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Abstract Let E be a symmetric Banach space with the Fatou property and 1 < pE ≤ qE < p. We prove the
duality for symmetric Banach space p̂E(M) which is a kind of noncommutative quasi-martingale space. As
its applications, we discuss concrete description of the symmetric Banach space p̂E(M) as interpolations of
quasi-martingale L p-spaces.
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1 Introduction

The theory of noncommutative symmetric spaces has been rapidly developed. Many of the noncommutative
martingale results have been transferred to the noncommutative symmetric case. Especially, in [1], J. Yong
proved Burkholder-Gundy inequalities for symmetric Banach spaces of noncommutative martingales. In [9], T.
N. Bekjan proved the duality for conditional Hardy spaces of martingales in noncommutative symmetric Banach
spaces.

The quasi-martingales are generalizations of martingales and play important roles in many different areas of
mathematics. In [15], we studied duality theorems for L p-spaces of noncommutative quasi-martingales. In this
paper, we will extend the above results to the noncommutative symmetric case. Let E be a symmetric Banach
space on [0, 1] with the Fatou property and 1 < pE ≤ qE < p. Then

(p̂E(M))∗ = p′ ̂E×(M),
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Duality and interpolation for symmetric Banach spaces of noncommutative quasi-martingales 631

where p̂E(M) and p′ ̂E×(M) denote the symmetric Banach spaces of noncommutative quasi-martingales which
we refer to the next section for formal definitions. As applications of this result, we obtain the description of the
symmetric space p̂E(M) as interpolations of noncommutative quasi-martingale L p-spaces.

The organization of the paper is as follows. In Section 2, we give some preliminaries and notations on
symmetric Banach spaces, quasi-martingale spaces and interpolations. We prove the main results in Section 3.

2 Preliminaries

Let E be a symmetric Banach space on [0, 1]. The Köthe dual of E is the function space defined by setting:

E× = { f ∈ L0([0, 1]) :
∫ 1

0
| f (t)g(t)|dt < ∞,∀g ∈ E}.

When equipped with the norm ‖ f ‖E× := sup{∫ 1
0 | f (t)g(t)|dt : ‖g‖E ≤ 1}, E× is a symmetric Banach space.

A symmetric Banach space E on [0, 1] is said to have the Fatou property if for every sequence (xn)n in E
satisfying 0 ≤ xn ↑ and supn ‖xn‖E < ∞, the supremum x = supn xn belongs to E and ‖xn‖E ↑ ‖x‖E . Note
that E has the Fatou property if and only if E = E×× isometrically. Examples of symmetric spaces with the
Fatou property are separable symmetric spaces and duals of separable symmetric spaces.

For any s > 0 we define the dilation operator Ds on L0[0, 1] by
(Ds f )(t) = f (st)χ[0,1](st), t ∈ [0, 1].

If E is a symmetric Banach space on [0, 1], then Ds is a bounded linear operator. Define the lower and upper
Boyd indices of E by

pE := lim
s→∞

log s

log ‖Ds‖ and qE := lim
s→0+

log s

log ‖Ds‖ ,

respectively. It is well known that 1 ≤ pE ≤ qE ≤ ∞ and E has non-trivial Boyd indices, whenever 1 < pE ≤
qE < ∞. We shall need the following duality for Boyd indices:

1

pE
+ 1

qE×
= 1,

1

qE
+ 1

pE×
= 1.

Let E be a symmetric Banach space on [0, 1]. For 0 < r < ∞, we define E (r) and E(r) by

E (r) := {x : |x |r ∈ E}, ‖x‖E (r) := ∥

∥|x |r∥∥
1
r
E ,

E(r) := {x : |x | 1r ∈ E}, ‖x‖E(r) := ∥

∥|x | 1r ∥∥rE ,

respectively. It is clear from the definitions that E (r), E(r) are symmetric and

pE(r) = 1

r
pE , qE(r) = 1

r
qE , pE (r) = rpE , qE (r) = rqE .

Let Ei be a quasi Banach idea space on [0, 1], i = 1, 2. The pointwise product space of E1 and E2 is defined
as

E1 � E2 = {x : x = x1x2, xi ∈ Ei , i = 1, 2}
with a functional ‖x‖E1�E2 defined by

‖x‖E1�E2 = inf{‖x‖E1‖x‖E2 : x = x1x2, xi ∈ Ei , i = 1, 2}.
Note that if E and F are symmetric Banach spaces on [0, 1], then we have the following results (see Theorem

1 in [1]).

(i) If 0 < p < ∞, then (E � F)(p) = E (p) � F (p).

(ii) If 1 < p < ∞, then (E (p))× = (E×)(p) � L p′ [0, 1].
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632 C. Ma et al.

LetM be a semi-finite vonNeumann algebrawith a faithful normal semi-finite trace τ . The set of all τ -measurable
operators is denoted by L0(M). For x ∈ L0(M), define its generalized singular number by

μt (x) = inf{λ > 0 : τ(χ(λ,∞)(|x |)) ≤ t}, t > 0.

For a given symmetric Banach function space E on [0, 1], we define the corresponding noncommutative space
by setting:

E(M, τ ) = {x ∈ L0(M) : μt (x) ∈ E}.

Equipped with the norm ‖x‖E(M,τ ) := ‖μt (x)‖E , the space E(M, τ ) is a Banach space and is referred to as the
noncommutative symmetricBanach space associatedwith (M, τ ) corresponding to the function space (E, ‖·‖E ).

Note that if 1 ≤ p < ∞ and E = L p([0, 1]), then E(M, τ ) = L p(M, τ ) is the usual noncommutative L p-space
associated with (M, τ ).

2.1 Noncommutative quasi-martingales

We first recall the general setup for noncommutative martingales. Let (Mn)n≥1 be an increasing sequence of
von Neumann subalgebras of M such that the union of the Mn’s is weak∗-dense in M. For every n ≥ 1, the
restriction τ |Mn of τ to Mn remains semi-finite, still denoted by τ , and we assume that there exists a trace
preserving conditional expectation En fromM ontoMn . In this case, (Mn)n≥1 is called a filtration ofM. Note
that En extends to a contractive projection from L p(M) onto L p(Mn) for all 1 ≤ p ≤ ∞. A noncommutative
E(M)-martingale with respect to (Mn)n≥1 is a sequence x = (xn)n≥1 such that xn ∈ E(Mn) and En(xn+1) =
xn for any n ≥ 1. Let ‖x‖E(M) = supn≥1 ‖xn‖E(M). If ‖x‖E(M) < ∞, then x is called a bounded E(M)-
martingale. The martingale difference sequence dx = (dxn)n≥1 of x is defined by dxn = xn − xn−1 for n ≥ 1.
Here and in the following, we set x0 = 0 and E0 = E1 for the sake of convenience.

In this paper, we are concerned with the following quasi-martingales in noncommutative symmetric Banach
spaces.

Definition 2.1 Let E be a symmetric Banach space on [0, 1] and 1 ≤ p ≤ ∞. A noncommutative pE(M)-
quasi-martingale with respect to (Mn)n≥1 is a sequence x = (xn)n≥1 such that xn ∈ E(Mn) for n ≥ 1 and
(with E0 = 0, x0 = 0)

∞
∑

n=1

‖En−1(dxn)‖p
E(M)

< ∞.

Let yn =
n
∑

k=1
(dxk − Ek−1(dxk)) for n ≥ 1. We set

‖x‖
p ̂E(M) := sup

n
‖yn‖E(M) + (

∞
∑

n=1

‖En−1(dxn)‖p
E(M)

)
1
p .

If ‖x‖
p ̂E(M) < ∞, then x is called a bounded pE(M)-quasi-martingale. The quasi-martingale space p̂E(M) is

defined as the space of all bounded pE(M)-quasi-martingales, equipped with the norm ‖ · ‖
p ̂E(M). We remark

that if 1 ≤ q ≤ ∞ and E = Lq([0, 1]) then p̂E(M) = p̂Lq(M), where p̂Lq(M) consists of x = (xn)n≥1 ⊂
Lq(M) for which

‖x‖
p̂Lq (M) = sup

n
‖yn‖Lq (M) + (

∞
∑

n=1

‖En−1(dxn)‖p
Lq (M)

)
1
p .

Now we define the noncommutative space pGE (M) which is used in the proof of our main results.
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Definition 2.2 Let E be a symmetric Banach space on [0, 1] and 1 ≤ p ≤ ∞. The noncommutative space
pGE (M) is defined as the subspace of l p(E(M)) consisting of all sequences dx = (dxn)n≥1 such that x =
(xn)n≥1 is a predictable pE(M)-quasi-martingale with x1 = 0, and is equipped with the norm

‖x‖pGE (M) = (

∞
∑

n=1

‖dxn‖p
E(M)

)
1
p .

Note that if 1 ≤ q ≤ ∞ and E = Lq([0, 1]) then pGE (M) = pGq(M), where pGq(M) denotes the space of
x = (xn)n≥1 ⊂ Lq(M) for which

‖dx‖pGq (M) = (

∞
∑

n=1

‖dxn‖p
Lq (M)

)
1
p .

The following theorem plays an important role in our paper which we call Doob’s decomposition.

Theorem 2.3 (Doob’s decomposition) Let E be a symmetric Banach space on [0, 1] and 1 ≤ p ≤ ∞. Then
each bounded pE(M)-quasi-martingale x = (xn)n≥1 can be uniquely decomposed as a sum of two sequences
y = (yn)n≥1 and z = (zn)n≥1, where y = (yn)n≥1 is a bounded E(M)-martingale and z = (zn)n≥1 is a
predicable pE(M)-quasi-martingale with z1 = 0.

Proof The proof is similar with Lemma 2.2 in [15].

2.2 Interpolations

For a compatible Banach couple (X0, X1), we define the K -functional by setting for any x ∈ X0 + X1 and
t > 0,

Kt (x; X0, X1) = inf{‖x0‖X0 + t‖x1‖X1 : x = x0 + x1, x0 ∈ X0, x1 ∈ X1}.

The interpolation space (X0, X1)E,K is defined as the space of all elements x ∈ X0 + X1 such that

‖x‖(X0,X1)E,K :=
∥

∥

∥

∥

Kt (x; X0, X1)

t

∥

∥

∥

∥

E
< ∞.

We may state the following interpolation result which is needed in the sequel (see Theorem 2.2 in [19] and
[20]).

Theorem 2.4 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < p < pE ≤ qE <

q < ∞. Then there exists a symmetric Banach space F with nontrivial Boyd indices such that

E(M) = (L p(M), Lq(M))F,K (with equivalent norms). (2.1)

Proof By Theorem 2.2 in [19], there is a symmetric Banach function space F on [0, 1] such that f ∈ E if and
only if t → Kt ( f ; L p[0, 1], Lq [0, 1]) ∈ F and there exist a constant C such that

C−1‖t → Kt ( f ; L p[0, 1], Lq [0, 1])‖F ≤ ‖ f ‖E ≤ C‖t → Kt ( f ; L p[0, 1], Lq [0, 1]). (2.2)

For any x ∈ E(M), using the results Kt (μ(x); L p[0, 1], Lq [0, 1]) ≈ Kt (x; L p(M), L p(M) and ‖μ(x)‖E =
‖x‖E(M), we can extend (2.2) to the noncommutative setting. The proof is completed.

Throughout the paper p′ will denote the conjugate index of p. ��
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3 Main results

Our first result in this section is concerned with the dual space of p̂E(M) which is the symmetric Banach space
of noncommutative quasi-martingales.

Theorem 3.1 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < pE ≤ qE < p.
Then

(

p̂E(M)
)∗ = p′ ̂E×(M)

isometrically, with associated duality bracket given by

∀x ∈ p̂E(M), ∀u ∈ p′ ̂E×(M), (x, u) = τ(νy) +
∞
∑

n=1

τ(dωndzn),

where μn = νn + ωn and xn = yn + zn(n ≥ 1) are the Doob’s decomposition of u and x respectively.

For the proof we need the following Lemma.

Lemma 3.2 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < pE ≤ qE < p.
Then

E = F � E×(
p
p′ ),

where F = (E
×( 1

p′ ))× is separable.

Proof From the proof of Lemma 2.1 in [1], we know that E
×( 1

p′ ) is reflexive and F is separable. By (ii) of the
properties of pointwise product spaces, we have

E = (E×)× = ([E×( 1
p′ )](p′))× = ([E×( 1

p′ )]×)(p
′) � L p[0, 1] = F (p′) � L p[0, 1].

Using the equality L1[0, 1] = E � E× (see Theorem 1.2 in [1]) and (i) of the properties of pointwise product
spaces, we obtain that

E = F (p′) � (F � E
×( 1

p′ ))(p) = F (p′) � (F (p) � E
×( 1

p′ )(p)) = F � E
×(

p
p′ ).

The proof is completed. ��
We also require the following duality result (see Theorem 5.6 in [6]).

Lemma 3.3 Let E be a symmetric Banach space on [0, 1] with the Fatou property, then
(

E(M)
)∗ = E×(M)

isometrically, with associated duality bracket given by

(x, y) = τ(xy), x ∈ E(M), y ∈ E×(M).

Now, we concern the dual space of l p(E(M)) which is the main ingredient in the proof of Theorem 3.1.

Lemma 3.4 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < pE ≤ qE < p.
Then

(

l p(E(M))
)∗ = l p′(E×(M))

with equivalent norms.
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Duality and interpolation for symmetric Banach spaces of noncommutative quasi-martingales 635

Proof Let x = (xn)n≥1 ∈ l p(E(M)) and y = (yn)n≥1 ∈ l p′(E×(M)). Now, we define a linear functional on
l p(E(M)) by

ly(x) =
∞
∑

n=1

τ(xn yn).

Then by Lemma 3.3 and Hölder’s inequality,
∣

∣

∣

∣

∣

∞
∑

n=1

τ(xn yn)

∣

∣

∣

∣

∣

≤
∞
∑

n=1

|τ(xn yn)|

≤
∞
∑

n=1

‖xn‖E(M)‖yn‖E×(M)

≤ (

∞
∑

n=1

‖xn‖p
E(M)

)
1
p (

∞
∑

n=1

‖yn‖p′
E×(M)

)
1
p′

= ‖x‖l p(E(M))‖y‖l p′ (E×(M)).

Thus the series
∞
∑

n=1
τ(xn yn) converges absolutely. Therefore, ly(x) is continuous on l p(E(M)) and ‖ly‖ ≤

‖y‖l p′ (E×(M)).

We pass to the converse inclusion. Let l ∈ (

l p(E(M))
)∗ of norm one. For every n ≥ 1, set

ln(xn) = l(θ), xn ∈ E(M),

where θ = (0, . . . , 0, xn,
︸ ︷︷ ︸

n

0, . . .).Then

|ln(xn)| = |l(θ)| ≤ ‖l‖‖θ‖l p(E(M)) = ‖xn‖E(M).

This implies that ln ∈ (E(M))∗. Since
(

E(M)
)∗ = E×(M), the representation theorem allows us to find an

element yn ∈ E×(M) such that

ln(xn) = τ(xn yn), xn ∈ E(M).

Thus we have that

l(x) =
∞
∑

n=1

ln(xn) =
∞
∑

n=1

τ(xn yn) (3.1)

for any finite sequence x = (xn)n≥1 ∈ l p(E(M)). We must show that y = (yn)n≥1 ∈ l p′(E×(M)) and is of
norm ≤ 1. Now, fix an n. Note that for any k ≤ n

‖yk‖p′
E×(M)

= ‖(|yk |p′
)

1
p′ ‖p′

E×(M)
= ‖|yk |p′ ‖

E
×( 1

p′ )
(M)

= sup{τ(ak |yk |p′
) : ak ∈ F(M), ‖ak‖F(M) ≤ 1},

where
(

F(M)
)∗ = E

×( 1
p′ )(M).Thus for an arbitrarily given ε > 0, there exists aε

k ∈ F(M) and ‖aε
k‖F(M) ≤ 1

such that

‖yk‖p′
E×(M)

≤ τ(aε
k |yk |p

′
) + ε

2k
. (3.2)

Set zk = 1
γn
aε
k |yk |p

′−2y∗, where γn = (
n
∑

k=1
‖yk‖p′

E×(M)
)
1
p . Then noting that |yk |p′−2y∗ ∈ E

×(
p
p′ ) and by

Lemma 3.2, we get zk ∈ E(M) and

‖zk‖E(M) ≤ 1

γn
‖aε

k‖F(M)‖|yk |p′−2y∗‖
E

×(
p
p′ ) ≤ 1

γn
‖yk‖p′−1

E×(M)
. (3.3)

123



636 C. Ma et al.

Thus we have that

(

n
∑

k=1

‖zk‖p
E(M)

) 1
p

≤ 1

γn
(

n
∑

k=1

‖yk‖((p′−1)p)
E×(M)

)
1
p = 1

γn

(

n
∑

k=1

‖yk‖p′
E×(M)

) 1
p

= 1.

Let z(n) = (z1, . . . , zn, 0, . . .). Then z(n) ∈ l p(E(M)) and ‖z(n)‖l p(E(M)) ≤ 1. Using (3.1) and (3.2), we obtain
that

l(z(n)) =
n

∑

k=1

τ(zk yk)

= 1

γn

n
∑

k=1

τ(aε
k |yk |p

′
)

≥ 1

γn

n
∑

k=1

(‖yk‖p′
E×(M)

− ε

2k
)

≥ (

n
∑

k=1

‖yk‖p′
E×(M)

)
1
p′ − 1

γn
ε.

Thus we have that
(

n
∑

k=1

‖yk‖p′
E×(M)

)
1
p′ ≤ 1

γn
ε + l(z(n)

)

≤ 1.

It follows that

( ∞
∑

n=1

‖yn‖p′
E×(M)

) 1
p′

≤ 1

as n → ∞ which implies

y ∈ l p′(E×(M)) and ‖y‖l p′ (E×(M)) ≤ 1.

For any x = (xn)n≥1 ∈ l p(E(M)), let x (n) = (x1, . . . , xn, 0, . . .) (n ≥ 1). Then

‖x − x (n)‖l p(E(M)) → 0 (n → ∞).

Using (3.1), we have

l(x) = lim
n→∞ l(x (n)) = lim

n→∞

n
∑

i=1

τ(xi yi ) =
∞
∑

i=1

τ(xi yi ).

The proof is completed. ��
The proof of Theorem 3.1 Let μ = (μn)n≥1 ∈ p′ ̂E×(M) and x = (xn)n≥1 ∈ p̂E(M). Let μn = νn + ωn
and xn = yn + zn(n ≥ 1) be the Doob’s decomposition of μ and x respectively. Then y = (yn)n≥1 is a
bounded E(M)-martingale and ν = (νn)n≥1 is a bounded E×(M)-martingale. Thus there exist y∞ ∈ E(M)

and ν∞ ∈ E×(M) such that yn
E(M)−→ y∞, νn

E×(M)−→ ν∞.

Now we define a linear functional on p̂E(M) by

lμ(x) = τ(ν∞y∞) +
∞
∑

n=1

τ(dωndzn).
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Then by Lemma 3.3 and Hölder’s inequality,

|lμ(x)| ≤ ‖ν∞‖E×(M)‖y∞‖E(M) +
∞
∑

n=1

‖dωn‖E×(M)‖dzn‖E(M)

≤ ‖ν∞‖E×(M)‖y∞‖E(M) +
( ∞

∑

n=1

‖dωn‖p′
E×(M)

) 1
p′

( ∞
∑

n=1

‖dzn‖p
E (M)

) 1
p

≤
(

‖ν∞‖E×(M) +
( ∞

∑

n=1

‖dωn‖p′
E×(M)

) 1
p′ )

(‖y∞‖E(M) +
( ∞

∑

n=1

‖dzn‖p
E (M)

) 1
p
)

= ‖μ‖
p′ ̂E×(M)‖x‖p ̂E(M).

Thus lμ(x) is continuous on p̂E(M) and ‖lμ‖ ≤ ‖μ‖
p′ ̂E×(M).

We pass to the converse inclusion. Let l ∈ (

p
̂E(M)

)∗ of norm one. Let l1 be the restriction of l on E(M).

Noting that
(

E(M)
)∗ = E×(M), there exists ν ∈ E×(M) and ‖ν‖E×(M) ≤ 1 such that

l1(a) = τ(av), a ∈ E(M). (3.4)

On the other hand, define a functional on pGE (M) by

l2(db) = l(b), db = (dbn)n≥1 ∈ pGE (M).

Then |l2(db)| ≤ ‖l‖‖b‖
p ̂E(M) = ‖db‖pGE (M). Thus we have that l2 is a continuous linear functional on

pGE (M) and ‖l2‖ ≤ 1. Recall that pGE (M) is the closed subspace of l p(E(M)). By the Hahn-Banach
theorem, l2 extends to a norm one functional˜l2 on l p(E(M)). Consequently, by Lemma 3.4,˜l2 is given by a
norm one element ω′ = (ω′

n)n≥1 of l p′(E×(M)). Thus

l2(db) =
∞
∑

n=1

τ(dω′
ndbn) db = (dbn)n≥1 ∈ pGE (M). (3.5)

Set ω1 = 0 and ωn =
n
∑

k=1
Ek−1(ω

′
k)(n ≥ 2). For any db = (dbn)n≥1 ∈ pGE (M), noting that db = (dbn)n≥1 is

predicable, it follows from (3.5) that

l2(db) =
∞
∑

n=1

τ(En−1(ω
′
ndbn)) =

∞
∑

n=1

τ(dbnEn−1(ω
′
n)) =

∞
∑

n=1

τ(dωndbn). (3.6)

It is easy to see that ω = (ωn)n≥1 is predicable with ω1 = 0 and

( ∞
∑

n=1

‖dωn‖p′
E×(M)

) 1
p′

=
( ∞

∑

n=1

‖En−1(ω
′
n)‖p′

E×(M)

) 1
p′

≤
( ∞

∑

n=1

‖ω′
n‖p′

E×(M)

) 1
p′

= 1.

Set μn = νn + ωn(n ≥ 1), where νn = En(ν)(n ≥ 1). Then μ = (μn)n≥1 ∈ p′ ̂E×(M) and

‖μ‖
p′ ̂E×(M) = ‖ν‖E×(M) +

( ∞
∑

n=1

‖dωn‖p′
E×(M)

) 1
p′

≤ 2.

For any x = (xn)n≥1 ∈ p̂E(M), let xn = yn + zn(n ≥ 1) be its Doob’s decomposition. Noting that y = (yn)n≥1
is a bounded E(M)-martingale and dz = (dzn)n≥1 ∈ pGE (M), it follows from (3.4) and (3.6) that

l(x) = l1(y) + l2(dz) = τ(y∞υ∞) +
∞
∑

n=1

τ(dωndzn),

where y∞ is the limit of (yn)n≥1 in E(M). The proof is completed. ��
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As applications of Theorem 3.1, we shall consider the symmetric space p̂E(M) as interpolations of noncom-
mutative quasi-martingale L p-spaces, which is a generalization of Theorem 2.4.

Theorem 3.5 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < p < pE ≤ qE <

q < ∞. Then there exists a symmetric Banach space F with nontrivial Boyd indices such that

s ̂E(M) = (ŝL p(M), ŝLq(M))F,K ,

where 1 < s < pE .

For the proof of Theorem 3.5, we need the following lemmas (see [2]).

Lemma 3.6 Let E be a symmetric Banach space on [0, 1] with the Fatou property, and let (X1, X2) be a
compatible Banach couple. Then

(X1, X2)
∗
F,K = (X∗

2, X
∗
1)F×,K .

Lemma 3.7 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < p < pE ≤ qE <

q < ∞. Then there exists a symmetric Banach space F with nontrivial Boyd indices such that

ls(E(M)) = (

ls(L p(M)), ls(Lq(M))
)

F,K ,

where 1 < s < pE .

Proof Let x = (xn)n≥1 ∈ ls(E(M)). Then by Theorem 2.4, there exists a symmetric Banach space F with
nontrivial Boyd indices such that xn ∈ (L p(M), Lq(M))F,K for any n ≥ 1. For any a, b > 0, αs(as + bs) ≤
(a + b)s ≤ βs(as + bs) for some constants αs, βs depending only on s. Using this fact, it is easy to show that

(

Kt (x; ls(L p(M)), ls(Lq(M)))
)s

≤ βs

∞
∑

n=1

inf
xn=x0n+x1n

(‖x0n‖sL p(M) + t s‖x1n‖sLq (M))

≤ βs

αs

∞
∑

n=1

(

Kt (xn; L p(M), Lq(M))
)s

.

Noting thatF(s) is a quasi-Banach space, we have that

‖x‖s(ls (L p(M)),ls (Lq (M)))F,K

=
∥

∥

∥

Kt (x;ls (L p(M)),ls (Lq (M)))s

t s

∥

∥

∥

F(s)

≤ Cs

∞
∑

n=1

∥

∥

∥

Kt (xn;L p(M),Lq (M))s

t s

∥

∥

∥

F(s)

= Cs

∞
∑

n=1

∥

∥

∥

Kt (xn;L p(M),Lq (M))

t

∥

∥

∥

s

F
,

where Cs is a constant depending on s. This means that

‖x‖(
ls (L p(M)),ls (Lq (M))

)

F,K

≤ Cs‖x‖ls (E(M))

and

ls(E(M)) ⊂ (

ls(L p(M)), ls(Lq(M))
)

F,K . (3.7)

Similarly, we have that ls′(E×(M)) ⊂ (

ls′(Lq ′(M)), ls′(L p′(M))
)

F×,K . It follows that

(ls′(E
×(M)))∗ ⊃ (

(ls′(Lq ′(M)), ls′(L p′(M)))
)∗
F×,K .

Observe that pE× ≤ qE× ≤ s′. Thus by Lemma 3.4 and Lemma 3.6, we have that

ls(E(M)) ⊃ (

ls(L p(M)), ls(Lq(M))
)

F,K . (3.8)
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Putting (3.7) and (3.8) together, we obtain that

ls(E(M)) = (

ls(L p(M)), ls(Lq(M))
)

F,K .

The proof is completed.

The following is an interpolation result on the space pGE (M).

Lemma 3.8 Let E be a symmetric Banach space on [0, 1] with the Fatou property and 1 < p < pE ≤ qE <

q < ∞. Then there exists a symmetric Banach space F with nontrivial Boyd indices such that

sGE (M) = (

sG p(M), sGq(M)
)

F,K ,

where 1 < s < pE .

Proof Note that sG p(M) consists of quasi-martingale difference sequences in ls(L p(M)). So sG p(M) is
1-complemented in ls(L p(M)) via the projection

P :
{

ls(L p(M)) → sG p(M);
(an)n≥1 → (En−1(an))n≥1.

It follows that for any x ∈ (

sG p(M), sGq(M)
)

F,K ,

Kt (x; sG p(M), sGq(M)) = Kt (x; ls(L p(M)), ls(Lq(M))) t > 0.

Thus

‖x‖(
sG p(M),sGq (M)

)

F,K

= ‖x‖(
ls (L p(M)),ls (Lq (M))

)

F,K

.

Therefore, using Lemma 3.6, we have finished the proof of the theorem.

Proof of Theorem 3.5 Let x ∈ (ŝL p(M), ŝLq(M))F,K and x = x0 + x1 be a decomposition of x where
x0 ∈ ŝL p(M) and x1 ∈ ŝLq(M). Let xkn = ykn + zkn (n ≥ 1) be the Doob’s decomposition of xk (k = 0, 1).
Then we have that y0 ∈ L p(M), y1 ∈ Lq(M) and dz0 ∈ sG p(M), dz1 ∈ sGq(M). Set y = y0 + y1 and
z = z0 + z1. Then

Kt (y; L p(M), Lq(M)) + Kt (dz; sG p(M), sGq(M))

≤ ‖y0‖L p(M) + t‖y1‖Lq (M) + ‖dz0‖sG p(M)) + t‖dz1‖sGq (M)

= ‖x0‖
ŝL p(M) + t‖x1‖

ŝLq (M).

Thus we get that

Kt (y; L p(M), Lq(M)) + Kt (dz; sG p(M), sGq(M)) ≤ Kt (x; ŝL p(M), ŝLq(M)),

where the infimum runs over all decomposition of x . Using the equality ‖x‖(X0,X1)F,K = ‖ Kt (x;X0,X1)
t ‖F , we

have that

‖y‖(L p(M),Lq (M))F,K + ‖dz‖(sG p(M),sGq (M))F,K ≤ 2‖x‖(ŝL p(M),ŝLq (M))F,K
.

By Lemma 2.4 and Lemma 3.8, we get that

‖y‖E(M) + ‖dz‖sGE (M) ≤ 2‖x‖(ŝL p(M),ŝLq (M))F,K

which implies that ‖x‖
s ̂E(M) ≤ 2‖x‖(ŝL p(M),ŝLq (M))F,K

and

s ̂E(M) ⊃ (ŝL p(M), ŝLq(M))F,K .

By Theorem 3.1 and Lemma 3.6, we have that

s ̂E(M) = (s′̂E×(M))∗ ⊂ (

(s′̂Lq ′(M), s′̂L p′(M))F×,K
)∗ = (ŝL p(M), ŝLq(M))F,K .

Therefore,

s ̂E(M) = (ŝL p(M), ŝLq(M))F,K .

The proof is completed.
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