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Abstract Let E be a symmetric Banach space with the Fatou property and 1 < pg < gg < p. We prove the
duality for symmetric Banach space ,E (M) which is a kind of noncommutative quasi-martingale space. As
its applications, we discuss concrete description of the symmetric Banach space , E (M) as interpolations of
quasi-martingale L ,-spaces.
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1 Introduction

The theory of noncommutative symmetric spaces has been rapidly developed. Many of the noncommutative
martingale results have been transferred to the noncommutative symmetric case. Especially, in [1], J. Yong
proved Burkholder-Gundy inequalities for symmetric Banach spaces of noncommutative martingales. In [9], T.
N. Bekjan proved the duality for conditional Hardy spaces of martingales in noncommutative symmetric Banach
spaces.

The quasi-martingales are generalizations of martingales and play important roles in many different areas of
mathematics. In [15], we studied duality theorems for L ,-spaces of noncommutative quasi-martingales. In this
paper, we will extend the above results to the noncommutative symmetric case. Let E be a symmetric Banach
space on [0, 1] with the Fatou property and 1 < pg < gg < p. Then

(HEM)* = JEX(M),
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where pE\ (M) and p/E X (M) denote the symmetric Banach spaces of noncommutative quasi-martingales which
we refer to the next section for formal definitions. As applications of this result, we obtain the description of the
symmetric space , E (M) as interpolations of noncommutative quasi-martingale L ,-spaces.

The organization of the paper is as follows. In Section 2, we give some preliminaries and notations on
symmetric Banach spaces, quasi-martingale spaces and interpolations. We prove the main results in Section 3.

2 Preliminaries

Let E be a symmetric Banach space on [0, 1]. The Kothe dual of E is the function space defined by setting:
1
E* ={f € Lo([0, 1]) : / |f(t)g(n)ldt < o0,Vg € E}.
0

When equipped with the norm || f||gx = sup{fo1 |f(t)g)|dt : ||gllg <1}, E* is a symmetric Banach space.
A symmetric Banach space E on [0, 1] is said to have the Fatou property if for every sequence (x,), in E
satisfying 0 < x,, 1 and sup,, |x,||r < oo, the supremum x = sup,, x,, belongs to E and ||x, ||z 1 ||x| . Note
that E has the Fatou property if and only if E = E** isometrically. Examples of symmetric spaces with the
Fatou property are separable symmetric spaces and duals of separable symmetric spaces.
For any s > 0 we define the dilation operator D5 on L[0, 1] by

(Ds )(@) = f(sD)xpo,11(s0), t €[0,1].

If E is a symmetric Banach space on [0, 1], then D; is a bounded linear operator. Define the lower and upper
Boyd indices of E by

. log s . log s
pg = lim ———— and ¢ := lim ———,
s—o0 log || Dy || s—0* log || Ds||

respectively. It is well known that 1 < pg < g < oo and E has non-trivial Boyd indices, whenever 1 < pg <
qe < oo. We shall need the following duality for Boyd indices:

1 1 1 1

=1, —

_+ ) =1'
PE qEx qE PEx

Let E be a symmetric Banach space on [0, 1]. For 0 < r < oo, we define E™ and E by

EV :={x:|x|" € E}, |xlgn = |IxI

7
E>

1 1
Eqy:={x:|x|" € E}, |xlg,, = |IxI7

R
E 9
respectively. It is clear from the definitions that E(), E () are symmetric and

1 1
PE,, = ;PE, 4Eq) = ;QE, Pty =TPE, gt =TYE.

Let E; be a quasi Banach idea space on [0, 1], i = 1, 2. The pointwise product space of E and E> is defined
as

Ei1OEy={x:x=xix,x; € E;,i =1,2}
with a functional ||x ||, £, defined by
Ixlg,0E, = nf{|x|lg, x|lg, : x = x1x2, x; € Ej, i = 1,2}

Note that if £ and F are symmetric Banach spaces on [0, 1], then we have the following results (see Theorem
Lin [1]).

(i) If0 < p < oo, then (E @ F)(P = EP) o FP),
(i) If 1 < p < oo, then (EP)* = (EX)P) © L »[0, 1].
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632 C. Maet al.

Let M be a semi-finite von Neumann algebra with a faithful normal semi-finite trace 7. The set of all T-measurable
operators is denoted by Lo(M). For x € Lo(M), define its generalized singular number by

() = inf{h > 02 T (xgooy (D) <1}, 1> 0.

For a given symmetric Banach function space E on [0, 1], we define the corresponding noncommutative space
by setting:

EM,t)={x € Lo(M) : u;(x) € E}.

Equipped with the norm || x || g A1, 7) = ||t (x) || £, the space E (M, 1) is a Banach space and is referred to as the
noncommutative symmetric Banach space associated with (M, t) corresponding to the function space (E, ||| g)-
Notethatif 1 < p < ocoand E = L ([0, 1]),then E(M, t) = L, (M, 1) is the usual noncommutative L ,-space
associated with (M, 7).

2.1 Noncommutative quasi-martingales

We first recall the general setup for noncommutative martingales. Let (M,,),>1 be an increasing sequence of
von Neumann subalgebras of M such that the union of the M,,’s is weak*-dense in M. For every n > 1, the
restriction 7|4, of T to M,, remains semi-finite, still denoted by 7, and we assume that there exists a trace
preserving conditional expectation &, from M onto M,,. In this case, (M,,),>1 is called a filtration of M. Note
that &, extends to a contractive projection from L ,(M) onto L, (M) forall 1 < p < oo. A noncommutative
E (M)-martingale with respect to (M,,),>1 is a sequence x = (x,),>1 such that x, € E(M,) and &, (xp4+1) =
x, forany n > 1. Let [x||gmy = sup,sq IXall vy I Ixll vy < oo, then x is called a bounded E(M)-
martingale. The martingale difference sequence dx = (dxp)n>1 of x is defined by dx,, = x, — x,—1 forn > 1.
Here and in the following, we set xo = 0 and & = & for the sake of convenience.

In this paper, we are concerned with the following quasi-martingales in noncommutative symmetric Banach
spaces.

Definition 2.1 Let E be a symmetric Banach space on [0, 1] and 1 < p < oo. A noncommutative ,E(M)-
quasi-martingale with respect to (M,,),>1 is a sequence x = (x,),>1 such that x, € E(M,) forn > 1 and
(with & =0, xg = 0)

o0
D €1 @x)llgpg < 0.

n=1

n

Let y, = Y (dxy — E—1(dxy)) forn > 1. We set
k=1

o0
1
I, By = sup Il + QM1 @xa) )7

n=1

If || x ||p EMm) < 00, then x is called a bounded , E (M)-quasi-martingale. The quasi-martingale space ,,E (M)is
defined as the space of all bounded , E (M)-quasi-martingales, equipped with the norm || - || SEM)- We remark

thatif 1 < g < ooand E = Ly ([0, 1]) then pE(M) = pZ;(M), where plj;(/\/l) consists of x = (x,)p>1 C
L, (M) for which

00
1

— — p >
1L, 25 vty = S0P Il vty + 2 NEn-1@x 7, (g7

n=1

Now we define the noncommutative space ,G g (M) which is used in the proof of our main results.
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Definition 2.2 Let £ be a symmetric Banach space on [0, 1] and 1 < p < oco. The noncommutative space
»G E(M) is defined as the subspace of {,(E(M)) consisting of all sequences dx = (dx,),>1 such that x =
(xn)n>1 is a predictable , E (M)-quasi-martingale with x; = 0, and is equipped with the norm

00
1
lxll, Gty = (O ldxull )7
n=1

Note thatif 1 < ¢ < ooand E = L,([0, 1]) then ,Gg(M) = ,G,(M), where ,G,(M) denotes the space of
X = (Xp)n=1 C Ly(M) for which

oo
1
— P P
“dx”qu(M) - (Z “dxn”Lq(M)) .
n=1

The following theorem plays an important role in our paper which we call Doob’s decomposition.

Theorem 2.3 (Doob’s decomposition) Let E be a symmetric Banach space on [0, 1] and 1 < p < oo. Then
each bounded , E (M)-quasi-martingale x = (X,)n>1 can be uniquely decomposed as a sum of two sequences
Yy = nu>1 and z = (Zp)n=1, where y = (Yp)n>1 is a bounded E(M)-martingale and z = (z,)n>1 is a
predicable , E(M)-quasi-martingale with z; = 0.

Proof The proof is similar with Lemma 2.2 in [15].

2.2 Interpolations

For a compatible Banach couple (X¢, X1), we define the K-functional by setting for any x € X¢ + X and
t >0,

K (x; Xo, X1) = inf{|[xollxo + tllx1llx, : X = x0 + x1, x0 € X0, x1 € X1}.
The interpolation space (Xo, X1) g,k is defined as the space of all elements x € X 4+ X such that

K;(x; Xo, X1)
t

Ixll(xo, x5 x = H
E

We may state the following interpolation result which is needed in the sequel (see Theorem 2.2 in [19] and
[20]).

Theorem 2.4 Let E be a symmetric Banach space on [0, 1] with the Fatou propertyand 1 < p < pg < qg <
q < 00. Then there exists a symmetric Banach space F with nontrivial Boyd indices such that

EM) = (L,(M), Ly(M))F g (with equivalent norms). 2.1

Proof By Theorem 2.2 in [19], there is a symmetric Banach function space F on [0, 1] such that f € E if and
only if t — K;(f; Lpl0, 1], L4[0, 1]) € F and there exist a constant C such that

C Mt = Ki(f: Lpl0, 11, Ly[0, ID[lF < I flle < Cllt — Ki(f; Lpl0, 11, Lg[0, 17). (2.2)
For any x € E(M), using the results K;(u(x); L,[0, 11, Ly[0, 11) = K;(x; L ,(M), L ,(M) and [|u(x) | g =

lx1l £(A1), we can extend (2.2) to the noncommutative setting. The proof is completed.
Throughout the paper p” will denote the conjugate index of p. O
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634 C. Maet al.

3 Main results

Our first result in this section is concerned with the dual space of ,, E (M) which is the symmetric Banach space
of noncommutative quasi-martingales.

Theorem 3.1 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < pg < qp < p.
Then

(PEM)" = yEX(M)

isometrically, with associated duality bracket given by

(0.¢]
Vx € yE(M), Yu e yEX(M), (x,u) =1(vy) + Y t(dw,dza),

n=1
where [, = Vv, + w, and x, = y, + z,(n > 1) are the Doob’s decomposition of u and x respectively.
For the proof we need the following Lemma.

Lemma 3.2 Ler E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < pg < qg < p.
Then

€
E=FQE*/,

1
where F = (EX(P’)))< is separable.

()

1
Proof From the proof of Lemma 2.1 in [1], we know that E v

properties of pointwise product spaces, we have

is reflexive and F is separable. By (ii) of the

L ! L ! 4
E=(E* = (E*70y = (X7 179%) o L0, 11 = FP) o L0, 1].

Using the equality L{[0, 1] = E ® E* (see Theorem 1.2 in [1]) and (i) of the properties of pointwise product
spaces, we obtain that

X(ﬁ)

’ 1 ’ 1
E=F"oFoE" )P =F" orF? o) =FoE

The proof is completed. O
We also require the following duality result (see Theorem 5.6 in [6]).

Lemma 3.3 Let E be a symmetric Banach space on [0, 1] with the Fatou property, then (E (M))* = EX(M)
isometrically, with associated duality bracket given by

(x,y) =t(xy), x € E(M),y € EX(M).

Now, we concern the dual space of | ,(E(M)) which is the main ingredient in the proof of Theorem 3.1.

Lemma 3.4 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < pg < qg < p.
Then

(L, (E(M)))* = 1y (EX(M))

with equivalent norms.
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Proof Letx = (xp)p=>1 € [p(E(M)) and y = (yn)n>1 € Iy (E*(M)). Now, we define a linear functional on
I[p,(E(M)) by

e¢]

ly(x) =Y T(xnyn).

n=1
Then by Lemma 3.3 and Holder’s inequality,
o0
< D It Gay)l

ee]

Z T(XnYn)

n=1

n=1
o

< Y Ixallzw Iynllex v
n=1
o0

1 & / il
< Q allBpg) ? QO yallfo pg)) ™
n=1 n=1
= llxllz, rp IV, X M)

o
Thus the series ) 7(x,y,) converges absolutely. Therefore, [, (x) is continuous on I, (E(M)) and ||l,] <

n=1
¥z, 2% (M)

We pass to the converse inclusion. Let / € (l p(E (M)))* of norm one. For every n > 1, set
In(xp) = 1(0), xn € E(M),
where 6 = (0, ...,0, x,,0,...).Then
—
n

1l )| = 1O < NION1,EMmy) = Xl EM)-

This implies that /, € (E(M))*. Since (E(/\/l))* = E*(M), the representation theorem allows us to find an
element y, € E* (M) such that
In(xn) = T(Xpyn), xp € E(M).

Thus we have that

oo

1) =Y 1) = > T(tnyn) 3.1)
n=1

n=1

for any finite sequence x = (x;)n>1 € I, (E(M)). We must show that y = (yn)n>1 € [, (E*(M)) and is of
norm < 1. Now, fix an n. Note that for any k < n

/ / L/ / / /
||Yk||Z~X(M) = I yel?) ||pX(M) = lllyxl? ”EX(L/)(M) = sup{t (arlye|”) : ax € F(M), llakllpmy < 1},
P

n
where (F(M))* = E*% (M). Thus for an arbitrarily given & > 0, there exists a} € F(M) and ||af ||pr1) < 1
such that

’ ’ &
19N iy < 7@ I3l + 57 (32)
1 ¢ =2 % 4 14 1 : =2 % x(5)
Set z; = y—ak|yk|” y*, where y, = () ”yk”EX(M))')' Then noting that |y;|” ~y* € E" #" and by
! k=1
Lemma 3.2, we get z; € E(M) and
lzkllEm) < L||6l”:IIF(M)IIkalplfzy*ll py < i”yk”l”—l (3.3)
T Wn k Y T Vn EX(M)
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636 C. Maet al.

Thus we have that

S Py w-vpt _ 1y : ’
Dol ) < y—(Z yllg2 oy D7 = o Dol ) =1
k=1 " k=1 " \k=1

Letz™ = (z1,...,2,,0,...). Thenz" € [,(E(M)) and ||Z(n)”lp(E(M)) < 1. Using (3.1) and (3.2), we obtain
that

n

1G™) =Y t(zw)

k=1
1 n
=— Y t(@lnl”)
yn k=1
1

v

n

n p/ e
2 el gy = 57
k=1

v

n , N 1
Q Il e )™ = _—c
k=1 n

Thus we have that

n , n 1
(Z 13kl ) 7 < y—s—i—l(z(”)) <1
k=1 n

It follows that

~ |-

> /
(Z ||yn||f,;X(M)) <1
n=1

as n — oo which implies
y €ly(E*(M)) and Iyl ex vy = 1
For any x = (x,)u>1 € [,(E(M)), let x™ = (x1,...,%,,0,...) (n > 1). Then
Ix = x" i,z = O (n = 00).

Using (3.1), we have

n o0
_ 1 )y — 1; ) — v
[00) = lim 16:™) = Tim D vy = ) vlaiyi).

i=1 i=1
The proof is completed. o

The proof of Theorem 3.1 Let i = (p)n>1 € p/EX(M) and x = (Xp)p>1 € pE(M). Let up, = v, + wy
and x, = y, + z,(n > 1) be the Doob’s decomposition of w1 and x respectively. Then y = (yn)n>1 is a
bounded E(M)-martingale and v = (v,),>1 is a bounded E* (M)-martingale. Thus there exist yo, € E(M)

E(WM EX(M
and voo € EX(M) such that y, 3 oo, v~ e

Now we define a linear functional on , E (M) by

LX) = T(VaoYoo) + Y T(dwndzy).

n=1
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Then by Lemma 3.3 and Holder’s inequality,

o0
1] < ool (my 1Yol 2y + Y Ild@nll x (v ldzall Eany
n=1
1

00 , ]:*/ 00 ?
< Ivoollx Ay Iyooll EM) + (Z ld@nl M)> (Z ldzall’ M)>
n=1

n=1
1

o] , 7 o] ,l,
< (nvwnmm + (Z ||dwn||ZX(M)) )(nyoonE(M) + (Z ||dzn||§w)> )
n=lI n=1

= ||M||p,EX(M)||x||pE(M)-

Thus [, (x) is continuous on pE(M) and [[[, ]l < llnell < (M)-
P
We pass to the converse inclusion. Let [ € (pE (/\/l))* of norm one. Let /] be the restriction of / on E(M).
Noting that (E(M))* = EX (M), there exists v € EX(M) and || gx a1y < 1 such that

li(a) = 1(av), a € E(M). (3.4)
On the other hand, define a functional on ,G g (M) by
l(db) =1(b), db = (db,)p>1 € pGE(M).

Then |lo(db)| < |II]IP]l JEM) = l|dbl| »GE(M)- Thus we have that [, is a continuous linear functional on
pGEM) and ||| < 1 Recall that pGE(M) is the closed subspace of [,(E£(M)). By the Hahn-Banach
theorem, [, extends to a norm one functional /> on [ p(E(M)). Consequently, by Lemma 3.4, T is given by a
norm one element @’ = (w},)n>1 of [,/ (E*(M)). Thus

h(db) =Y t(dw,db,) db = (dby)y=1 € pGE(M). 3.5)

n=1

Setw; =0and w, = Z Er— 1(a)k)(n > 2). For any db = (dby)yn>1 € pG (M), noting that db = (db,),>1 is

predicable, it follows from (3.5) that

oo o0 o0

bdb) = T(En-1(@ydby) = Y T(dbyEai(@))) = ) T(dwndby). (3.6)

n=1 n=1 n=1
It is easy to see that @ = (w,),>1 is predicable with w; = 0 and

1

0 , oo : ;
(Zudwnngw)) =<Z||8n1<w;,>||';w)> (an ||EX(M)> =1L
n=1

n=1

Set (b, = vy + wy(n > 1), where v, = E,(v)(n > 1). Then u = (y)n>1 € p/EX(M) and

o0 , F
~ _ P
lall ey = IV lEx ) + (Z ||dwn||EX(M)) <2.

n=1

Forany x = (x,)n>1 € pE(M), letx, = y, +z,(n > 1) be its Doob’s decomposition. Noting that y = (y,),>1
is a bounded E (M)-martingale and dz = (dz,)u>1 € pG g (M), it follows from (3.4) and (3.6) that

1) = L) + h(d2) = T(yooUoo) + Y T(dwndzy),

n=1

where yo is the limit of (y,),>1 in E(M). The proof is completed. O
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638 C. Maet al.

As applications of Theorem 3.1, we shall consider the symmetric space pE (M) as interpolations of noncom-
mutative quasi-martingale L ,-spaces, which is a generalization of Theorem 2.4.

Theorem 3.5 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < p < pg < qg <
q < 00. Then there exists a symmetric Banach space F with nontrivial Boyd indices such that

SE(M) = (Lp(M), s Ly (M) F k.
where 1 <s < pg.
For the proof of Theorem 3.5, we need the following lemmas (see [2]).

Lemma 3.6 Ler E be a symmetric Banach space on [0, 1] with the Fatou property, and let (X1, X2) be a
compatible Banach couple. Then

(X1, X2)p g = (X3, XD px k-

Lemma 3.7 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < p < pg < qp <
q < 00. Then there exists a symmetric Banach space F with nontrivial Boyd indices such that

L(E(M)) = (I5(L (M), [;(L g (M)))

F.K’

where 1 <5 < pg.

Proof Let x = (Xp)n>1 € Is(E(M)). Then by Theorem 2.4, there exists a symmetric Banach space F with
nontrivial Boyd indices such that x, € (L,(M), Ly(M))F x forany n > 1. For any a, b > 0, ay(a® +b°) <
(a + b)* < Bs(a® + b*) for some constants oy, By depending only on s. Using this fact, it is easy to show that

(K: (x5 15 (L p (M), Ii(Lg (M)’

o0
: 08 s s
< By le";fofﬂl("xn“Lp(M) + 07, ()
n= n n

< P51y MD)'
S =1

Noting thatF( is a quasi-Banach space, we have that

S
161y 2 Ay s Ly (MO

H Ko (x3ls (Lp (M), L5 (Lg (M)))*
tI

F)
o0 . s
<c, Z ” Kt(xnaLp(-/;l)qu(M))
n=1 Fs)
—c, § H KiiniLp M), Ly (M) '
n=1 F

where C; is a constant depending on s. This means that

”x”(zs(L,,<M>>,zs<Lq(M>>)F1K < Gslixllzy ey
and
[s(E(M) C (Is(L (M), L5 (Lg(M))) f - 3.7

Similarly, we have that Iy, (E*(M)) C (ls/(Lq/(/\/l)), Ly (L (/\/l)))FX i - Lt follows that
(U (E* (M) D (Ut (L (M), Ly (L (M) o g
Observe that pgpx < ggx < s’. Thus by Lemma 3.4 and Lemma 3.6, we have that

L(EQM)) D (I (L p(M)). 1 (Lg (M) 1 .
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Putting (3.7) and (3.8) together, we obtain that
[ (E(M) = (Is(Lp(M)), s (Lg (M) f. -
The proof is completed.

The following is an interpolation result on the space ,G g (M).

Lemma 3.8 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < p < pg < qp <
q < 00. Then there exists a symmetric Banach space F with nontrivial Boyd indices such that

sGE(M) = (st(M)s SGq(M))F,K’
where 1 < s < pg.

Proof Note that ;G ,(M) consists of quasi-martingale difference sequences in I/;(L ,(M)). So G (M) is
1-complemented in /s (L ,(M)) via the projection

P ls(Lp(M)) - st(M)§
’ (an)nzl - (gn—l(an))nzl-
It follows that for any x € (SGP(M), sGq (M))F’K,
K (x; st(M)a qu(M)) = K;(x; ls(Lp(M))y ls(Lq(M))) t>0.
Thus

6, .6,00), o = W@, e,onm),
Therefore, using Lemma 3.6, we have finished the proof of the theorem.

Proof of Theorem 3.5 Let x € (SZP(M), qu (M))r.k and x = x% + x! be a decomposition of x where
x% e SZP(M) and x! € qu (M). Let xﬁ = y,’i + z’,‘l (n = 1) be the Doob’s decomposition of x* (k = 0, 1).
Then we have that y0 e L,(M), yl e Ly(M) and d7¥ € sGp(M), dz! e sGg(M). Set y = y9 + y! and
z=2"+7z'. Then

Ki(y; Lpy(M), Ly(M)) + K (dz; sG p(M), sGg(M))
< 15°lz, om0 + 1Y Iz, + 142016, + tldz 6, o)
= 1x°l, 2, vy + 1L 2, -
Thus we get that
K (33 Ly(M), Lg(M)) + K, (dz; ;G (M), sGq(M)) < K, (x5 ;L ,(M), sL, (M),

where the infimum runs over all decomposition of x. Using the equality [ x[l(xy,x)rx = | M lF, we
have that

IV, ). LyMyp ke + 14206 M) Gy px = 21X GE, (M) 2y (M) k-
By Lemma 2.4 and Lemma 3.8, we get that
1912 + Id2l,G o < 20802, ). 2, Mok
which implies that ||x||sg(M) < 2||x||(Szp(M)’qu(M))F,K and
SE(M) D Ly (M), Ly (M) k-
By Theorem 3.1 and Lemma 3.6, we have that
SEM) = (GEX(M))* € ((vLy (M), gLy (M) px )" = (L (M), s Ly (M) k-
Therefore,
SEM) = Ly (M), s Ly (M) F -
The proof is completed.
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