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Abstract In this note, we generalize the main results of Ligh et al. (Bull Austral Math Soc 16:75–77, 1977),
Wei et al. (An Ştiinţ Univ Al I Cuza Iaşi Mat (N.S.) 61:97–100, 2015) and Wei (Bull Malays Math Sci Soc
38:1589–1599, 2015).
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1 Introduction

Throughout this paper, all rings are associative with identity. Let R be a ring, we use N (R) and Z(R) to denote
the set of all nilpotent elements and the center, respectively.

In 1977, Ligh and Richou proved that if R is a ring with 1 which satisfies the identities: (xy)k = xk yk, k =
n, n + 1, n + 2, where n is a positive integer, then R is commutative (see [1]). In 2015, Wei and Fan proved that
if R is a ring with 1, n ≥ 1 and for any x ∈ R\N (R) and any y ∈ R, (xy)k = xk yk, k = n, n + 1, n + 2, then
R is commutative (see Theorem 2.7 of [2] and Theorem 1.1 of [3]).

In this note, we generalize the above results as follows.

Theorem 1.1 Let R be a ring with 1. Suppose that for any x, y ∈ R\N (R), there exists a nonnegative integer
n = n(x, y) which relies on x and y such that (xy)k = xk yk, k = n, n + 1, n + 2. Then R is commutative.

2 Preliminaries

Lemma 2.1 Let R be a ring with 1. Suppose that for any x, y ∈ R, there exists a nonnegative integer n = n(x, y)
which relies on x and y such that (xy)k = xk yk, k = n, n + 1, n + 2. Then for any x, y ∈ R, we have
xn[x, yn]y = 0 and xn+1[x, yn+1]y = 0.
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Proof For any x, y ∈ R, by the hypotheses, there exists a nonnegative integer n = n(x, y)which relies on x and y
such that (xy)k = xk yk, k = n, n+1, n+2. Then xn+1yn+1 = (xy)n+1 = (xy)nxy = xn ynxy. Hence xn(xyn−
ynx)y = 0, i.e., xn[x, yn]y = 0. Similarly, we have xn+2yn+2 = (xy)n+2 = (xy)n+1xy = xn+1yn+1xy. Hence
xn+1(xyn+1 − yn+1x)y = 0, i.e., xn+1[x, yn+1]y = 0. ��
Lemma 2.2 Let R be a ring with 1 and a, x ∈ R. Suppose that there exist nonnegative integers m, n such that
[a, x]xm = 0 and [a, x](1 + x)n = 0. Then [a, x] = 0.

Proof There is no loss of generality to assume that m ≥ 1 and n ≥ 1. Let M = { f is a nonnegative integer|
[a, x]x f = 0}. Since [a, x]xm = 0, we see that M is nonempty. Then there exists m0 ∈ M such that m0 is
the smallest number of M . Assume that m0 ≥ 1 and we work to obtain a contradiction. Since m0 ≥ 1 and
[a, x]xm0 = 0, it is not very difficult to see that [a, x]{(1+ x)nxm0−1 − xm0−1} = 0, i.e., [a, x](1+ x)nxm0−1 −
[a, x]xm0−1 = 0. Recall that [a, x](1 + x)n = 0. Hence [a, x]xm0−1 = 0, and thus m0 − 1 ∈ M . This is a
contradiction since m0 is the smallest number of M . Hence m0 = 0, and thus [a, x] = 0. ��
Lemma 2.3 Let R be a ring with 1. Suppose that for any x, y ∈ R, there exists a nonnegative integer n = n(x, y)
which relies on x and y such that (xy)k = xk yk, k = n, n + 1, n + 2. Then N (R) ⊆ Z(R).

Proof It suffices to prove that for any a ∈ N (R) and any y ∈ R, [a, y] = 0. For any a ∈ N (R) and any y ∈ R,
by the the hypotheses, we have

{(1 + a)y}k = (1 + a)k yk, k = n, n + 1, n + 2, n = n(1 + a, y); (2.1)

{(1 + a)(1 + y)}k = (1 + a)k(1 + y)k, k = n1, n1 + 1, n1 + 2, n1 = n1(1 + a, 1 + y). (2.2)

By (2.1) and Lemma 2.1, it follows that

(1 + a)n[1 + a, yn]y = 0, (1 + a)n+1[1 + a, yn+1]y = 0. (2.3)

Since a ∈ N (R), we see that 1 + a is invertible. Hence

[a, yn]y = [1 + a, yn]y = 0, (2.4)

[a, yn+1]y = [1 + a, yn+1]y = 0. (2.5)

By (2.4) and (2.5), it follows that

[a, y]yn+1 = [a, yn+1]y − y[a, yn]y = 0. (2.6)

Similarly, by (2.2), we have

[a, (1 + y)n1 ](1 + y) = 0, [a, (1 + y)n1+1](1 + y) = 0. (2.7)

Similarly, by (2.7), we have

[a, y](1 + y)n1+1 = [a, 1 + y](1 + y)n1+1 = 0. (2.8)

By (2.6), (2.8) and Lemma 2.2, we see that [a, y] = 0. This completes the proof. ��
By Lemma 2.3, it is not very difficult to prove the following lemma.

Lemma 2.4 Let R be a ring with 1. Suppose that for any x, y ∈ R, there exists a nonnegative integer n = n(x, y)
which relies on x and y such that (xy)k = xk yk, k = n, n + 1, n + 2. Then N (R) is an ideal of R.

Lemma 2.5 Let R be a ring with 1. Suppose that for any x, y ∈ R, there exist nonnegative integers m =
m(x, y), n = n(x, y) which rely on x and y such that xm[x, y]yn = 0. Then R is commutative.

Proof It suffices to prove that for any x, y ∈ R, [x, y] = 0. For any x, y ∈ R, by the hypotheses, we have

xm[x, y]yn = 0,m = m(x, y), n = n(x, y); (2.9)

(1 + x)m1 [x, y]yn1 = (1 + x)m1 [1 + x, y]yn1 = 0,m1 = m1(1 + x, y), n1 = n1(1 + x, y). (2.10)

Let M = { f is a nonnegative integer| there exists a nonnegative integer h such that x f [x, y]yh = 0}. By (2.9),
we see that M is nonempty. Then there existsm0 ∈ M such thatm0 is the smallest number of M . Sincem0 ∈ M ,
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there exists a nonnegative integer n0 such that xm0 [x, y]yn0 = 0. Assume that m0 ≥ 1 and we work to obtain a
contradiction. Since m0 ≥ 1 and xm0 [x, y]yn0 = 0, it is not very difficult to see that

{xm0−1(1 + x)m1 − xm0−1}[x, y]yn0+n1 = 0. (2.11)

Combine (2.10) with (2.11), we see that

xm0−1[x, y]yn0+n1 = 0. (2.12)

Hence m0 − 1 ∈ M . This is a contradiction since m0 is the smallest number of M . Hence m0 = 0, and thus
[x, y]yn0 = 0. Since y is an arbitrary element of R, we see that there exists a nonnegative integer n2 such that
[x, y](1 + y)n2 = 0. By Lemma 2.2, it follows that [x, y] = 0. This completes the proof. ��
Lemma 2.6 Let R be a ring with 1. Suppose that for any x, y ∈ R, there exists a nonnegative integer n = n(x, y)
which relies on x and y such that (xy)k = xk yk, k = n, n + 1, n + 2. Then R is commutative.

Proof It suffices to prove that for any x, y ∈ R, [x, y] = 0. By Lemmas 2.3 and 2.4, it follows that N (R) ⊆ Z(R)
and N (R) is an ideal of R. For any x, y ∈ R, by the hypotheses, we have

(xy)k = xk yk, k = n, n + 1, n + 2, n = n(x, y); (2.13)

{(1 + x)y}k = (1 + x)k yk, k = n1, n1 + 1, n1 + 2, n1 = n1(1 + x, y). (2.14)

By Lemma 2.1, it follows that

xn[x, yn]y = 0, xn+1[x, yn+1]y = 0, (2.15)

(1 + x)n1 [x, yn1 ]y = (1 + x)n1 [1 + x, yn1 ]y = 0, (2.16)

(1 + x)n1+1[x, yn1+1]y = (1 + x)n1+1[1 + x, yn1+1]y = 0. (2.17)

Since xn+1{[x, yn]y + yn[x, y]}y = xn+1[x, yn+1]y = 0, we see that

xn+1yn[x, y]y = 0. (2.18)

Similarly, since (1 + x)n1+1{[x, yn1 ]y + yn1 [x, y]}y = (1 + x)n1+1[x, yn1+1]y = 0, we see that

(1 + x)n1+1yn1 [x, y]y = 0. (2.19)

By (2.18), we see that

yn[x, y]yxn+1 ∈ N (R). (2.20)

By (2.19), we see that

yn1 [x, y]y(1 + x)n1+1 ∈ N (R). (2.21)

Let M = {t is a nonnegative integer| there exists a nonnegative integer s such that ys[x, y]yxt ∈ N (R)}. By
(2.20), we see that M is nonempty. Then there exists t0 ∈ M such that t0 is the smallest number of M . Since
t0 ∈ M , there exists a nonnegative integer s0 such that

ys0 [x, y]yxt0 ∈ N (R). (2.22)

Assume that t0 ≥ 1 and we work to obtain a contradiction. Since N (R) is an ideal of R, by (2.21) and (2.22),
we have

yn1+s0 [x, y]y{xt0−1(1 + x)n1+1 − xt0−1} ∈ N (R), (2.23)

yn1+s0 [x, y]yxt0−1(1 + x)n1+1 = yn1+s0 [x, y]y(1 + x)n1+1xt0−1 ∈ N (R). (2.24)

Combine (2.23) with (2.24), we see that

yn1+s0 [x, y]yxt0−1 ∈ N (R). (2.25)

Hence t0 − 1 ∈ M . This is a contradiction since t0 is the smallest number of M . Hence t0 = 0. By (2.22), it
follows that ys0 [x, y]y ∈ N (R), and thus [x, y]ys0+1 ∈ N (R). Since N (R) ⊆ Z(R), we see that

[x, y]ys0+1 ∈ Z(R). (2.26)

By (2.18), it follows that xn+1yn[x, y]ys0+1 = 0. By (2.26), it follows that xn+1[x, y]yn+s0+1 = 0. By Lemma
2.5, we see that R is commutative. ��
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3 Proof of Theorem 1.1

Proof of Theorem 1.1 At first, we work to prove that [x, y] = 0 for any x ∈ N (R) and any y ∈ R.
Assume that y ∈ N (R). Since x ∈ N (R), we see that 1+ x is invertible, in particular, 1+ x ∈ R\N (R). Sim-

ilarly, 1 + y is invertible, in particular, 1 + y ∈ R\N (R). Let a = 1 + x and b = 1 + y. By the the hypotheses,
we have

(ab)k = akbk, k = n, n + 1, n + 2, n = n(a, b). (3.27)

By Lemma 2.1, it follows that an[a, bn]b = 0, an+1[a, bn+1]b = 0. Since a, b are invertible, we see that
[a, bn] = 0, [a, bn+1] = 0. Hence [a, b]bn = [a, bn+1] − b[a, bn] = 0. Since b is invertible, we see that
[a, b] = 0, i.e., [1 + x, 1 + y] = 0. Hence [x, y] = 0.

Assume that y ∈ R\N (R) and 1 + y ∈ N (R). Since 1 + y ∈ N (R), by the above proof, we see that
[x, 1 + y] = 0, i.e., [x, y] = 0.

Assume that neither y nor 1+ y is a nilpotent element of R. Since x ∈ N (R), we see that 1+ x is invertible,
in particular, 1 + x ∈ R\N (R). By the the hypotheses, we have

{(1 + x)y}k = (1 + x)k yk, k = n, n + 1, n + 2, n = n(1 + x, y); (3.28)

{(1 + x)(1 + y)}k = (1 + x)k(1 + y)k, k = n1, n1 + 1, n1 + 2, n1 = n1(1 + x, 1 + y). (3.29)

By (3.28) and Lemma 2.1, it follows that (1+ x)n[1+ x, yn]y = 0, (1+ x)n+1[1+ x, yn+1]y = 0. Since 1+ x
is invertible, we see that [1 + x, yn]y = 0, [1 + x, yn+1]y = 0, i.e., [x, yn]y = 0, [x, yn+1]y = 0. Hence

[x, y]yn+1 = [x, yn+1]y − y[x, yn]y = 0. (3.30)

By (3.29) and Lemma 2.1, it follows that

(1 + x)n1 [1 + x, (1 + y)n1 ](1 + y) = 0, (1 + x)n1+1[1 + x, (1 + y)n1+1](1 + y) = 0. (3.31)

Since 1 + x is invertible, we see that [1 + x, (1 + y)n1 ](1 + y) = 0, [1 + x, (1 + y)n1+1](1 + y) = 0. Hence

[1 + x, 1 + y](1 + y)n1+1 = [1 + x, (1 + y)n1+1](1 + y) − (1 + y)[1 + x, (1 + y)n1 ](1 + y) = 0. (3.32)

Hence

[x, y](1 + y)n1+1 = 0. (3.33)

By (3.30), (3.33) and Lemma 2.2, it follows that [x, y] = 0.
Now we have proved that for any x ∈ N (R) and any y ∈ R, [x, y] = 0.
For x, y ∈ R, if either x or y is a nilpotent element of R, by the above proof, it follows that [x, y] = 0, in

particular, (xy)k = xk yk, k = n, n + 1, n + 2, n = 1. If neither x nor y is a nilpotent element of R, by the the
hypotheses, there exists a nonnegative integer n = n(x, y) which relies on x and y such that (xy)k = xk yk, k =
n, n + 1, n + 2. By Lemma 2.6, it follows that R is commutative. This completes that proof. ��
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