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Abstract Given a graph G = (V, E), a dominating set is a subset D ⊆ V such that every vertex in V \ D
is adjacent with at least one vertex in D. The domination number of G, denoted by γ (G), is the minimum
cardinality of a dominating set in G. Assuming that the graph G = (V, E) is connected, a subset D ⊆ V is said
to be a connected dominating set if it is a dominating set and the subgraph G[D] induced by D is connected.
The minimum cardinality of a connected dominating set is termed the connected domination number, denoted
by γc(G). Comparing γ (G) and γc(G) for a random graph with constant edge probability p, we obtain that the
two parameters are asymptotically equal with probability tending to 1 as the number of vertices gets large. We
also consider nonconstant edge probability pn tending to zero (where n is the number of vertices). Among other
results, we extend an asymptotic formula of Gilbert on the probability of connectivity.
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Mathematics Subject Classification 05C80 · 05C69

1 Introduction

Domination in graphs and networks is a central topic in graph theory, with numerous applications in computer
science and engineering. It has thousands of research papers on the theoretical side and important applications
on the practical side. Formally, given a graph G = (V, E) with vertex set V and edge set E , a dominating set
is a subset D ⊆ V such that every vertex in V \ D is adjacent with at least one vertex in D. The domination
number of G, denoted by γ (G), is the minimum cardinality of a dominating set in G. Basics of the theory can
be found in the classical two-volume research monograph [1,2].
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For extensive discussions on probability theory and properties of random graphs we refer to [3,4]. Further
results related to our current topic can be found in [5,6].

In this note we deal with one version of graph domination which is of high practical importance, namely
connected domination. Assuming that the graph G = (V, E) is connected, a subset D ⊆ V is said to be a
connected dominating set if it is a dominating set and the subgraph G[D] induced by D is connected. The
minimum cardinality of a connected dominating set is termed the connected domination number, denoted by
γc(G). These notions offer an approach to the study of backbone networks, and their relevance is demonstrated
e.g. in the publications [7–9] with over a thousand scholar.google citations each. For a survey on practical
construction algorithms we refer to [10].

The inequality γ (G) ≤ γc(G) follows by the definitions for every connected graph G. From the other side
Duchet and Meyniel [11] observed γc(G) ≤ 3γ (G) − 2, an inequality tight for every path Pn whose number
n of vertices is a multiple of 3. These graphs have γ (G) = n/3 and γc(G) = n − 2, the latter value achieving
its maximum over the class of connected graphs of order n. (The maximum of γ is �n/2�, by a classical result
of Ore [12].) Combining the results of Alon [13] and Caro et al. [14], however, it follows that for graphs of
minimum degree d both γ and γc have their worst-case asymptotics (1 + od(1))

1+ln(d+1)
d+1 n as n → ∞.

Here our goal is to study the average behavior of connected dominating sets in graphs of given edge density.
For this, we consider the random graph model Gn,p on the vertex set V = {1, 2, . . . , n}; for any 1 ≤ i < j ≤ n,
the vertices i and j are adjacent with probability p, totally independently of all the other adjacencies.

Sharp concentration theorems are known for γ on random graphs [15,16]. On the other hand, to the best of
our knowledge, no such result is available for γc. Since the probability of disconnectedness is not zero, in order
to interpret connected domination one has to disregard graphs which are not connected. Duckworth and Mans
[17] carried out studies on the expected value of γc in regular random graphs for fixed vertex degree and n large,
i.e. the class of edge probabilities in the range �(1/n), by solving differential equations numerically. Dropping
the restriction of regularity, in Section 2 we consider the case of constant 0 < p < 1, and in Section 3 we study
smaller edge probabilities p = pn , with lim

n→∞ pn = 0.

2 Asymptotic equality for constant probability

In this section we investigate the model with constant edge probability p, which we assume to be given, with
0 < p < 1. Let us introduce the notation

f (n) := (1 + x) ln n

− ln(1 − p)

where x > 0 is not necessarily constant but may depend on n.
We now consider the random graph Gn,p on n vertices. Let the vertices be labeled as v1, . . . , vn .

Lemma 1 For any constant edge probability p and any real x > 0 possibly depending on n, we have:

P({v1, . . . , v f (n)} is not dominating in Gn,p) < n−x .

Proof Consider any fixed v j in the range f (n) < j ≤ n. The exact probability for {v1, . . . , v f (n)} to not dominate
v j is

P(¬ j) := P(v j has no neighbor in {v1, . . . , v f (n)}) = (1 − p) f (n).

Consequently

P({v1, . . . , v f (n)} is not dominating in Gn,p) ≤
n∑

j= f (n)+1

P(¬ j)

=
n∑

j= f (n)+1

(1 − p) f (n)

< n · (1 − p) f (n)

= n · e (1+x) ln n
− ln(1−p) · ln(1−p)

= n · (e− ln n)1+x

= n−x .

�	
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Before stating the first theorem, let us recall a result from the literature, which will also be applied in the
proof.

Lemma 2 (Gilbert [18]) For the random graph Gn,p with n vertices and edge probability p constant, we have
the following asymptotic probability of the event that Gn,p is connected as n → ∞ :

P(Gn,p is connected) ∼ 1 − n · (1 − p)n−1.

Theorem 1 Let y : N → R
+ be a non-decreasing function tending to infinity arbitrarily slowly, such that

ln y(n) = o(ln n). Then, as n → ∞, for every constant 0 < p < 1 we have

γc(Gn,p) ≤ ln n

− ln(1 − p)
+ ln y

− ln(1 − p)
= (1 + o(1)) · γ (Gn,p)

with probability 1 − o(1).

Proof It is known [15] that

γ (Gn,p) = ln n

− ln(1 − p)
− O(ln ln n).

So this is a lower bound on γc(Gn,p), and also verifies the asymptotic equality on the right-hand side of the

assertion. Now Lemma 1 implies with x = ln y
ln n that the first

⌈
ln n

− ln(1−p) + ln y
− ln(1−p)

⌉
vertices dominate Gn,p

with probability at least

1 − n− ln y
ln n = 1 − e− ln y = y − 1

y
= 1 − o(1).

Actually in the choice of vertices one may replace ‘ceiling’ with ‘floor’ as well, since it yields only a o(1) change
in the lower bound of y−1

y on the favorable probability for domination.

Transforming now 1 − n · (1 − p)n−1 of Lemma 2 to the continuous function

h(z) := 1 − z · (1 − p)z−1

we see that h is a monotone increasing function after some threshold, say z > z0(p), for any fixed p > 0. Indeed,
the derivative is

h′(z) = −(1 − p)z−1 + z · (1 − p)z−1 · ln 1

1 − p
= −1 + z · ln 1

1−p
(

1
1−p

)z−1

which is positive and exponentially small as z gets large. In particular, within a constant change of z it changes
with o(1) only. To derive a simple formula, we plug in z = ln n

− ln(1−p) + 1 and obtain

h(z) = 1 − ln n
1−p

− ln(1 − p)
· (1 − p)

ln n
− ln(1−p) = 1 − ln n

1−p

− ln(1 − p)
· e− ln n = 1 − O

(
ln n

n

)
.

Consequently, the probability that {v1, . . . , v f (n)} is not dominating or induces a disconnected subgraph in Gn,p
is at most

O

(
ln n

n

)
+ 1

y
+ o(1) = o(1)

as n tends to infinity. It follows that {v1, . . . , v f (n)} almost surely is a set inducing a connected dominating
subgraph, thus γc(Gn,p) ≤ f (n) with probability 1 − o(1). �	
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3 The nonconstant case

Here we consider the random graph Gn,pn on n vertices, with pn = o(1). We begin with observations on
dominating sets, and finish with connectivity.

Let us have an integer function g with 1 ≤ g(n) ≤ n. Our aim is to estimate the probability δn that a given
set X on g(n) vertices dominates the whole Gn,pn . (We have abbreviated the notation, δn depends also on g(n).)

Let the vertices of the graph be labeled again as v1, . . . , vn . First, we give an exact formula for δn .

Lemma 3 For any g(n) we have

δn = [1 − (1 − pn)
g(n)]n−g(n).

Proof Assume without loss of generality that X = {v1, . . . , vg(n)}. Consider any fixed v j in the range g(n) <

j ≤ n. Let the exact probability for X to not dominate v j be denoted by μ j . Then

μ j = P(v j has no neighbor in {v1, . . . , v f (n)}) = (1 − pn)
g(n).

Consequently

P({v1, . . . , vg(n)}is dominating in Gn,pn )

=
n∏

j=g(n)+1

[1 − P(X does not dominate v j )]

because of the complete independence of the events, constructed from pairwise disjoint sets of edges. The μ j ’s
have a common value μ. Thus

δn = (1 − μ)n−g(n)

as stated. �	
Notation. Let �n denote the probability that there exists a dominating set of cardinality at most g(n) in Gn,pn .

Furthermore, let φ(n) := pn g(n), sn := 1/pn , en := [1 − 1/sn]sn , rn := 1/en and F(n) := [n − g(n)]/rφ(n)
n .

The following theorem gives a sufficient condition for lim
n→∞ δn = lim

n→∞ �n = 1.

Theorem 2 If F(n) tends to zero, then δn and thus also �n tends to 1.

Proof With the notation introduced above, Lemma 3 yields

δn = [1 − ([1 − 1/sn]sn )φ(n)]n−g(n),

which can more briefly be written as

δn = [1 − eφ(n)
n ]n−g(n) = [1 − 1/rφ(n)

n ]n−g(n).

Then, denoting rφ(n)
n by tn ,

δn = ([1 − 1/tn]tn )F(n).

By the assumption F(n) → 0 we necessarily have that rφ(n)
n tends to infinity; hence [1 − 1/tn]tn → 1/e, and

beyond some threshold n0 we have δn > 1/3F(n) for all n > n0. This implies the validity of the theorem. �	
Examples. In both of the following assertions, b > 1 denotes a constant, and the conclusions are derived from
Theorem 2.

(i) Let g(n) = ⌊
logα

b n
⌋
with α > 1, and let pn = 1/logb n. Then δn tends to 1.

(i i) Let lim
n→∞ pn g(n) − logb n = ∞. Then δn tends to 1.

The following statement is a little bit surprising.

Proposition 3 If g(n) = n − 1 and pn = c/(n − 1) where c > 0 is a constant, then δn tends to 1 − e−c.
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Proof Let en := [1 − 1/sn]sn again. Using that this sequence tends to 1/e, we obtain the assertion. �	
The following theorem gives a general sufficient condition for lim

n→∞ �n = 0.

Theorem 4 If g(n) = o(n/ ln n) and φ(n) = pn g(n) = O(1), then �n tends to 0.

Proof Let us consider the rough estimation

�n ≤
(

n

g(n)

)
δn

using that P(A1 + A2 + . . . Ak) ≤ P(A1) + P(A2) + . . . + P(Ak) for any events. Simplifying the Stirling
formula to the inequality x ! < (x/e)x for x large enough, the binomial coefficient can be bounded from above

(
n

g(n)

)
<

(
e · n
g(n)

)g(n)

= exp ( g(n) + g(n) ln n − g(n) ln g(n) )

where the standard notation exp(z) = ez is applied. Moreover, as shown in the proof of Theorem 2, for a small
c > 0 we have

δn = ([1 − 1/tn]tn )F(n) < (1/e + c)F(n) = exp
(
(c′ − 1)(n − g(n)) · eφ(n)

n

)

if n is sufficiently large, where also c′ is small, can be chosen to be arbitrarily close to zero. Since φ(n) = O(1),
it can be assumed to not exceed a constant. Thus, combining the above formulas we obtain

�n < exp (g(n) + g(n) ln n − g(n) ln g(n) − C · n + C · g(n))

for a suitably chosen positive constant C . Here the largest positive term is g(n) ln n, which is of the order o(n)

by assumption, consequently the right-hand side tends to zero. This fact completes the proof. �	
We also give a sufficient condition for lim

n→∞ δn = 0.

Theorem 5 If φ(n) tends to zero, then δn also tends to zero, except if g(n) = n holds for infinitely many n.

Proof We use the notation above. From the proof of Theorem 2 we know that

δn = [1 − eφ(n)
n ]n−g(n)

where en = (1 − pn)1/pn and φ(n) = pn g(n). Hence if pn → 0, then en → 1/e, and en can be bounded from
below by a positive constant. Therefore eφ(n)

n tends to 1 and 1 − eφ(n)
n tends to zero. Suppose first that n − g(n)

tends to infinity. Then δn tends to zero as promised.
For a bounded exponent, we get a fork. In the extreme case, g(n) = n, we have the trivial n − g(n) = 0 and

δn = 1, independently of the actual value of pn . Otherwise we obtain a base tending to zero, and an exponent
having a positive lower bound, namely 1. Consequently, δn tends to zero in this case, too. �	

Nowwe incorporate the condition of connectivity. As we quoted in Lemma 2, Gilbert [18] proved for fixed p
that the probability of Gn,p being connected is 1− n · (1− p)n−1 asymptotically. Here we observe that Gilbert’s
formula is also valid for a sequence pn of probabilities tending to zero, even when the sequence grows quite
slowly. The argument follows the lines of the one in [18], but asymptotics need to be analyzed as pn is small.

Theorem 6 For the random graph Gn,pn with n vertices and edge probability pn, where (n · pn − 2 ln n) tends
to infinity, we have the following asymptotic probability of the event that Gn,pn is connected as n → ∞ :

P(Gn,pn is connected) ∼ 1 − n · (1 − pn)
n−1.
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Proof Let us note first that the term n · (1 − pn)n−1 tends to zero as n gets large, whenever (n · pn − 2 ln n)

tends to infinity. Indeed, disregarding the multiplier 1
1−pn

one may write (1 − pn)n = (
(1 − pn)1/pn

)n·pn ≈
e−n·pn = n−1 · e−(n·pn−ln n) = o(n−1). Analogously, a similar argument shows that n · (1− pn)n/2 tends to zero
if (n · pn − 2 ln n) tends to infinity.

Let now Pn = P(Gn,pn is connected). Instead of Pn we shall estimate 1− Pn . Let us introduce the notation
qn = 1 − pn . We claim

1 − Pn =
n−1∑

k=1

Pk

(
n − 1

k − 1

)
qk(n−k)
n . (1)

Indeed, let us fix a vertex, say, v0. The whole graph is disconnected if and only if v0 is contained in a connected
subgraph G0 in such a way that the vertices of G0 are not joined with any vertex outside. Namely, G0 is the
connected component containing v0. The order k of G0 is running between 1 and n − 1, and the set of its
vertices can be chosen in

(n−1
k−1

)
different ways. Any two choices mutually exclude each other, therefore the total

probability is equal to the sum of the individual probabilities.
Let En

i denote the event vi is an isolated vertex, i.e., that vi is not adjacent to any other vertex in the graph
Gn,pn . A lower bound on 1 − Pn is the probability P(En

1 + En
2 + . . . + En

n ) that at least one of the vertices
v1, v2, . . . , vn is isolated. Then

1 − Pn ≥ P(En
1 + En

2 + · · · + En
n )

≥
n∑

i=1

P(En
i ) −

∑

1≤ j<i≤n

P(En
i E

n
j )

= nqn−1
n − n(n − 1)

2
q2n−3
n (2)

where we applied a simplified version of the inclusion-exclusion principle.
Furthermore, we used that P(En

i ) = qn−1
n and P(En

i E
n
j ) = q2n−3

n hold, as we need 2n − 3 non-edges to

make both vi and v j isolated for En
i E

n
j . Moreover, analogously to nqn−1

n = o(1), also n2q2n−3
n = o(nqn−1

n ) is
valid. Now the two ends of the above chain of inequalities leading to the formula of (2) yield the lower bound

nqn−1
n − o(nqn−1

n ) ≤ 1 − Pn . (3)

A matching upper bound will be obtained using (1). For k = 1, . . . , n − 1 we bound Pk by 1. The terms
qk(n−k)
n can be bounded using the fact that x(n − x) is a concave function of x and takes its minimum at the two
ends of the domain [1, n − 1], hence the exponent can be underestimated with the piecewise linear function

k(n − k) ≥

⎧
⎪⎨

⎪⎩

(n − 2)k

2
+ n

2
, if 1 ≤ k ≤ n

2 ,

(n − 2)(n − k)

2
+ n

2
, if n

2 ≤ k ≤ n − 1 ,

adjusted to hold with equality for k = 1, n/2, n − 1.
In order to treat k under and above n/2 in a unified way, it is convenient to take a combination of the two

functions in a way that will cause relatively small additional error terms, and estimate qk(n−k)
n as

qk(n−k)
n < qn/2

n (q(n−2)·k/2
n + q(n−2)(n−k)/2

n )

for k = 1, 2, . . . , n − 1. To simplify the exponents, let us write Q := q(n−2)/2
n . Hence in particular we have

n · Q = o(1), and the above inequality can be rewritten in the form of

qk(n−k)
n < qn/2

n (Qk + Qn−k).

123
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We substitute the right-hand side into Equality (1), and obtain

1 − Pn < qn/2
n

(
n−1∑

k=1

(
n − 1

k − 1

)
Qk +

n−1∑

k=1

(
n − 1

n − k

)
Qn−k

)

= qn/2
n

⎛

⎝Q ·
n−2∑

j=0

(
n − 1

j

)
Q j +

n−1∑

j=1

(
n − 1

j

)
Q j

⎞

⎠

= qn/2
n

(
Q ·

[
(1 + Q)n−1 − Qn−1

]
+

[
(1 + Q)n−1 − 1

] )

< qn/2
n ( Q + [ Q ·

n−2∑

j=1

(nQ) j ] + [ (n − 1) · Q +
n−1∑

j=2

(nQ) j ] )

= n · Q · qn/2
n + [ Q · qn/2

n ·
n−2∑

j=1

(nQ) j ] + [ qn/2
n ·

n−1∑

j=2

(nQ) j ].

Here the main term is n · Q · qn/2
n = n · (1− pn)n−1 as claimed; the second largest term is n · Q · qn/2

n from the
beginning of the last big sum, but it is already o(n · Q · qn/2

n ) ; and the sum of all the other terms is negligible.
This completes the proof.

�	

4 Conclusion

1. Concerning the generalization of Gilbert’s theorem, it is worth comparing Theorem 6 with the commonly
used estimation e−e(ln n)−p·n

(where p = pn) for the probability of Gn,p to be connected, usually written
in the form e−e−x

by the substitution p = ln n
n + x

n . With the asymptotic e−z ∼ 1 − z around zero, it is
approximately 1 − e(log n)−p·n = 1 − n · e−p·n . On the other hand, we can rewrite Theorem 6 in the form
1 − n · ([1 − p]1/p)p·(n−1) . Observing that inside the prarentheses the expression tends to 1/e as p → 0,
the function can be approximated as 1 − n · e−p·(n−1).

2. Furthermore, we present here the following open question.

Problem 1 Does there exist some pn tending to zero and some constant b such that lim
n→∞ P(γc(Gn,pn ) ≤

logb n) > 0?
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