric Banach space*F*with nontrivial Boyd indices such that

$${}_{s}\widehat{E}(\mathcal{M}) = ({}_{s}\widehat{L}_{p}(\mathcal{M}), {}_{s}\widehat{L}_{q}(\mathcal{M}))_{F,K},$$

where $1 < s < p_E$.

For the proof of Theorem 3.5, we need the following lemmas (see [2]).

Lemma 3.6 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property, and let (X_1, X_2) be a compatible Banach couple. Then

$$(X_1, X_2)_{F,K}^* = (X_2^*, X_1^*)_{F^{\times},K}$$

Lemma 3.7 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property and 1 . Then there exists a symmetric Banach space*F*with nontrivial Boyd indices such that

$$l_s(E(\mathcal{M})) = \left(l_s(\mathcal{L}_p(\mathcal{M})), l_s(\mathcal{L}_q(\mathcal{M}))\right)_{F,K},$$

where $1 < s < p_E$.

Proof Let $x = (x_n)_{n\geq 1} \in l_s(E(\mathcal{M}))$. Then by Theorem 2.4, there exists a symmetric Banach space F with nontrivial Boyd indices such that $x_n \in (L_p(\mathcal{M}), L_q(\mathcal{M}))_{F,K}$ for any $n \geq 1$. For any a, b > 0, $\alpha_s(a^s + b^s) \leq (a + b)^s \leq \beta_s(a^s + b^s)$ for some constants α_s, β_s depending only on s. Using this fact, it is easy to show that

$$\begin{aligned} \left(K_t(x; l_s(L_p(\mathcal{M})), l_s(L_q(\mathcal{M})))\right)^s \\ &\leq \beta_s \sum_{n=1}^\infty \inf_{x_n = x_n^0 + x_n^1} (\|x_n^0\|_{L_p(\mathcal{M})}^s + t^s \|x_n^1\|_{L_q(\mathcal{M})}^s) \\ &\leq \frac{\beta_s}{\alpha_s} \sum_{n=1}^\infty \left(K_t(x_n; L_p(\mathcal{M}), L_q(\mathcal{M}))\right)^s. \end{aligned}$$

Noting that $F_{(s)}$ is a quasi-Banach space, we have that

$$\begin{split} \|x\|_{(l_s(L_p(\mathcal{M})),l_s(L_q(\mathcal{M})))^s}^s \\ &= \left\|\frac{K_t(x;l_s(L_p(\mathcal{M})),l_s(L_q(\mathcal{M})))^s}{t^s}\right\|_{F_{(s)}} \\ &\leq C_s \sum_{n=1}^{\infty} \left\|\frac{K_t(x_n;L_p(\mathcal{M}),L_q(\mathcal{M}))^s}{t^s}\right\|_{F_{(s)}} \\ &= C_s \sum_{n=1}^{\infty} \left\|\frac{K_t(x_n;L_p(\mathcal{M}),L_q(\mathcal{M}))}{t}\right\|_F^s, \end{split}$$

where C_s is a constant depending on s. This means that

 $\|x\|_{\left(l_s(L_p(\mathcal{M})),l_s(L_q(\mathcal{M}))\right)_{F,K}} \leq C_s \|x\|_{l_s(E(\mathcal{M}))}$

and

$$l_s(E(\mathcal{M})) \subset \left(l_s(L_p(\mathcal{M})), l_s(L_q(\mathcal{M}))\right)_{F,K}.$$
(3.7)

Similarly, we have that $l_{s'}(E^{\times}(\mathcal{M})) \subset (l_{s'}(L_{q'}(\mathcal{M})), l_{s'}(L_{p'}(\mathcal{M})))_{E^{\times}K}$. It follows that

$$(l_{s'}(E^{\times}(\mathcal{M})))^* \supset \left((l_{s'}(\mathcal{L}_{q'}(\mathcal{M})), l_{s'}(\mathcal{L}_{p'}(\mathcal{M})))\right)_{F^{\times}, K}^*$$

Observe that $p_{E^{\times}} \leq q_{E^{\times}} \leq s'$. Thus by Lemma 3.4 and Lemma 3.6, we have that

$$l_s(E(\mathcal{M})) \supset \left(l_s(L_p(\mathcal{M})), l_s(L_q(\mathcal{M}))\right)_{FK}.$$
(3.8)

Putting (3.7) and (3.8) together, we obtain that

$$l_s(E(\mathcal{M})) = \left(l_s(L_p(\mathcal{M})), l_s(L_q(\mathcal{M})) \right)_{FK}.$$

The proof is completed.

The following is an interpolation result on the space ${}_{p}G_{E}(\mathcal{M})$.

Lemma 3.8 Let *E* be a symmetric Banach space on [0, 1] with the Fatou property and 1 . Then there exists a symmetric Banach space*F*with nontrivial Boyd indices such that

$${}_{s}G_{E}(\mathcal{M}) = \left({}_{s}G_{p}(\mathcal{M}), {}_{s}G_{q}(\mathcal{M})\right)_{FK},$$

where $1 < s < p_E$.

Proof Note that ${}_{s}G_{p}(\mathcal{M})$ consists of quasi-martingale difference sequences in $l_{s}(L_{p}(\mathcal{M}))$. So ${}_{s}G_{p}(\mathcal{M})$ is 1-complemented in $l_{s}(L_{p}(\mathcal{M}))$ via the projection

$$P: \begin{cases} l_s(L_p(\mathcal{M})) \to {}_sG_p(\mathcal{M});\\ (a_n)_{n\geq 1} \to (\mathcal{E}_{n-1}(a_n))_{n\geq 1} \end{cases}$$

It follows that for any $x \in ({}_{s}G_{p}(\mathcal{M}), {}_{s}G_{q}(\mathcal{M}))_{F,K},$

$$K_t(x; {}_sG_p(\mathcal{M}), {}_sG_q(\mathcal{M})) = K_t(x; l_s(L_p(\mathcal{M})), l_s(L_q(\mathcal{M}))) \quad t > 0.$$

Thus

$$\|x\|_{\left({}_{s}G_{p}(\mathcal{M}),{}_{s}G_{q}(\mathcal{M})\right)_{F,K}} = \|x\|_{\left(l_{s}(L_{p}(\mathcal{M})),l_{s}(L_{q}(\mathcal{M}))\right)_{F,K}}$$

Therefore, using Lemma 3.6, we have finished the proof of the theorem.

Proof of Theorem 3.5 Let $x \in ({}_{s}\widehat{L}_{p}(\mathcal{M}), {}_{s}\widehat{L}_{q}(\mathcal{M}))_{F,K}$ and $x = x^{0} + x^{1}$ be a decomposition of x where $x^{0} \in {}_{s}\widehat{L}_{p}(\mathcal{M})$ and $x^{1} \in {}_{s}\widehat{L}_{q}(\mathcal{M})$. Let $x_{n}^{k} = y_{n}^{k} + z_{n}^{k}$ $(n \ge 1)$ be the Doob's decomposition of x^{k} (k = 0, 1). Then we have that $y^{0} \in L_{p}(\mathcal{M}), y^{1} \in L_{q}(\mathcal{M})$ and $dz^{0} \in {}_{s}G_{p}(\mathcal{M}), dz^{1} \in {}_{s}G_{q}(\mathcal{M})$. Set $y = y^{0} + y^{1}$ and $z = z^{0} + z^{1}$. Then

$$K_{t}(y; L_{p}(\mathcal{M}), L_{q}(\mathcal{M})) + K_{t}(dz; {}_{s}G_{p}(\mathcal{M}), {}_{s}G_{q}(\mathcal{M}))$$

$$\leq \|y^{0}\|_{L_{p}(\mathcal{M})} + t\|y^{1}\|_{L_{q}(\mathcal{M})} + \|dz^{0}\|_{s}G_{p}(\mathcal{M})) + t\|dz^{1}\|_{s}G_{q}(\mathcal{M})$$

$$= \|x^0\|_{\widehat{L}_p(\mathcal{M})} + t\|x^1\|_{\widehat{L}_q(\mathcal{M})}.$$

Thus we get that

$$K_t(y; L_p(\mathcal{M}), L_q(\mathcal{M})) + K_t(dz; {}_sG_p(\mathcal{M}), {}_sG_q(\mathcal{M})) \le K_t(x; {}_s\widehat{L}_p(\mathcal{M}), {}_s\widehat{L}_q(\mathcal{M})),$$

where the infimum runs over all decomposition of x. Using the equality $||x||_{(X_0,X_1)_{F,K}} = ||\frac{K_t(x;X_0,X_1)}{t}||_F$, we have that

$$\|y\|_{(L_p(\mathcal{M}),L_q(\mathcal{M}))_{F,K}} + \|dz\|_{(sG_p(\mathcal{M}),sG_q(\mathcal{M}))_{F,K}} \le 2\|x\|_{(s\widehat{L}_p(\mathcal{M}),s\widehat{L}_q(\mathcal{M}))_{F,K}}.$$

By Lemma 2.4 and Lemma 3.8, we get that

$$\|y\|_{E(\mathcal{M})} + \|dz\|_{sG_{E}(\mathcal{M})} \le 2\|x\|_{(s\widehat{L}_{p}(\mathcal{M}),s\widehat{L}_{q}(\mathcal{M}))_{F,K}}$$

which implies that $||x||_{s\widehat{E}(\mathcal{M})} \leq 2||x||_{(s\widehat{L}_p(\mathcal{M}),s\widehat{L}_q(\mathcal{M}))_{F,K}}$ and

$${}_{s}\widehat{E}(\mathcal{M}) \supset ({}_{s}\widehat{L}_{p}(\mathcal{M}), {}_{s}\widehat{L}_{q}(\mathcal{M}))_{F,K}$$

By Theorem 3.1 and Lemma 3.6, we have that

$$\widehat{E}(\mathcal{M}) = ({}_{s'}\widehat{E^{\times}}(\mathcal{M}))^* \subset \left(({}_{s'}\widehat{L}_{q'}(\mathcal{M}), {}_{s'}\widehat{L}_{p'}(\mathcal{M}))_{F^{\times},K}\right)^* = ({}_{s}\widehat{L}_p(\mathcal{M}), {}_{s}\widehat{L}_q(\mathcal{M}))_{F,K}.$$

Therefore,

$${}_{s}\widehat{E}(\mathcal{M}) = ({}_{s}\widehat{L}_{p}(\mathcal{M}), {}_{s}\widehat{L}_{q}(\mathcal{M}))_{F,K}.$$

The proof is completed.

Acknowledgements This work was supported by National Natural Science Foundation of China (11801489,11671308).

References

- 1. T. N. Bekjan, Duality for symmetric Hardy spaces of noncommutative martingales, Math. Zeit. 289 (2018), 787-802.
- 2. C. Bennett, Banach function spaces and interpolation methods. I. The abstract theory, J. Funct. Anal. 17 (1974), 409-440.
- C. Bennett, Banach function spaces and interpolation methods. II. Interpolation of weak-type operators, Linear operators and approximation, II (Proc. Conf., Math. Res. Inst., Oberwolfach, 1974), Birkh auser, Basel, 1974, pp. 129-139. Internat. Ser. Numer. Math., Vol. 25.
- 4. I. Cuculescu, Martingales on von neumann algebra, J. Multivariate Anal. 1 (1971), 17-27.
- 5. P. G. Dodds, T. K. Dodds and B. de Pagter, Noncommutative Banach function spaces, Math. Z. 201 (1989), 583-579.
- 6. P. G. Dodds, T. K. Dodds and B. de Pagter, Noncommutative Köthe duality, Trans. Amer. Math. Soc. 339 (1993), 717-750.
- 7. P. G. Dodds, T. K. Dodds and B. de Pager, Fully symmetric operator spaces, Integr. Equ. Oper. Theory. 15 (1992), 942-972.
- 8. S. Dirksen, Noncommutative Boyd interpolation theorems, Trans. Amer. Math. Soc. 367 (2015), 4079-4110.
- 9. Y. Jiao, Martingale inequalities in noncommutative symmetric spaces, Arch. Math. (Basel), 98 (2012) 87-97.
- 10. M. Junge, Doobs inequality for non-commutative martingales, J. Reine Angew. Math, 549 (2002), 149-190.
- Pawel Kolwicz, Karol Le snik and Lech Maligranda, Pointwise products of some Banach function spaces and factorization, J. Funct. Anal, 266 (2014), 616-659.
- 12. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Springer-Verlag, Berlin, 1979.
- P. Liu, UMD spaces and the laws of large numbers of Banach spaces-valued martingales, Chin. Bull. Sci. 34 (1989), 401-404.
 F.Lust-Piquard and G.Pisier, Non-commutative Khintchine and Paley inequalities, Ark. Mat. 29 (1991), 241-260.
- 14. F.Lust-Piquard and G.Pisler, Non-commutative Kinnichine and Paley inequalities, Ark. Mat. 29 (1991), 241-260.
- 15. C. Ma and Y. Hou, Duality theorems for noncommutative quasimartingale spaces, Acta Math. Hungar. 148 (2016), 132-146.
- 16. C. Le Merdy and F. Sukochev, Radermacher averages on noncommutative symmetric spaces, J. Funct. Anal. 255 (2008), 3329-3355.
- 17. G. Pisier and Q. Xu, Non-commutative martingale inequalities, Comm. Math. Phys. 189 (1997), 667-698.
- G. Pisier and Q. Xu, Non-Commutative L_p-Spaces, Handbook of the geometry of Banach spaces, Vol. 2, 1459-1517, North-Holland, Amsterdam, (2003).
- N. Randrianantoanina and L. Wu, Martingale inequalities in noncommutative symmetric spaces, J. Funct. Anal. 269 (2015), 2222-2253.