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Abstract In this work, new summation-integral approximation operators based on a versatile generalization of
the classic Szdsz-Mirakjan type operators, and incorporating the Boas-Buck polynomials are considered. We
show how the proposed operators can get reduced to a multitude of operators involving classic approximation
operators studied over past many decades. Wex nomenclate the individual cases hybrid generalizations of Bern-
stein, Baskakov, Lupag and Szdsz-Mirakjan operators, each incorporating the Boas-Buck, Brenke, Sheffer and
Appell polynomials. Indispensable properties of the proposed operators based on first and second order mod-
ulus of continuity are derived. Approximation on weighted space is also considered. In addition, quantitative
Voronovskaja-type theorems have very recently been acknowledged as valuable properties for approximating
functions. These form a noteworthy part of the present work.

Keywords Weighted modulus of continuity - Boas-Buck polynomials - Steklov mean

1 Introduction

Approximation of functions is of vital significance in engineering mathematics, and also as a mathematical field
in its own right. The classic Szdsz-Mirakjan approximation operators [37] are defined, for g : [0, co) — R for
which the series is convergent, as:

o0

1 ko rk
Sn(g:y) = eTyZ (nky!) g<;>. 6]

k=0

In2008, Mihesan [32] obtained the following generalized Szdsz-Mirakjan operators S)ﬁflp ) for p eR, p+ny >
0, by applying Gamma transform to the Szasz-Mirakjan operators, which are given by:

> k
M (g:y) = Y v (g (;) y €10, 00) )
k=0
where
k
ny
tl(fz(y) _ (o (p> 3)

k! y \ P
(1 + 7)
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and (p) denotes the Pochhammer symbol for rising factorial of p, given by
Pk = (P)p+D...(p+k—=1),(p)o = 1. “)

Note that p # 0. The operators sm,(f ) were shown to be guaranteed to converge [24].

Remark 1 These operators are a landmark work because they reproduce important classical operators, studied
over past many decades, in particular cases [27], [20]:

1. If p = —n, smf,” ) get reduced to Bernstein operators [14],

2. If p = n, 9)?5,’0 ) get reduced to Baskakov operators [13],

3. If p —> o0, 9)?,(1’) ) get reduced to Szdsz-Mirakjan operators [37],
4. Ifp=ny,y >0, E)ﬁﬁlp ) get reduced to Lupas operators [31] [9].

Due to their versatility, the operators DJTf,p ) (2) have been examined comprehensively, like [23], [27]. In
[24], several indispensable results for (2) have been established. Modifications of Szdsz-Mirakjan operators have
recently been studied in [25], [1], [23], [27], [6].

In terms of fresh developments, approximation operators which reproduce well-known classic operators have
gained importance in frontier research, for e.g. [10]. In the same spirit, in [20], [19], it has been demonstrated
how the operators based on generalized Szdsz-Mirakjan operators due to Mihesan (2) (considered in the present
work) get reduced to a multitude of well-known operators studied over past many decades.

Summation-integral type operators have also been intensively studied recently, and Voronovskaya type the-
orems were obtained in quantitative forms. Some recent comprehensive literature on these is [2], [4], [26], [7],
(301, [16]

Let us turn our attention to approximation involving the Appell polynomials and their generalizations like
Brenke polynomials and Boas-Buck polynomials. Let U(u), V() and W(w) be analytic functions of the
form

U =) ajnl a0 #0, )
J=0

V() =Y bjul bj #0, (©6)
j=0

W)= hjul hy #0. ™
j=0

Jakimovski and Leviatan’s classic work [22] introduced generalized Szdsz-Mirakjan-Appell operators, given
as:

e~y X k
Py, y) = 70 ;ﬁjwm (;) : (8)

where £ (y) are the Appell polynomials, defined as U (u)e?* = Z?OIO j (y)u’ and U () is as defined before.

Varma in [41] put forth an operator inspired by Szdsz-Mirakjan operators and incorporating the Brenke
polynomials, v (y):

0]

1 k
Ly(g;y) = TV gvk(ny)g <;> , y>0,neN (&)

where the Brenke polynomials Z;"‘;O 0 (y),uf =U()V(yw) etal.
In a very recent development [40], Sucu et al. proposed operators formulated from Szasz-Mirakjan operators
involving the Boas-Buck polynomials:
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Ba(g: v) LS ) <k> 0.neN (10)
&Y= S peiny)g\—J), y=Un
" UMV (nyW (1) & n
where the generating relation, p;(y), is given by
e .
UwVeWa) =Y pjyu’ (11)

j=0
with U, V and W as specified in (5)-(7).
Remark 2 For convergence, the operators (10) were assumed to satisfy:

LU #0,WD =1,p;(»=>0,j=0,12...,
2. V:R — (0, 00),
3. (11), (5)—(7) converge for |u| < R, R > 1.

Similar to the work of [40], Sidharth et al. [38] recently proposed and investigated the properties of a Szasz-
Mirakjan-Durrmeyer operator involving the Boas-Buck polynomials:

00 k—1

! o pk(ny) w
UMV myWw (D)) ,; Bk,n+1) Jo A+ M)n+k+1g(“)dﬂ

M,(g;y) =

aopbg

— 1(0), 12
T omvawan’ (12)

where B(k,n + 1) is the beta function and y > 0, n € N. For additional significant and recent work involving
approximation via these polynomial classes, consult [39], [33], [11], [41], [42], [12], [36], [15], [35], [34].

Remark 3 1t is important to note that in special cases, the Boas-Buck polynomials get reduced to well-studied
polynomials as follows:

1. In (11), let W(u) = u. We get the Brenke polynomials.
2. In (11), let V() = e**. We get the Sheffer polynomials.
3. In(11),let V() = e, W() = n. We get the Appell polynomials.

Thus, approximation operators involving the Boas-Buck polynomials form a rich class, and the results derived
for these can be easily get reduced to the results for operators based on the aforementioned polynomials as well.

Therefore, motivated by [40], [19], [20], [38], we propose a new summation-integral operator formulated by
Durrmeyer-type modification of (2) and the Boas-Buck polynomials. The main contribution of this study is that
the proposed operators can reproduce a large number of approximation operators, based on functions studied
in past decades. Thus, the properties of the proposed operators can serve as a general results for these special
cases, for which these results can be derived with ease. We dedicate a discussion to this later. The remaining
paper contains important results for the proposed operator on uniform convergence, Voronovskaja-type theorem,
results involving the usual modulus of continuity, and approximation on weighted space. Further, quantitative
Voronovskaja-type theorems have very recently been acknowledged as valuable properties for approximating
functions [8]. These form a noteworthy part of this work.

2 Theoretical Framework

2.1 Construction of the Proposed Operator

Let y > 0, C, [0, c0) be the space {g € C[0, 00) : [g(u)| < M (1 + pY) for some M > 0} equipped with the
norm

lg ()]
1el0,00) 1+ pv

lgll, =
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Then, for g € C,, [0, 00), we propose the following novel approximation operator:

o0

RO (g: y) =L =D ! /°° 0) J
n (81Y) ’ U(I)V(nyw(l))];pk(ny) A k-1 (g (yd
1
po(ny)g(0). (13)

T TOVew)

Remark 4 The proposed operators (13) are a generalization of the operators in [22], [41], [38]. Further, using
Remark 1 and Remark 3, we have the following particular cases for 9‘{,(1/) ).

1. In (13), let p = —n. Then (13) reproduce a hybrid generalization of Bernstein operators [14] incorporating
the Boas-Buck polynomials.
2. In (13), let p = n. Then (13) reproduce a hybrid generalization of Baskakov operators [13] incorporating the
Boas-Buck polynomials.
3. In (13), let p — oo. Then (13) reproduce a hybrid generalization of Szdsz-Mirakjan operators [37] incorpo-
rating the Boas-Buck polynomials.
4. In (13), let p = ny. Then (13) reproduce a hybrid generalization of Lupas operators [31] [9] incorporating
the Boas-Buck polynomials.
5. In (13),let p = —n and W(u) = . Then (13) reproduce a hybrid generalization of Bernstein operators [14]
incorporating the Brenke polynomials.
6. In (13), let p = n and W () = w. Then (13) reproduce a hybrid generalization of Baskakov operators [13]
incorporating the Brenke polynomials.
7. In(13),let p — oo and W (u) = w. Then (13) reproduce a hybrid generalization of Szdsz-Mirakjan operators
[37] incorporating the Brenke polynomials.
8. In (13), let p = ny and W () = p. Then (13) reproduce a hybrid generalization of Lupas operators [31] [9]
incorporating the Brenke polynomials.
9. In (13),let p = —n and V () = e*. Then (13) reproduce a hybrid generalization of Bernstein operators [14]
incorporating the Sheffer polynomials.
10. In (13),let p = n and V (u) = e*. Then (13) reproduce a hybrid generalization of Baskakov operators [13]
incorporating the Sheffer polynomials.
11. In(13),let p — ooand V(u) = e*. Then (13) reproduce a hybrid generalization of Szasz-Mirakjan operators
[37] incorporating the Sheffer polynomials.
12. In (13), let p = ny and V() = e*. Then (13) reproduce a hybrid generalization of Lupas operators [31] [9]
incorporating the Sheffer polynomials.
13. In (13),let p = —n and V() = e, W() = w. Then (13) reproduce a hybrid generalization of Bernstein
operators [14] incorporating the Appell polynomials.
14. In (13), let p = n and V(u) = e, W(u) = p. Then (13) reproduce a hybrid generalization of Baskakov
operators [13] incorporating the Appell polynomials.
15. In (13), let p — oo and V() = e, W(u) = w. Then (13) reproduce a hybrid generalization of Szasz-
Mirakjan operators [37] incorporating the Appell polynomials.
16. In (13), let p = ny and V(u) = e, W(u) = u. Then (13) reproduce a hybrid generalization of Lupas
operators [31] [9] incorporating the Appell polynomials.

2.2 Some Auxiliary Results

Lemma 1 [40], [38] For the Boas-Buck polynomials (11), we have the following useful results :

1. o
> piny) = UMV (nyW(1))
j=0

2.
> ipjny) = WP MV yW )]+ ny[U MV (ayW (1))]
=0
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3 &
> itpimy) = [UP 1) + UMV (yW (1))
/=0 +RUD M) +UM) +UOWDMIVE (myW (1) (ny) + UV (nyW (1)) (ny)?

4. &
> iy = 14UP ) + UP DIV yW (1)) + [6U V(1) + U(1)
=0 F3UMWP M) +30P 1) + 30 MWD 1) + UMW DIVY (yw (1)) (ny)
+B3U) + 30D (1) +3U WDV (myW (1) (ny)* + [UMTV D (ay W (1)) (ny)?

> > itpiy) =130 (1) + U (1) + UP IV (yW (1)) + [4UP (1) + 6UP (WP (1)

= +4uP WD)+ UuMWP (1) +36UD (1) + U1 + TU D)W (1)
+18UP (1) + 18U DWW (1) + 6U (WP (1) — 220D M) IV (nyW (1)) (ny)
+6UP 1)+ 12WwP ) +UuD ()

+4U MW ) +3U MWD M P + 70 1) + 18UV (1)

+ 18UMWA DIV (nyW (1)) (ny)?

+4UD 1) 46U MWD (1) + 6U(MIVE (nyW (1)) (ny)?

+ UMD (yW (1) (ny)*.

Lemma 2 For the moments of the form

o0
/ tff,i,l(u)u’du, r=0,1,...,4,
0

where tff,:_l (w) is as in (3), we have the following results:
L[ wdp = 5

2. [l (wpdp = %

3 Iy el = Gt

4 f5 el ot = S

S ey e e

Proof All parts follow a simple and direct computation. Part (3.) will be proved, and other parts follow likewise.

Consider
00 00 M)k_l
) 2, (P)k—1 < 2
fo G 1 (Wpdp —/O G-It %)Hk_lu dup

(o1 p* [ (O
T k- 1)!n_2f0 m%md% (14)

Let[ = %, dp = 2dl. Then

> O—1 p2p [ (O
/0 ) (pldp = ——/0

= ——dl
(k—D'n%n (1 4 nptk=1
(P)-1 p°
= Gz PEFZP =3 (15)
where B(m, n) is the beta function of second kind defined as:
o0 m—1
3 I'(m)I"(n)
/0 g = Bomm = 2O (16)
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Then, substituting for g(k + 2, p — 3) in (15), some simplification leads to

0 24 _p_ (k+ D) 17
/0 Bkl U = (o =) an

2.3 Results on Moments

Using Lemmas 1 and 2, we present the results on moments of (13).

Lemma 3 For the operators 9{,({) ) (g; y), the moments are given by:

LR (1) =1

(1 (O]
RO (1 5) = —2 [v W) U <1>]

n(p—=2) Vyw()) U

)

2 (2) (D) (D
p [v W) )2+(2U (1>+W(2)(1)+2> vOmww

VinyW(1))

TR2(0—2(p-3) | Viyw()) U

2U(1)(1) U(z)(l)
U(l) U()

np=2)(p=3) (-4 | Viyw(1) U

V(z)(nyW(l)) 2 ( ) ?2) ( )
_ 12 +w( 3
V(nyW(1)) e um L+ u

3 3) (D
9%1(19) (,U«3§ y) _ o |:V (nyW(1)) (ny)3 " <3U @) L6 3W(2)(1)>

VO myw (1))

Voywy

W) + W<3>(1)+4>

U(z)(l) 6U(1)(1)
U() UQ)

4

s V@ (myw (1))
) (4. = p g )
W (w'sy) = (P=2)(p =3 (p=H (=5 [ Voway ™

U (1) @ VO myw) 4 U?(1)
+<4 T TOWO W12 e ) + | 67
W (1) v w@)

m 3) @
+ 12— T UD(1) 421 T +3 ) +4WD (1) +18W(1)

AWM + 21)

6 w®q
Vi WD) o) oo MW

uPm o v D U (1)
+ 36— 0 W (1) + 42 0 +4 v w (1)+36—U(1) +

?) (2) (2)
VOmway) )2+<4U I UD)

W(4)(1)

VO nyw(1)) U@ (1) U@ (1)

3) 2)

+ 12W¥ (1) + 36W (1)+24) Yy WD) (ny) + U + 48 0
(€9

+13U m—l—ll]

U(l)

Proof In view of the reults in 2, 1, all parts are the result of a direct calculation, thus omitted.
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2.4 Results on Central Moments

Lemmad4 Let ‘I,(fr) (y) = D‘i,(f)((u —y)"; y) nomenclate the r'"" central moment, r = 0, 1, ... 4. Using the fact

()
n

that the operator *R,;”’ is a positive linear operator, from Lemma 3, the following results on central moments can

be obtained:
L g =1

sf;’;(y):[ p v“>(nyW<1>)_l] oy U

(p—=2) VnyW(l)) n(p—2) U(1)
g Poyway 20 VO@yw))
) () — P Vi (ny _ e
n20) [(p—2>(p—3> VW) -2 vayway Y
2 () (Y] [€9)
p 2O o vOwwa) 20 UDq)
w1 2 —
+[n<p—2)(p—3>( om TVTOF ) VipW()  np—2 U }(”
2 (D 2
p vy U
2
+[n2(p—2)(p—3>< ORI )}
! @ nyw (1))
) v — (y)¢ P V¥ (ny
nd) =) [(p—2><p—3)<p—4)<p—5) VnyW (D)
. P’ VO myW (1)
-2 (=3 (-4 ViyW(D)
2 2 (¢))
46 p VZmway _, e VW)
(P =2 (p—3) VyWd)  (p—2) ViyW(D)
4 (e)) 3)
3 P Ut ) Vi (nyW (D)
4 6w (1 122) ———
) {n(p—2>(p—3)<p—4>(p—5>< o OB Vaswy)
3 (1) 2
p U VO @y (1))
—4 3 6+3WA1) ) o2
n(p—2><p—3>(p—4)( TR ”) VinyW (D)
2 (1 (1 (€9)
p U o VO @y (1)) p_ U
6 2 w1 2 —4
! n(p—2>(p—3)< g PO ) VWD) n(p—z)Ua)}
4 U(Z)(l) U(l)(l) U(l)(l)
+()? P 6 +12 W (1) + 21
) [n2<p—2)<p—3>(p—4)(p—5)< U o VT
W (1) VO myw (1))
3 AW ) +18WP () + WP +21 ) ——
30 TAWOW  1BWEW) 3O WP + ) o)
3 (€] 1
P v @ U’ wo 3
—4 12 w¥ (A 3I—w¥ (1 w1 4
n2<p—2)(p—3>(p—4)( T T A
VO @yw))
V(nyW(D)
4 2 2
P U (1) U (1) 1)
4 6 wa
+(y)[n3<p—2><p—3)<p—4>(p—5>( oo o O
U@(1) @ UuM(1) UM (1) 3 U®(1) @
+36WW (1) +42 ) +4 70 w (1)+36W+W (D

03

nd(p=2)(p=3)(p—4)

+ 12w 1) +36WP (1) + 24) —4
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U3(1) !
. (7 U +6U (1)U(1)>]

o U@ (1) U (1) ud()
48 13 11 .
+[n4 P20 -3p-de-\ovn vn Poom T

The result for 9‘{,([) ) ((,u — % y), which is omitted as it is quite complicated and lengthy, will be needed to
establish the quantitative Voronovskaja-type theorem later.

Remark 5 For the purpose of the results presented in the paper, we make the following assumptions:

n
L p=pn)—>oocasn —>ooand lim —=¢qgeR
n—)oop

2. VO ()
lim
n—o0 V()

3. li o VOnyw(1))
im n — 1| =mi(y)
n—o00 (p — 2) V(nyW(l))

=1LkeNk=>1

4. p? V@ (nyw (1)) 20 VO (nyw())
lim n — + 1| =may)
oo | (p—2)(p—3) ViyW()  (p—2) VyW()
5. 4 UM (1) V& (yw (1))
lim n? P 4 oW (1) +12) )
nno" [n(p—2>(p—3)(p—4)<p—5)< gy OO ) vy WD)
3 (n (2)
P u) @y VP yw ()
— 3 +6+3W¥(1) )| ————
n(p—2)(p—3) (p—4)< U ”) V(nyW (1))
2 (e8] (n (D
P U 2) Vi (nyW (1)) 14 U
6 2 W) +2 —4 —
* n(p—2><p—3>< ORI ) VinyW (1) n(p—Z)U(l)} m30)
O i 2 p* VOmyway p? VO myw (1))
=00 [ (p=2)(0=3)(p—H (=5 VyWd)  (p-2(p—3)(p—4 VnyW()
2 ) (D
p VO (yw (1)) p VOmyw (1)
+6 —~ +1|= :
P=2 (=3 ViyWd)  (p—2) VyW(D) } )
Under these assumptions, we have
) uMDa
Jim nTL () = mi(y)y + U(l())

2 lim nT0) =m0y’ + (WP () +2) y =i,
say.
> Jim P T)

U®(1)
U()

= ma(y* +m3(y)y’ + <6 +14WP(1)
v  weq

@12 -
+3[W(D)]° =27 0 0

+ 5) y2 = n(y),

say.
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3 Direct Results

The following can be immediately established due to the foregoing results.

3.1 Uniform Convergence

Theorem 1 Let g € C[0, 00) and p = p(n) — oo as n — oo. Then,
lim R (g;y) = g(y),
n—oo

uniformly in each compact subset of [0, 00).

(18)

Proof From lemma 3 and using the assumptions in the Remark 2, asn — oo, i)‘i,(f)(l; y) =1, D‘iﬁ,’o) (u;y) =y,

R (1% y) — y2 uniformly in each compact subset of [0, 0o). Thus, from the Bohman-Korovkin theorem,

9‘{,(1") (g;y) = g(y) asn — oo for any g, uniformly in each compact subset of [0, c0).

3.2 Voronovskaja-type Theorem
Theorem 2 Let g € C[0, 00) and p = p(n) — oo asn — o0. Ifg(z) exists at y € [0, 00) and

lim
n=o p(n)

=q R,
then the following holds:

nlijgon[mﬁp)(g; y) — g(y)]

v g2
— (1 2 2
= |:m1(y)y oy |80+ ey + (WO +2) ] E
Proof Consider Taylor’s expansion in the form
21
g =Y =gV M =y +EG -y,
—0 r.

where £ (i, y) is a function such that lim,_, ; £(u, y) = 0. Therefore, operating by iR;p ) on (20),

2
1
R (1 y) =) = 3~ MTLO) + R EG )1 = )% y)-

r=1

From the Cauchy-Schwarz inequality,

PP € 1) = 375 ) =R @G 0 3P

By Theorem 1,
lim R (€%, y): y) = 0.
n—oo
Using Remark 5 and (23) above, in (22), we get:
Jim R E (e, ) (= )% y) =0,
Hence, substituting the values of central moments from lemma 4, we get:
lim n[mfz”)(g; y) — g(y)]
n—oo

v ()]
#} gD+ [may? + (WO +2) y] £S5

= [ml(y)y+ U 3

O

19)

(20)

ey

(22)

(23)

(24)

(25)
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3.3 Local Approximation Properties

Preliminaries Let C [0, 00) depict the space of all real valued, bounded, and uniformly continuous functions g
on [0, o0), with

”g”C’B[O,oo): sup g (26)
y€[0,00)

being the norm on C g[0, 00). The modulus of continuity of g € C gl0, 00) is defined as

w(g;0) = sup sup |g(y+a)—g(y+b),0=>0 (27)
v,a,6>0|a—b|<d

and the second order modulus of continuity is defined as

w2(g;0) = sup  sup |g(y+2a)—2g(y+a+b)+g(y+2b),0=>0. (28)
y,a,6>0a—b|<0d

For g € C’B[O, 00), the Steklov mean is defined as [18]:

)] h
4 2 2
gy(y) = @fo /O [2g(y +a+b) —g(y +2(a+ b))]dadb. (29)

The following properties related to the Steklov mean can be observed, [18]:
L gy — gl p0.00) < 2085 b)

2. ) @ A 1 5
gy’ gy € Chl0,00): ligg g, 0.00) = PRICL

o) 9
1821 p10.00) < R

Theorem 3 Let g € C[0, 00). Then, for every y > 0, the following inequality holds:

13
‘mff’)(g; y) = g(y)‘ < 5w (8§ J%) Ty (8? %) (30)

Proof Using the definition of Steklov mean from (29), the following can be written:
RO (853 = 80| = RO (g — g0 3) + | R (g — 8n0: )| + [y 0) = 20| (31
Also, for every g € C‘B [0, 00), we have
9% (22 )] < el 0,00 (32)
Consider the first term in (31). Using (32) and then property (1.) of Steklov mean, we get

R (g — gp]53) < IR (¢ — &h5 M 41000
<lg— 8h ”63[0700)
< wy(g: h) (33)

Now, consider the second term in (31). Expanding gy (1) as a Taylor series upto second derivative term, we get

_ (="
g =) 8 — 1 —
r=0

+ G, V(=) (34)

Therefore
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(=97 o
R (g9 — g5 (0): )| ~ ‘%ﬁf’)((u — gy () y) + RY (Tg,‘, '0:y
) (1 o ( (n— »?: o
= [ RO =g 00|+ R0 (e 00y (35)
By the definition of supremum norm and linearity of ER,(;O ) (g; ¥), we can write:
1 G
90 1) = 800 9| = 188 ety 10,00 [T + 5188 Nty 10,00 [T200) (36
Using Cauchy-Schwarz inequality on the first term, we get:
1 @
R (0 — 0 0: )| < gf 1Y T3 ) + 5187 1T () (37
Now, consider the third term in (31). Using property (1.) of Steklov mean:
lg6() — 8| < llgh — &ll¢10.00) < W02(g5 H) (38)
Using (33), (37), (38) in (31), and choosing b = \/T") () gives:
1
R (g5 3) — 8] =02 (g; Vo0 (y)) + gy 1Y T2 )
1L @
+ 18y 1T, () + w2 (g; VEL) (y))
Finally, using property (2.) of Steklov mean gives
13
‘mi,p)(g; y) — g(y)‘ < 5w (g; VEL) (y)) + 5w (g; N (y)>
]
Theorem 4 Forany g € C‘}; [0, 00) and y € Ry | J {0}, we have
(‘ﬁf,")(g; y) — g(y)‘ <2,/TY) () 1 (g(”; VEL (y)>
Proof Using
"
f (g(”(a) — g(”(y)) da=g(uw) —g(») — &gV —y)
¥
we get
| P D)
g(w) — g =gV M-y + / (g (@) — &' (y)) da (39)

y

Operate R on both sides
RO () — g y) = gV MTL] () + RY ( /y ' (6P @ ¢V )da; y>
from properties of modulus of continuity,
g0 = sl <wo (U 41) 00
in the form

la —y]
gV (a) —g“)(y)‘ <n(g";0) (Ty + 1>, >0
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after integrating both sides and simplifying, we obtain:

2
<w(g";0) (% + - yl)

/ M(g“(a) — gV (y)du
;

Therefore
‘%ﬁp)(g; y) — g(y)‘
I —yl?
< ’g“)(y)‘ ffff(y)‘ + Ry (m(g“); v) (T +lu—yl)sy
that is,

‘9“5{’)(3; y) —g(y)‘

1
< ’g“)(y)‘ Tfff(y)) + (g 0) (5mﬁp)(lu — P+ RP -yl y))

Using the Cauchy-Schwarz inequality at this stage,
1
T+ o) <5 THO) + 1) TG

Selecting 0 = ,/ ‘I,(f % (y), and in the limit of large enough n and p, we get the stated result. O

)%2") (g:y) — g(y)) < ‘g(”(y)’

Let us depict by H [0, oo) the space of all real valued functions on [0, c0) which satisfy |g(y)| < Ag¢(y),
where Ay is a positive constant dependent on g, and £(y) =1+ y? is a weight function.

Let C¢[0, 0o) depict the space of all continuous functions in H; [0, 00), equipped with the norm
lg(y)I

40
yel0,00) £ () @0

lgll; =

Also, let CZ‘ [0, 00) depict the space of all functions g € C, [0, co) for which the limit lim,_, % exists and
is finite.
The usual modulus of continuity of g on [0, A] is defined as

,(g;0) = sup sup  |g(u) — g(y)l 41)
0<|u—y|<0 y,n€l0,A]

Theorem 5 Let g € C,[0, 00). Then the following result holds:

R (g5 ) — ()| < 44, (1 + YHTL) (v) + 2wj41 (g; VEL) (y))
Proof Referring to [21], [23], for y € [0, A] and r > O, we have
lw —

lg() — g < 4A,(1 + yH(u — y)* + <1 + 1541(g; a)) , 9>0 (42)

Therefore

1
RO (g(0): ) = 80| = 4451+ YT + 10341 (850) (1 +3

o))

Using the Cauchy-Schwarz inequality,

1
R0 1) = 80| = 44,1 +3HTL0) + 14181 0) (1 +3 |\/if£<y)‘)

Choosing ? = ,/Sff%(y), we get

RO (g(: ) — 80| = 445 (1 + DT ) + 2034 (g; VED <y)>
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4 Weighted Approximation Properties

Theorem 6 Let g € C? [0, o0) and p = p(n) be such that as n — oo, p(n) — oo. Then, the following holds:

tim || (g0 —g| =o0.
n—0o0o {

Proof To demonstrate this result, it is sufficient to establish the following three relations [17]:

lim [|R () = 5"
n—oo

=0,r=0,1,2.
¢

Because 9‘{5,'0 )(1; y) = 1 due to Lemma 3, the condition in (44) holds true for » = 0.
Using Lemma 3, we get

tim [ )~ ||
n—00 {

p__(VOwwwy o UOMYY
np—2) \ Viyw) 2T o) Y

= lim
n—0oo

¢
= 0.

Therefore, lim,_, oo H,‘RS{O) (n) — yH =0.
¢

lim Hf)“f{’)(uz) - yzH
n—oo {

(43)

(44)

(45)

(46)

also turns out to be equal to 0 under the assumptions in Remark 2, leading to lim,,—, o ‘ ‘9%5,’) ) (u?) — yz‘ ‘ =0.
¢

Hence the stated result follows.

O

We invoke the definition of the weighted modulus of continuity 2J(g; 0) defined on [0, co) (see [43]) as follows:

W(g;0) = sup gy +m) — sO)| for g € C¢[0, c0)

|m|<?,ye[0,00) I+ m2)(1 + y2)

Lemma5 [43] Let g € C;‘ [0, 00), then the following hold:

1. (g; D) is monotone increasing function in d;

2. limy_, o+ W(g;0) =0;

3. foreach ¢ € N, 2(g; $p0) < ¢p2W(g; 0);

4. foreach® € [0, 00), W(g; 90) < (1 + 3)W(g; 0).

Theorem 7 Let g € C;k [0, o0) and p = p(n) be such that as n — oo, p(n) — oo, and

lim 2 =4 eR,

n—oo p

then there exists mg € N and a constant Q(q) € R that depends on g, such that:

R (g; y) — g(y)‘
sup

N (1 + y2)3/2 < 0@ (g; Vfl/z) , forn > my.
yeR

(47)

(48)

Proof Foru >0,y e RY,0 > 0, by using the definition of 2 (g; 0) and the associated Lemma 5, we can write

o
& o)
2 H

@ Springer



1030 D. Bhatnagar

lg(n) — g < (1 + (u— y)z) (1+yHW (g I — v
2 ) I — yl .
5(1—}—)})(1—}—(# y))(1+—D )ﬁﬁ(g,o)

< <1+y2)917(g;0)(1+(M—y)2+(1+(u—y)2) '“;y') 49)

Because mﬁf )isa positive linear operator,

‘%ff) (8:y) — g(y)‘

(1) mo {esho e (14 0- ) L) | (50)

Using Cauchy-Schwarz inequality, we write

ln — yl 1 1

R <(1 Fu-9?) ) = SH 0+ TR 0TS W) 1)

Using the Remark 5, it can be said that there is an m; € N s.t.

) 1+y?
T2 () = Q@) ——forn > m, (52)

and an mp € N s.t.
V1+y?

VI O) = Qa(g)¥—— forn > m (53)
where Q1(q), Q2(q) € R™ are constants that depends on g. Let mg = max{m;, my}. Combining the above
results from (49)-(53), and with the choice @ = n—1/2, for y > my, we obtain the stated result. O

5 Quantitative Voronovskaja-type theorem

In this section, we establish a quantitative Voronovskaja-type theorem for the operators Eﬁff ) by using the weighted
modulus of continuity, 2J(g; ?) 5. Recent important works in this direction are [34] [5] [11] [29].

Theorem 8 Let g € C;‘ [0, 00) such that gV and g e CZ.‘[O, 00), and y > 0. Then, the following holds:

‘9‘{5{’)(8; y)—g»)

_ [[ p VOmywA) 1} 0+ —2— —U(l)(l)} gV

(p=2) VyW(1) n(p—2) U
~ PP VOmywA) 20 VOwW) | o
(p=2)(p=3) ViyW(D)  (p=2) VyW(D) g

P’ 200 o) VO myw )

WD) +2)

+[n(p—2>(p—3) o O Vaway)

20 UMD > vy U@ )
o T 2
np—2) U }(y)+[n2<p—2>(p—3) v Tom )W

1
<8(1+yHo (;) 2 (g(z); n‘”z)
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Proof Lety, u > 0. Using Taylor’s expansion, we can write

g?

5 =T Ew, ),

gw) =g+ gV M-+
where E(u, y) = M(u — y)? and p lies between 1 and y. Operating by 9‘{2‘)) gives

R (61 3) — 8 — g VWTL] () — e P WTLY )] = R (€GL W1: W) (54)

Substituting the central moments from Lemma 4 gives
‘iﬁf,p)(g; y) —g)—

p VO@ayw) p UM g
-1 _r Z 7
H(p—m vawway |V e o |5

- P2 VOwmwm) 20 VOmyWWL) | oo
(0 =2)(p=3) ViyW(D)  (p—2) V(yW(1)

2 (1) (1
0 WO o VO iy W (1))
w 1 2| ——————
+[n<p—2><p—3)< TOR ()+> Viny WD)
20 UMD 0? v U@ )
_— 2
np—2) U ](y”[nz(p—z)(p—% v o )]
<R (1€, VI;y) (55)

Using the properties of 20(g; 9) from Lemma 5, we can write

g2 — g2
2!

2 (52510~ v1) (146 - ?) (1457
%917 (851 =v1) (14 =) (1+%)

< (1+ '”;”) (14+92) 2 (@:0) (14 G = »?) (1+1?)

IA

IA

Also [28]

gPm - g?W»)

2! (56)

) 2)2 2 ). -
§ (1+a)2(1+y)ﬂﬁfg2,b), lw—yl <2
2(1402)7 (14 %) U520 (25 0) , I -yl = 0

Therefore, for 0 <0 < 1, we get

gPm-¢? W
2!

IA

oot
8 (1 + y2) (1 + W;—“)’)“) 2 (g(z); 0)

IA

Therefore

@ (p) _ o@
1€ (1, y)| = M(M —?<
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8(1+57) ((u »? +u> (@:2) (57

Using the linearity and positivity of 9{,({0 ), and using the results from central moments from Lemma 4,

1
R (€ 1) <8 (14?) {Sfjf; )+ 55 (y)} 20 (4 0)

1 1 1
2 z “—ol= .
=8(1+y ){0<n> + 550 (n3>}an(g )
Choosing 0 = n~1/? gives
1
R (€ M1y <8 (1+7) 0 (;) 2w (g@:n'12) (58)

Combining equations (55) and (58) leads to the required result. |

6 Griiss-Voronovskaja-type theorem

The following result brings out the non-multiplicativity of ‘Jiﬁ,p ) Similar recent studies include [31, [34], [5],
[11], [29].

Theorem 9 Ler g(y), u(y) € C;‘[O, o0) such that gV (y), g@(y), uV(y), u® (), (gu)V(y), (gu)®(y) €
CZ‘[O, 00), and y, i > 0. Also, let p = p(n) be such that as n — o0, p — 00 and

lim
n—oo p(n)

=qgelR

then:
Jim [ (g0)(2); ) = R (G0 »RY w(); ) |
= 1N gV u ).

Proof Consider the expression
1R (@0 0: v) = R (G0 R w(0): ) | (59

Using (gu)™V (v) = gV (mu(y) +g(u (v) and (g) P (y) = ¢® () + 2V (uD () + g(u® (),
it is easy to verify that the following expression is equivalent to the expression (59):

n{<1>1 — u(y) {2} — R (g(); ) {D3} + R (1 — y; »)uV () (@4}

50 (= 9% 2) W) (24 + 05 } (60)

where

=R ((gu)(0); ) — (gu)(y) — (gu) PV (MRP (1 — y; y)

- OO (0 v ) (61)

2)
@2 =R (5(10); ) =8 — gV IR (1 — 1 y) — Z(y)i)‘i“’) (=) (62)
03 =P Wi ) — ()~ u VR -y — SO (=) @)
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@4 =g(y) — R () y) (64)
and
@5 =2¢D(»u (). (65)

Consider the terms @1, @, and @3. In the limit as n — 0o, by Theorem 8 and Lemma 5, for any / € C;‘[O, 00),
we have

lim n[mff>(h<u); y) = h(y) — BV ORP (1 — y; y)
n—oo

R

3 R ((M — )% y) } =0 (66)

(for @, this can be observed by considering (gu)(u) = h(un) ¥ n > 0). Further, for @4, using Theorem 1, we
have,V y > 0, 9‘{5,'0 )(g(,u); y) — g(¥). Therefore, we can conclude that

lim n®, =0, r=1,2,3,4. (67)

n—oo

Combining these results(67), and using Remark 5 in expressions (59) and (60), we get:

Jlim 1% (g0 (03 ) = R (gG2); 1) R @y ) |

. 1
= lim n= R (= 3)%y) (@5)

n— o0
= lim nT,") () gV u )
= i gV ), (68)
which is the required result. O

7 Conclusion

In this paper, we have presented a rich class of positive, linear approximation operators based on Mihesan’s
generalization of the Szdsz-Mirakjan operators, and incorporating the Boas-Buck polynomials. The proposed
opeators form an important link in the field, as they reproduce several types of operators. Further, we have shown
how some essential properties based on modulus of continuity, as well as the recently-acknowledged Quantitative
Voronovskaja-type approximation theorems hold true for our operator.
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