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Abstract In this note, we generalize the main results of Ligh et al. (Bull Austral Math Soc 16:75-77, 1977),
Wei et al. (An Stiint Univ Al I Cuza lagi Mat (N.S.) 61:97-100, 2015) and Wei (Bull Malays Math Sci Soc
38:1589-1599, 2015).
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1 Introduction

Throughout this paper, all rings are associative with identity. Let R be a ring, we use N (R) and Z(R) to denote
the set of all nilpotent elements and the center, respectively.

In 1977, Ligh and Richou proved that if R is a ring with 1 which satisfies the identities: (xy)* = x¥y*, k =
n,n+ 1, n+ 2, where n is a positive integer, then R is commutative (see [1]). In 2015, Wei and Fan proved that
if R is aring with 1, n > 1 and for any x € R\N(R) and any y € R, (xy)k = xkyk, k=n,n+1,n+ 2, then
R is commutative (see Theorem 2.7 of [2] and Theorem 1.1 of [3]).

In this note, we generalize the above results as follows.

Theorem 1.1 Let R be a ring with 1. Suppose that for any x, y € R\N (R), there exists a nonnegative integer
n = n(x, y) which relies on x and y such that (xy)* = x*y* k = n,n + 1, n + 2. Then R is commutative.

2 Preliminaries

Lemma 2.1 Let R be a ring with 1. Suppose that for any x, y € R, there exists a nonnegative integern = n(x, y)
which relies on x and y such that (xy)* = x*y* k = n,n + 1,n 4 2. Then for any x,y € R, we have
x"[x, y"ly = 0 and x"*'[x, y" ']y = 0.
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Proof Forany x, y € R, by the hypotheses, there exists a nonnegative integer n = n(x, y) whichrelies on x and y
such that (xy)* = xKy* k = n, n+1, n+2. Then x"T1y"t1 = (xy)"*! = (xy)"xy = x"y"xy. Hence x" (xy" —
y'x)y = 0,i.e., x"[x, y"]y = 0. Similarly, we have x"*2y"*2 = (xy)"*? = (xy)"tlxy = x"*1y"+1xy. Hence

x11+1(xyn+1 _ y"+1x)y =0,ie., Xl [x, y"+1]y =0. -

Lemma 2.2 Let R be a ring with 1 and a, x € R. Suppose that there exist nonnegative integers m, n such that
[a, x]x™ =0 and [a, x](1 + x)" = 0. Then [a, x] = 0.

Proof There is no loss of generality to assume that m > 1 and n > 1. Let M = {f is a nonnegative integer|
[a,x]x) = 0}. Since [a, x]x™ = 0, we see that M is nonempty. Then there exists mo € M such that m is
the smallest number of M. Assume that my > 1 and we work to obtain a contradiction. Since mg > 1 and
[a, x]x™0 = 0, it is not very difficult to see that [a, x]{(1 —I—)c)”)c’""_1 —x’"o_l} =0,1ie., [a, x](1+x)"xmo—1 —
[a, x]x™0~1 = 0. Recall that [a, x](1 + x)" = 0. Hence [a, x]x™~1 = 0, and thus mg — 1 € M. This is a
contradiction since my is the smallest number of M. Hence my = 0, and thus [a, x] = 0. O

Lemma 2.3 Let R be a ring with 1. Suppose that for any x, y € R, there exists a nonnegative integern = n(x, y)
which relies on x and y such that (xy)* = x*y* k =n,n+1,n+ 2. Then N(R) C Z(R).

Proof Tt suffices to prove that for any a € N(R) andany y € R, [a, y] = 0. Foranya € N(R) and any y € R,
by the the hypotheses, we have

{(+ayf =0+  k=nn+1,n+2,n=n(+a,y); 2.1
{4+ +0F =0 +*0+ - k=n,n+1,n1+2,n =n(14+a,1+y). 2.2)

By (2.1) and Lemma 2.1, it follows that
(I+a)"[l+a,y"ly=0,(1+a)" " [1+a,y" ]y =0. (2.3)

Since a € N(R), we see that 1 4+ a is invertible. Hence

[a.y"ly =[1+a,y"]ly =0, 2.4)
[a, Y"1y = [1 +a.y" "1y =0. 2.5)
By (2.4) and (2.5), it follows that

[a, yly"*! = la, y""'1y = yla, y"1y = 0. (2.6)

Similarly, by (2.2), we have
la, (14+ )" 11+ y) =0, [a, (1 + )"0 +y) =0. 2.7

Similarly, by (2.7), we have
[a, yI(1+ " * = [a, 1+ y1(1+ )"+ =0. (2.8)
By (2.6), (2.8) and Lemma 2.2, we see that [a, y] = 0. This completes the proof. O

By Lemma 2.3, it is not very difficult to prove the following lemma.

Lemma 2.4 Let R be a ring with 1. Suppose that for any x, y € R, there exists a nonnegative integern = n(x, y)
which relies on x and y such that (xy)* = x*y* k =n,n+ 1,n + 2. Then N(R) is an ideal of R.

Lemma 2.5 Let R be a ring with 1. Suppose that for any x,y € R, there exist nonnegative integers m =
m(x,y),n = n(x,y) which rely on x and y such that x"[x, y]y" = 0. Then R is commutative.

Proof Tt suffices to prove that for any x, y € R, [x, y] = 0. For any x, y € R, by the hypotheses, we have

X" x, yy" =0,m =m(x,y),n =n(x,y); (2.9)
I+ )" x, yIy" = A +0)"[1+x, 3]y =0,m; =mi(1 +x,y),n =n1(1+x,y). (2.10)

Let M = {f is a nonnegative integer| there exists a nonnegative integer 4 such that x/[x, y]y" = 0}. By (2.9),
we see that M is nonempty. Then there exists my € M such that m is the smallest number of M. Since mg € M,
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there exists a nonnegative integer ng such that x”*°[x, y]y"® = 0. Assume that mo > 1 and we work to obtain a
contradiction. Since mg > 1 and x"[x, y]y"® = 0, it is not very difficult to see that

0T (1 4 )™ — Xm0~ Y[, yly"ottt = 0. 2.11)
Combine (2.10) with (2.11), we see that
KM, ylyot = 0. (2.12)

Hence my — 1 € M. This is a contradiction since mg is the smallest number of M. Hence my = 0, and thus
[x, y]y"® = 0. Since y is an arbitrary element of R, we see that there exists a nonnegative integer n, such that
[x, y]I(1 4+ y)"2 = 0. By Lemma 2.2, it follows that [x, y] = 0. This completes the proof. O

Lemma 2.6 Let R be a ring with 1. Suppose that for any x, y € R, there exists a nonnegative integern = n(x, y)
which relies on x and y such that (xy)k = xkyk, k=n,n+1,n+ 2. Then R is commutative.

Proof Ttsuffices to prove thatforany x, y € R, [x, y] = 0. By Lemmas 2.3 and 2.4, it follows that N(R) € Z(R)
and N (R) is an ideal of R. For any x, y € R, by the hypotheses, we have

) =x  k=nn+1,n+2,n=n(x,y); (2.13)
{4+ = A+  k=ni,n +1,n +2,n =n1(1+x, ). (2.14)
By Lemma 2.1, it follows that

X"x, y"1y = 0, x" M x, y" Ty = 0, (2.15)
A4+ x)"x, Yy ly =0+ x)"[1+x,y"]y =0, (2.16)
(1 4+ )" e,y 1y = A + 0" 4+ 5,y Ty = 0. (2.17)
Since x"TH{[x, y"1y + y"[x, yI}y = 2" [x, y"T11y = 0, we see that
X"y x, yly = 0. (2.18)
Similarly, since (1 + x)"' T {[x, y"1 1y + y" [x, y]}y = (1 + x)" 1 [x, y"1 1]y = 0, we see that
(1 +x)" 1y e, yly = 0. (2.19)
By (2.18), we see that
y'x, ylyx"t e N(R). (2.20)
By (2.19), we see that
Y x, yly(1 +x)"+ e N(R). (2.21)

Let M = {r is a nonnegative integer| there exists a nonnegative integer s such that y*[x, y]yx’ € N(R)}. By
(2.20), we see that M is nonempty. Then there exists fo € M such that 7y is the smallest number of M. Since
to € M, there exists a nonnegative integer so such that

yOLx, ylyx € N(R). (2.22)

Assume that 7o > 1 and we work to obtain a contradiction. Since N (R) is an ideal of R, by (2.21) and (2.22),
we have

YISO Lx, ylyfe T (1 4 0mF = x0T e N(R), (2.23)
YL, yyaTH )M = 0L yly (140" T e N(R). (2.24)

Combine (2.23) with (2.24), we see that
YU, ylyx~l e N(R). (2.25)

Hence 7o — 1 € M. This is a contradiction since #( is the smallest number of M. Hence 7y = 0. By (2.22), it
follows that y*0[x, y]y € N(R), and thus [x, y]y*+! € N(R). Since N(R) C Z(R), we see that

L, Iyt € Z(R). (2.26)
By (2.18), it follows that x"T1y"[x, y]y*0T! = 0. By (2.26), it follows that x"*![x, y]y"T%+! = 0. By Lemma
2.5, we see that R is commutative. O
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3 Proof of Theorem 1.1

Proof of Theorem 1.1 At first, we work to prove that [x, y] = 0 for any x € N(R) and any y € R.

Assume that y € N(R). Since x € N(R), we see that 1 4 x is invertible, in particular, 1 +x € R\N(R). Sim-
ilarly, 1 + y is invertible, in particular, 1 + y € R\N(R). Leta = 1 4+ x and b = 1 + y. By the the hypotheses,
we have

(ab)f = b k =n,n+1,n+2,n =n(a,b). (3.27)

By Lemma 2.1, it follows that a"[a, b"]b = 0, a1 a, b"1b = 0. Since a, b are invertible, we see that
[a,b"] = 0,[a, b"T!] = 0. Hence [a, b]b" = [a, b"T'] — b[a, b"] = 0. Since b is invertible, we see that
[a,b] =0,ie,[1+4+x,1+y]=0.Hence [x, y] =0.

Assume that y € R\N(R) and 1 +y € N(R). Since 1 + y € N(R), by the above proof, we see that
[x,14+y]=0,i.e.,[x,y] =0.

Assume that neither y nor 1 + y is a nilpotent element of R. Since x € N(R), we see that 1 + x is invertible,
in particular, 1 + x € R\ N (R). By the the hypotheses, we have

{1 +x)y}k = +x)kyk, k=n,n+1,n+2,n=n(+ux,y); (3.28)
A+00+nF=0+00 4+ k=n,m+Ln+2nm=nl+x,1+y). (329

By (3.28) and Lemma 2.1, it follows that (1 4 x)"[1 +x, y"]y = 0, (1 +x)"*1[1 4+ x, y**!]y = 0. Since 1 + x
is invertible, we see that [1 + x, y"]y = 0, [1 + x, y*t1]y = 0, i.e., [x, y"1y = 0, [x, y"T!]y = 0. Hence

[x, y]y" ™! =[x, "1y — ylx, y"1y = 0. (3.30)
By (3.29) and Lemma 2.1, it follows that
A4+ 0)" [T 4x, (1 4+ )"0 +y) =0, (1 + )" [T 4x, (1 4+ y)" 0 +y) =0. (3.31)
Since 1 + x is invertible, we see that [1 +x, (1 + y)"'](1 +y) =0, [1 +x, (1 + y)" 111 + y) = 0. Hence
[+ x, T4+ yIA+ )" =142, 4+ )"+ y) — (L + )[4 x, (1)1 +y) = 0.(3.32)
Hence
[x, y](1 + y)ymtl =o0. (3.33)

By (3.30), (3.33) and Lemma 2.2, it follows that [x, y] = 0.

Now we have proved that for any x € N(R) and any y € R, [x, y] = 0.

For x, y € R, if either x or y is a nilpotent element of R, by the above proof, it follows that [x, y] = 0, in
particular, (xy)k = xkyk, k=n,n+1,n+2,n = 1. If neither x nor y is a nilpotent element of R, by the the
hypotheses, there exists a nonnegative integer n = n(x, y) which relies on x and y such that (xy)* = x¥y¥ k =
n,n+ 1,n + 2. By Lemma 2.6, it follows that R is commutative. This completes that proof. O
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