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Abstract The main contribution of this paper is providing families of examples conjecturally generalizing the
almost unique known so far example introduced first byMills and Robbins (J Number Theory 23:388–404, 1986)
of quartic power series over F3(T ) having an approximation exponent equal to 2 in relation with Roth’s theorem
as proved by Lasjaunias (J Number Theory 65:206–224 1997), and having a continued fraction expansion with
an unbounded sequence of partial quotients.
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1 Introduction

Let p be a prime number and let F be a finite field of characteristic p. We let F[T ], F(T ) and F((T−1))

respectively denote, the ring of polynomials, the field of rational functions and the field of power series in 1/T
over F, where T is a formal indeterminate. These fields are valuated by the ultrametric absolute value introduced
on F(T ) by |P/Q| = |T |deg(P)−deg(Q), where |T | > 1 is a fixed real number. We recall that each irrational
(rational) element α of F((T−1)) can be expanded as an infinite (finite) continued fraction. This will be denoted
α = [a0, a1, . . . , an, . . .] where the ai ∈ F[T ], with deg(ai ) > 0 for i ≥ 1, are the partial quotients and the tail
αi = [ai , ai+1, . . .] ∈ F((T−1)) is the complete quotient. As in the classical theory, we define recursively the
two sequences of polynomials (Pn)n≥0 and (Qn)n≥0 by Pn = an Pn−1 + Pn−2 and Qn = anQn−1 + Qn−2, with
the initial conditions P0 = a0, P1 = a1a2 + 1, Q0 = 1 and Q1 = a2. We have Pn+1Qn − Qn+1Pn = (−1)n ,
whence Pn and Qn are coprime polynomials. The rational function Pn/Qn is called a convergent to α and we
have Pn/Qn = [a0, a1, . . . , an] and Pn/Pn−1 = [an, an−1, . . . , a0]. The following property of the continued
fraction is easily checked: when B,C are nonzero polynomials in F[T ], then

C [Ba0,Ca1, Ba2, . . .] = B [Ca0, Ba1,Ca2, · · · ] . (1.1)
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Diophantine approximation and continued fraction expansion for quartic power series over F3 969

As for real numbers, the continued fraction expansion of formal power series is fundamental tomeasure the quality
of their rational approximation. The irrationality measure (or the approximation exponent) of an irrational power
series α ∈ F((T−1)) is defined by:

ν(α) = − lim sup
|Q|−→∞

log(|α − P/Q|)/ log(|Q|)

where P, Q ∈ F[T ]. It is directly related to the growth of the sequence of the degrees of the partial quotients in
the continued fraction expansion of α. Indeed we have

ν(α) = 2 + lim sup
n>1

(deg(an+1)/
∑

1≤i≤n

deg(ai )). (1.2)

Note that the irrationality measure is stable under a Möbius transformation.
For a general presentation of continued fractions and diophantine approximation in the function field case,

the reader may consult [15] or ([16] Chap. 9).
We consider infinite continued fractions in F((T−1)) which are algebraic over F(T ). The study of their

rational approximation was initiated by Mahler [9]. The starting point in the study of rational approximation
to algebraic real numbers is a famous theorem of Liouville established in 1850. This theorem was adapted by
Mahler in the fields of power series with an arbitrary base field: if α is an element of F((T−1)), algebraic of
degree n > 1 over F(T ), then for all element P/Q of F(T ), there exists a positive real number c such that

|α − P/Q| ≥ c/|Q|n .
This result implies that ν(α) ≤ n. In the case of real numbers, a well known improvement to Liouville’s theorem
was established in the form of Roth’s theorem [14]. This improvement on the exponent is that for any irrational
algebraic real number α, ν(α) = 2. It carries over to fields of power series if the base field has characteristic
zero, as proved by Uchiyama in 1960 [17], the exponent of an irrational algebraic power series is still 2. In this
case the exponent n in the right hand side of the above inequality can be replaced by 2 + ε for all ε > 0 .
But a naive analog of Roth’s theorem now fails in positive characteristic and consequently the study of rational
approximation to algebraic elements becomes more complex. Mahler [9] gave an example showing that the
approximation exponent ν(α) could as large as n, the degree of α. He considered the irrational solution in
Fp((T−1)) of the equation x = 1/T + x p. For this element α, algebraic of degree p, we have rationals P/Q,
with |Q| arbitrarily large, and |α − P/Q| = |Q|−p.

Regarding diophantine approximation and continued fractions, a particular subset of elements in F((T−1)),
algebraic over F(T ) is worth considering. For r = pt with t ≥ 0, we denote by H(r) the subset of irrational α

belonging to F((T−1)) and satisfying an algebraic equation of the particular form Aαr+1 + Bαr +Cα + D = 0,
where A, B,C and D belong to F[T ]. Note that H(1) is simply the set of quadratic irrational elements in
F((T−1)). The union of the subsets H(pt ), for t ≥ 0, denoted by H, is the set of hyperquadratic power series.

The rational approximation properties of the elements ofH, were studied independently by Voloch [18], and
de Mathan [10]. They proved that:

If α ∈ H, and P/Q ∈ F(T ), either we have

lim inf|Q|−→∞ |Q|2|α − P/Q| > 0 (1.3)

or there exists a real number μ > 2 such that

lim inf|Q|−→∞ |Q|μ|α − P/Q| < ∞. (1.4)

With respect to this, de Mathan and Lasjaunias [6], have shown that if an algebraic element does not belong to
H, then it cannot be too well approximated by rationals : if α /∈ H and it is algebraic of degree n > 1 over F(T ),
then, for all ε > 0, we have |α − P/Q| > |Q|−([n/2]+1+ε) , for all P/Q ∈ F(T ) with |Q| large enough. This last
property highlights the peculiarity of the setH. If rational approximation to certain hyperquadratic power series
is well known, this is also due to the possibility of explicitly describing their continued fraction expansion. The
first works in this area were undertaken by Baum and Sweet [3]. Later this has been done for many examples
and for different subclasses of hyperquadratic elements (see in particular [15]). Nevertheless, the possibility of
describing the continued fraction expansion for all hyperquadratic power series is yet an open problem. In [13]
Mills and Robbins studied this problem by describing an algorithm to obtain, in certain cases, the continued
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fraction expansion for a hyperquadratic power series. They ultimately considered (p.403) the following algebraic
equation:

x4 + x2 − T x + 1 = 0. (1.5)

They observed that this equation has a unique solution α in Fp((T−1)) for all primes p noting that for this
solution, the continued fraction expansion has a remarkable pattern in both cases p = 3 and p = 13. The
expansion in the case p = 3 was explicitly described by Buck and Robbins [4], and later by Lasjaunias [5] who
used another somewhat easier method. Indeed, they recursively defined the following polynomial sequences:

�0 = ∅, �1 = T, �n = �n−1,−T,�
(3)
n−2,−T,�n−1 f or n ≥ 2.

(here �
(3)
k denotes the sequence obtained by cubing each element of �k and commas indicating juxtaposition

of sequences); then they proved that [0,�n] is the beginning for all n > 0 of the continued fraction expansion
of this solution. This element satisfies, lim inf|Q|−→∞ |Q|2|α − P/Q| = 0 and lim inf|Q|−→∞ |Q|μ|α − P/Q| = ∞ for all

μ > 2. So it satisfies neither (1.3) nor (1.4). Thus it does not belong to the set H. This result was given by
Lasjaunias in [5], by proving that there are two real positive constants λ1 and λ2 such that, for some rationals
P/Q with |Q| arbitrary large, we have |α − P/Q| ≤ |Q|−(2+λ1

√
log |Q|), and for all rationals P/Q with |Q| > 1,

we have |α − P/Q| ≥ |Q|−(2+λ2
√
log |Q|). For instance, this element seems to be the first algebraic element for

which the exponent approximation is equal to 2, although its partial quotients are unbounded.
Note that for each prime p > 3, the continued fraction expansion of the solution of (1.5) is remarkable and

it has two different regular patterns and two different values of irrationality measure according to the remainder,
1 or 2, in the division of p by 3, see [2,8] for more details.

Our work is organized as follow. In the second Section we will extend the set of counter-examples initiated
by Mahler [9]. We will compute the continued fraction and the approximation exponent of some quartic power
series which are hyperquadratic over F3. For this, we will use an earlier theorem which allows us to determine
the approximation exponent of an algebraic element when it is large enough, i.e, not close to 2. The basic idea
of this theorem is due to Voloch [18]. It has been improved by de Mathan [11].

Theorem 1.1 ([7] p. 219) Let α ∈ F((T−1)). Assume that there is a sequence
(Pn, Qn)n≥0, with Pn, Qn ∈ F[T ], satisfying the following conditions:
(1) There are two real constants λ > 0 et μ > 1, such that

|Qn| = λ|Qn−1|μ and |Qn| > |Qn−1| f or all n ≥ 1.

(2) There are two real constants ρ > 0 and γ > 1 + √
μ, such that

∣∣∣∣α − Pn
Qn

∣∣∣∣ = ρ|Qn|−γ f or all n ≥ 0.

Then we have ν(α) = γ .

This Theorem allows us to find the approximation exponent of several examples of hyperquadratic ele-
ments(see [1,7]).

In Section 3 of this work, we will study the continued fraction expansion of the solution α of the quartic
equation

C2α4 + 2Cα2 − A2α + 1 = 0 (1.6)

where A andC are nonzero polynomials inF3[T ] such that A is not constant,C divides A and deg A ≥ degC . By
computing the approximation exponent of the solution of this equation, we will prove that is not hyperquadratic.
Our observation, based on computer calculation giving a finite number of partial quotients for many couples
(A,C) of polynomials, implies that the solution of the equation (1.6) has very regular pattern in its continued
fraction expansion. Note that this equation can be viewed as a generalization of the equation (1.5) introduced by
Mills and Robbins. The properties of rational approximation of α were studied by Lasjaunias in [5] for the case
A = T and C = −1. For this case, the tools used to obtain a proof might well be applied in the general case, but
we are aware that a different approach would be desirable. We will recall the steps of the proof and we will just
give our result conjecturally. Thus we present a large family of algebraic power series having an approximation
exponent value equal to 2, even though the degrees of their partial quotients are unbounded.
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2 Diophantine approximation for some hyperquadratic power series of degree four over F3(T )

In this sectionwewill study respectively the properties of rational approximations of the solutions of the equations
Cβ4 − Aβ + 1 = 0 and −β4 − Aβ + C = 0, where A and C belong to F3[T ].
Theorem 2.1 Let β be the irrational solution of the equation

Cβ4 − Aβ + 1 = 0 (2.1)

such that deg A ≥ degC. Assume that C divides A. Then the continued fraction expansion of β is

[b0, b1, . . . , bn, . . .]

such that b0 = 0, b1 = A and for all n ≥ 2:

bn =
{−Cb3n−1 if n is odd;
b3n−1/ − C if n is even.

(2.2)

Furthermore, ν(β) = 4.

Proof . Clear we have |β| < 1 then b0 = 0. Let β1 = β−1 then β1 satisfies the equation β4
1 − Aβ3

1 + C = 0.
Clearly [β1] = b1 = A. In fact, as |β1| > 1 then |β4

1 | = |Aβ3
1 + C | = |Aβ3

1 | so |β1| = |A|, and since

|β1− A| = |C/β3
1 | < 1 then we obtain that [β1] = A. We can write the equation satisfied by β1 as β3

1 = −C

β1 − A
.

So

β3
1 = −Cβ2. (2.3)

Applying the Frobenius automorphism to both terms of the identity β1 = b1 + 1/β2 and using β2 = b2 + 1/β3

we obtain b2 + 1

β3
= b31

−C
+ 1

−Cβ3
2

. As C divides A = b1 then C divides b31, so we get that b2 = b31/ −C and

β3 = −Cβ3
2 .

Again, this gives that b3 + 1

β4
= −Cb32 + −C

β3
3

. So we obtain b3 = −Cb32 and

β4 = β3
3

−C
. (2.4)

This gives that C divides b3 and (2.3) has the same shape as (2.4). We now claim that for all k ≥ 1,
{
b2k = b32k−1/ − C, b2k+1 = −Cb32k
β2k+2 = β3

2k+1/ − C, β2k+1 = −Cβ3
2k

(2.5)

Clearly (2.5) is true for k = 1. So we assume (2.5) for k = l ≥ 1. Then

β2l+2 =
((

b32l+1/ − C
)

+ 1

−Cβ3
2l+2

)
.

From (2.5) we have C divides b32l+1. This implies that b2l+2 = b32l+1/ − C and β2l+3 = −Cβ3
2l+2. Then

β2l+3 = −C

(
b32l+2 + 1

β3
2l+3

)
= −Cb32l+2 + −C

β3
2l+3

,

which implies b2l+3 = −Cb32l+2 and β2l+4 = β3
2l+3/ − C . Thus (2.5) is also true for k = l + 1. By induction,

we see that (2.5) holds for all k ≥ 1.
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972 K. Ayadi et al.

Furthermore, we can verify that the equality (2.2) gives that for all n ≥ 1:

bn = (−1)n−1A3n−1
C− 3n−1+(−1)n

4 .

Thus the continued fraction expansion of β can be written as
[
0, A,−A3C−1, A32C−2,−A33C−7, . . . , (−1)n−1A3n−1

C− 3n−1+(−1)n
4 , . . .

]
.

Now let a = deg A and c = degC . Knowing all the partial quotients of β, we can compute its approximation
exponent by the formula (1.2):

ν(β) = 2 + lim sup
3na − 3n+(−1)n+1

4 c
∑n

k=1(3
k−1a − 3k−1+(−1)k

4 c)

= 2 + 2 = 4.

	

In the next Theorem, we will give the value of ν(β) for β satisfying the equation (2.1) with the condition on the
coefficients of this equation that is: C does not divides A.

Theorem 2.2 Let β be the irrational solution of equation (2.1) such that deg A ≥ degC. Assume that C does
not divide A. Then

ν(β) = 4 − degC

deg A
.

Proof Letβ1 andβ2 be the first and the second complete quotient ofβ. Soβ1 satisfies the equationβ4
1−Aβ3

1+C =
0. We have that [β1] = A and since β1 = A + 1/β2 then we can easily see that β2 satisfies the equation
Cβ4

2 + A3β3
2 + 1 = 0. Hence |β1| = |A| and |β2| = |A3/C |. Let s be a positive rational number such that

|A| = |C |s . We consider the following sequence: P0 = 1, Q0 = A and for n ≥ 1

Pn = Q3
n−1

Qn = AQ3
n−1 − CP3

n−1.

Then for all n ≥ 0:

∣∣∣∣β − Pn
Qn

∣∣∣∣ =
∣∣∣∣

1

Cβ3 − A
− Q3

n−1

AQ3
n−1 − CP3

n−1

∣∣∣∣ =
∣∣∣∣

CP3
n−1 − CQ3

n−1β
3

(Cβ3 − A)(AQ3
n−1 − CP3

n−1)

∣∣∣∣.

As |Cβ3 − A| = |A| and |AQ3
n−1 − CP3

n−1| = |AQ3
n−1| for all n ≥ 1, then we get

∣∣∣∣β − Pn
Qn

∣∣∣∣ = |C ||Pn−1 − Qn−1β|3
|A|2|Qn−1|3 = |C |

|A|2
∣∣∣∣β − Pn−1

Qn−1

∣∣∣∣
3

.

We show by recursion that for all n ≥ 0:

∣∣∣∣β − Pn
Qn

∣∣∣∣ = |C | (3n−1)
2

|A|3n−1

∣∣∣∣β − P0
Q0

∣∣∣∣
3n

.

Since

∣∣∣∣β − P0
Q0

∣∣∣∣ =
∣∣∣∣β − 1

A

∣∣∣∣ = |A − β1|
|β1||A| = 1

|A|2|β2| = |C |
|A|5 then

∣∣∣∣β − P0
Q0

∣∣∣∣
3n

= |C |3n |A|−5.3n . So

∣∣∣∣β − Pn
Qn

∣∣∣∣ = |C | 3
n−1
2 |C |3n |A|−(3n−1)|A|−5.3n = |C | 3.3

n−1
2 |A|−(6.3n−1).
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Let |A| = |C |s . Then
∣∣∣∣β − Pn

Qn

∣∣∣∣ = |C |− (4s−1)3n+1−2s+1
2 . Secondly, we have for all n ≥ 1 Qn = AQ3

n−1 − CP3
n−1

then

|Qn| = |A||Qn−1|3.
Again by recursion we show that

|Qn| = |A| 3
n−1
2 |Q0|3n = |A| 3

n+1−1
2 = |C | s3

n+1−s
2 .

So we obtain for all n ≥ 0 :
∣∣∣∣β − Pn

Qn

∣∣∣∣ = 1

|C |2s |Qn| 4s−1
s

. (2.6)

Since deg A ≥ degC then s ≥ 1. So
4s − 1

s
= 4 − 1

s
> 1 + √

3. Hence, if we put μ = 3, λ = |A|, ρ =
1/|C |2s, γ = (4s − 1)/s then γ > 1 + √

μ and following Theorem 1.1 we conclude that ν(β) = 4 − 1

s
. 	


Theorem 2.3 Let β be the irrational solution of the equation

− β4 − Aβ + C = 0 (2.7)

such that deg A > degC. Assume that C divides A. Then the continued fraction expansion of β is

[b0, b1, . . . , bn, . . .]

such that b0 = 0, b1 = A/C and for all n ≥ 2:

bn = (
A

C
)3

n−1
(C)

3n−1+(−1)n
4 . (2.8)

Furthermore, ν(β) = 4.

Proof Clearly we have |β| < 1 then b0 = 0. Let β1 = β−1 then β1 satisfies the equation Cβ4
1 − Aβ3

1 − 1 = 0.

Clearly [β1] = b1 = A/C . So the first partial quotient of β1 is b1 = A/C and β1 = A

C
+ 1

β2
. We can easily see

that β1 satisfies

β3
1 = 1

−A + Cβ1
= β2

C
,

then Cβ3
1 = β2. So Cb31 + C

β3
2

= β2. Hence b2 = Cb31 and β3 = β3
2/C . We apply again the same reasoning

and we obtain that β3 = b32
C

+ 1

Cβ3
3

, so b3 = b32/C and β4 = Cβ3
3 . By recurrence on k we prove easily that

β2k = Cβ3
2k−1, β2k+1 = β3

2k/C and

bk =
{
Cb3k−1 if k is even;
b3k−1/C if k is odd.

(2.9)

On the other hand, we have b3 = b32/C = C2b3
2

1 and b4 = Cb33 = C32−2b3
3

1 . We remark that b3 = C
32−1
4 b3

2

1

and b4 = C
33+1
4 b3

3

1 . So by a simple recurrence on k we can prove that bk = C
3k−1+(−1)k

4 b3
k−1

1 . Then we deduce
that the sequences of partial quotients of β is given by: b0 = 0, b1 = A/C and for all n ≥ 2:

bn = (A/C)3
n−1

C
3n−1+(−1)n

4 .
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Let a = deg A and c = degC . We can compute the approximation exponent of β by the formula (1.2):

ν(β) = 2 + lim sup
3n(a − c) − 3n+(−1)n+1

4 c
∑n

k=1(3
k−1(a − c) − 3k−1+(−1)k

4 c)

= 2 + 2 = 4.

	

In the following Theorem, we will give the value of ν(β) for β satisfying the equation (2.7) with the condition
on the coefficients of this equation that is: C does not divides A.

Theorem 2.4 Let β be the irrational solution of equation (2.7) such that deg A > degC. Assume that C does

not divide A. Suppose that |A| = |C |s with s >
3

3 − √
3
. Then

ν(α) = 4 − 3

s

Proof . Letβ1 be the first complete quotient ofβ.We can easily see that β1 satisfies the equationCβ4
1 −Aβ3

1 −1 =
0 and |β1| = |A/C |. So we have |β1| = |C |s−1.

We consider the following sequence: P0 = A , Q0 = C and for n ≥ 1

Pn = AP3
n−1 + Q3

n−1

Qn = CP3
n−1.

It is easily to see that β1 = 1

Cβ3
1

+ A

C
and

Pn
Qn

= Q3
n−1

CP3
n−1

+ A

C
. Then for all n ≥ 0:

∣∣∣∣β1 − Pn
Qn

∣∣∣∣ =
∣∣∣∣

1

Cβ3
1

− Q3
n−1

CP3
n−1

∣∣∣∣ = 1

|C ||β1|3
∣∣∣∣

β1

|β1| − Pn−1

|β1|Qn−1

∣∣∣∣
3

= 1

|C ||β1|6
∣∣∣∣β1 − Pn−1

Qn−1

∣∣∣∣
3

. We show by

recursion that for all n ≥ 0:
∣∣∣∣β1 − Pn

Qn

∣∣∣∣ = |C |− (3n−1)
2 |β1|− 6(3n−1)

2

∣∣∣∣β1 − P0
Q0

∣∣∣∣
3n

since

∣∣∣∣β1 − P0
Q0

∣∣∣∣ =
∣∣∣∣β1 − A

C

∣∣∣∣ = 1

|C ||β1|3 then

∣∣∣∣β1 − P0
Q0

∣∣∣∣
3n

= |C |−3n |β1|−3n+1
. So

∣∣∣∣β1 − Pn
Qn

∣∣∣∣ = |C |− 3n+1−1
2 |β1|− 3n+2+3n+1−6

2 = |C |− (s−1)3n+2+s3n+1−6(s−1)−1
2 .

On the other hand, we have for all n ≥ 1 Qn = CP3
n−1 and since |Pn−1| = |C |s−1|Qn−1| then

|Qn| = |C |3s−2|Qn−1|3.
Again by recursion we show that

|Qn| = |C | (3s−2)(3n−1)
2 |Q0|3n = |C | s3

n+1−3s+2
2 .

So we obtain for all n ≥ 0:
∣∣∣∣β1 − Pn

Qn

∣∣∣∣ = |C |− 3(s−1)2
s |Qn|− 4s−3

s .

We can verifies that if s >
3

3 − √
3

then
4s − 3

s
> 1 + √

3. Hence by Theorem (1.1) we conclude that

ν(β1) = 4 − 3

s
= 4 − 3 degC

deg A
. 	
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3 Diophantine approximation of some not hyperquadratic power series of degree four over F3(T )

Now we will give a family of formal power series, defined by their continued fraction expansion, having a
minimum value of approximation exponent. Before this, we recall some usual properties of continued fractions.
If�k = a1, a2, . . . , ak is a sequence of polynomials, we denote �̃k the sequence obtained by reversing the terms
of �k , i.e, �̃k = ak, ak−1, . . . , a1. If B is nonzero element of F3[T ] such that B divides ai for all odd i then
B−1�k = B−1a1, Ba2, . . . ,

B(−1)k ak . Also, if B is nonzero element of F3[T ] such that B divides ai for all even i then
B�k = Ba1, B−1a2, . . . , B(−1)k−1

ak . In particular, if ε is nonzero element of F3 then we write ε�k for
εa1, ε−1a2, . . . , ε(−1)k−1

ak . Moreover, in F3 we have ε−1 = ε.

Theorem 3.1 Let A and C be two nonzero polynomials in F3[T ] such that A is not constant, degC ≤ deg A and
C divides A. Let us define the sequence (�n)n≥1 of finite sequences of elements of F3[T ] recursively by �0 = ∅,
�1 = A2 and for all n ≥ 0

⎧
⎪⎨

⎪⎩

�2n+1 = �2n, 2A2,
1

C2�
(3)
2n−1, 2A

2, �̃2n

�2n+2 = �2n+1, A2/C,
1

2C
�

(3)
2n , 2A2,

1

2C
�2n+1

(3.1)

Let �∞ = lim
n−→∞ �n. Let θ ∈ F3((T−1)) such that θ = [0, a1, . . . , an, . . .] = [0,�∞]. Then, there exist

explicitly positive numbers λ1 and λ2 such that for some rationals P/Q with |Q| arbitrarily large, we have
|θ − P/Q| ≤ |Q|−(2+λ1/

√
deg Q) (3.2)

and, for all rationals P/Q with |Q| sufficiently large, we have
|θ − P/Q| ≥ |Q|−(2+λ2/

√
deg Q) (3.3)

where λ1 = 2/
√
3 and λ2 > 2/

√
3.

Proof . We have �2 = A2, A2, 2A2, 2A2/C . Since C divides a1 = A2 and a3 = 2A2, then C divides the partial
quotient of odd index in �2. Suppose that C divides the partial quotients with odd index in �n for an even n.

From (3.1) we have �n+1 = �n, 2A2,
1

C2�
(3)
n−1, 2A

2, �̃n . As �n has even number of partial quotients then 2A2

is a partial quotient with odd index and C divides it. Furthermore,
1

C2�
(3)
n−1 has odd number of partial quotients

and begins with a partial quotient with even index, then the partial quotient 2A2, coming after it, has an odd
index and C divides it. Finally, as C divides all the partial quotients with odd index in �n then it divides all
partial quotients with even index in �̃n . So we can compute all the partial quotients of C−1�n+1 which is

C−1�n+1 = C−1�n, 2A
2/C,

1

C
�

(3)
n−1, 2A

2/C,C�̃n .

By recursion, we prove that we can compute all partial quotients of C−1�n for all n.
We put a = deg A and c = degC . Let us define for each n ≥ 0, the sequence �∗

n of the degrees of the elements
of �n . The sequence c−1�∗

n is the sequence of degree of C−1�n . We get, from the recursive definition (3.1),
�∗

0 = ∅ and
�∗

1 = 2a
�∗

2 = 2a, 2a − c, 2a, 2a − c
�∗

3 = 2a, 2a − c, 2a, 2a − c, 2a, (6a − 2c), 2a, 2a − c, 2a, 2a − c, 2a
�∗

4 = �∗
3, 2a − c, (6a − c, 6a − 2c, 6a − c, 6a − 2c), 2a, c−1�∗

3
�∗

5 = �∗
4, 2a, 6a − 2c, 6a − c, 6a − 2c, 6a − c, 6a − 2c, (18a − 4c), 6a − 2c, 6a − c, 6a − 2c,

6a − c, 6a − 2c, 2a, �̃∗
4

From the definition of the approximation exponent, we see that we shall use, for all k ≥ 1, �∗
2k+1 to compute

the value of the approximation exponent. Again, from (3.1) and by induction on k we see that �∗
2k+1 has an odd

number of terms, has 2(3ka − 3k + (−1)k+1

4
c) as the central term, and is reversible.
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For k ≥ 1 we put dk = deg ak and P/Q = [a1, . . . , ak]. We define ki = inf{k ≥ 1; dk = 2(3i a −
3i + (−1)i+1

4
c)}. So we have

∑

ak∈�2i+1

dk = 2(3i a − 3i + (−1)i+1

4
c) + 2

∑

k<ki

dk . (3.4)

Now we put Dn =
∑

ak∈�n

dk . Furthermore, we have Dn = deg�n = 2 deg Qn .

D2i+1 = 2
2i+1∑

k=1

(3k−1a − 3k−1 + (−1)k

4
c) = 2.(

32i+1 − 1

2
a − 32i+1 − 3

8
c).

Hence, if (Uk/Vk)k≥0 is the sequence of convergents of θ , the relation (3.32) implies, for i ≥ 1,

deg Vki−1 =
∑

k<ki

dk

= (D2i+1 − 2(3i a − 3i + (−1)i+1

4
c))/2

= (
32i+1 − 23i − 1

2
)(a − c

4
) + (1 + (−1)i )

c

4
.

We can easily verify that 2(3i a − 3i + (−1)i+1

4
c) ≥ 2/

√
3
√
deg Vki−1, which gives that

|T |−2(3i a− 3i + (−1)i+1

4
c) ≤ |Vki−1|2/

√
3 deg Vki−1 .

On the other hand, for i ≥ 1, we have

|θ −Uki−1/Vki−1| = |T |−2(3i a− 3i + (−1)i+1

4
c)|Vki−1|−2.

So, we obtain the desired inequality for P/Q = Uki−1/Vki−1 and for i ≥ 1, with λ1 = 2/
√
3.

Furthermore if Uk/Vk is a convergent to θ , then

deg Vki−1 ≤ deg Vk < deg Vki+1−1 implies |θ −Uk/Vk | = |T |dk+1 |Uk |−2

As lim sup
2(3i a − 3i + (−1)i+1

4
c)

√
deg Vki−1

= 2/
√
3, then, if λ2 > 2/

√
3, we can write

2(3i a − 3i + (−1)i+1

4
c) < λ2

√
deg Vki−1 ≤ λ2

√
deg Vk

for i large enough. It follows that (3.3) holds for Uk/Vk with k large enough. Since the convergents are the best
rational approximation, this is also true for all P/Q with |Q| large enough. 	


Let β ∈ F3((T−1)) be the solution of the equation (2.1) such that C divides A. We know from the Theorem
2.4 that the continued fraction expansion of β is:

[b0, b1, . . . , bn, . . .]
such that b0 = 0, b1 = A and for all n ≥ 2:

bn = (−1)n−1A3n−1
C− 3n−1+(−1)n

4 .
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In the next part, we will compute the continued fraction expansion and the approximation exponent of α =
β2 = [0, A,−A3/C, . . . , (−1)n−1A3n−1

C− 3n−1+(−1)n
4 , . . .]2. Note that, from the equation (2.1), β satisfies β =

(Cβ4 + 1)/A. So β2 = (Cβ4 + 1)2/A2, which gives that C2β8 + 2Cβ4 + 1 = A2β2. Then we deduce that α

satisfies the equation C2α4 + 2Cα2 − A2α2 + 1 = 0 which is the equation (1.6).
We set α = [a0, a1, . . . , an, . . .]. Observe that a0 = 0 from the definition of α since |β| < 1. Then we

introduce the usual two sequences of polynomials of F3[T ], defined inductively by

U0 = 0, U1 = 1, V0 = 1, V1 = a1,

Un = anUn−1 +Un−2, Vn = anVn−1 + Vn−2

for n ≥ 2. So (Un/Vn)n≥0 is the sequence of the convergents to α.
Now, in order to compute all the partial quotients of α, we need to introduce a series of Lemmas.

Lemma 3.1 Let (Pn/Qn)n≥0 be the sequence of convergents of β. Then P0 = 0, Q0 = 1, P1 = 1, Q1 = A and
for all n ≥ 1:

{
P2n+1 = Q3

2n
Q2n+1 = AQ3

2n − CP3
2n

and

{
P2n = −Q3

2n−1/C
Q2n = −(A/C)Q3

2n−1 + P3
2n−1

(3.5)

Proof . From the equality (2.8) defining the sequence of partial quotients of β we can easily check that
P2
Q2

=

[0, A,−A3/C] = −A3/C

−A4/C + 1
, and

P3
Q3

= [0, A,−A3/C, A9/C2] = −A12/C3 + 1

−A13/C3 + A9/C2 + 1
. So P2 =

−A3/C = −Q3
1/C , Q2 = −A4/C + 1 = −(A/C)Q3

1 + P3
1 , P3 = −A12/C3 + 1 = Q3

2 and Q3 =
−A13/C3 + A9/C2 + 1 = AQ3

2 − CP3
2 . Hence (3.5) is satisfied for n = 1. Suppose that (3.5) is satisfied for

n = l > 1. We know that P2l+2 = b2l+2P2l+1 + P2l and Q2l+2 = b2l+2Q2l+1 + Q2l . Then

P2l+2 = (b32l+1/ − C)Q3
2l − Q3

2l−1/C = (b32l+1Q
3
2l + Q3

2l−1)/ − C

= (b2l+1Q2l + Q2l−1)
3/ − C = −Q3

2l+1/C,

and

Q2l+2 = (b32l+1/ − C)(AQ3
2l − CP3

2l) + (−(A/C)Q3
2l−1 + P3

2l−1)

= −(A/C)(b32l+1Q
3
2l + Q3

2l−1) + (b32l+1P
3
2l + P3

2l−1)

= −(A/C)Q3
2l+1 + P3

2l+1.

So the right part of (3.5) is satisfied for n = l + 1. Samely, we can obtain the left part. By induction, we see that
(3.5) holds for all n ≥ 1. 	

We note that the polynomials Pn and Qn defined in the previous Lemma will be used throughout the rest of
this section. Also, it is clear that C divides Qn for all n odd integer. Moreover, for the proofs of the following
Lemmas, we will follow [5] fairly closely.

Lemma 3.2 Let P and Q be two polynomials of F3[X ], with Q �= 0, and n a positive integer. Suppose that
PQ2

n − QP2
n �= 0. If

|Q| ≤ |Qn|2 and |PQ2
n − QP2

n | <
|Qn|2
|Q| (3.6)

then P/Q is a convergent to α. Moreover, if P and Q are coprime and the convergent P/Q is Uk/Vk, then we
have

|ak+1| = |PQ2
n − QP2

n |−1|Q|−1|Qn|2. (3.7)
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Proof We have for n ≥ 0

|β2 − (Pn/Qn)
2| = |β − (Pn/Qn)||β + (Pn/Qn)|.

Since |β| = |Pn/Qn| = |A|−1, we have two terms in the sum, each with the absolute value |A|−1 and the same
dominant coefficient. So this becomes

|β2 − (Pn/Qn)
2| = |β − (Pn/Qn)||A|−1 = |QnQn+1|−1|A|−1.

So

|β2 − (P2n/Q2n)
2| = |Q2nQ2n+1|−1|A|−1 = |Q2n|−4|A|−2, (3.8)

|β2 − (P2n+1/Q2n+1)
2| = |Q2n+1Q2n+2|−1|A|−1 = |Q2n+1|−4|A2/C |−1. (3.9)

From the equalities (3.8) and (3.9) we have:

|α − (Pn/Qn)
2| ≤ 1

|Qn|4|A| <
1

|Qn|4 ≤ 1

|Qn|2|Q| ≤ |PQ2
n − QP2

n |
|Qn|2|Q| .

Hence

|α − (Pn/Qn)
2| < |P/Q − (Pn/Qn)

2|.
Therefore,

|α − P/Q| = |α − (Pn/Qn)
2 + (Pn/Qn)

2 − P/Q| = |P/Q − (Pn/Qn)
2|

and by (3.6)

|α − P/Q| < |Q|−2.

This shows that P/Q is a convergent to α. Now if P and Q are coprime and P/Q = Uk/Vk , we have |Q| = |Vk |.
Besides, we know that

|α −Uk/Vk | = |Vk |−2|ak+1|−1.

Since

|α −Uk/Vk | =
∣∣∣P/Q − (Pn/Qn)

2
∣∣∣ ,

then (3.7) holds and so we obtain the desired result. 	

We denote by a = deg A and c = degC .

Lemma 3.3 We consider the following sequences of rational functions:

R1,n

S1,n
= P2

n /Q2
n, f or all n ≥ 1. (3.10)

R2,n

S2,n
=

{
C−1P2

n Q
2
n/(C

−1Q4
n + 1) if n is odd;

P2
n Q

2
n/(Q

4
n + 1) if n is even.

R3,n

S3,n
=

{
P2
n (−Q4

nC
−1 + 1)/ − C−1Q6

n if n is odd;
P2
n (Q4

n + 2)/Q6
n if n is even.

Then for all 1 ≤ i ≤ 3, Ri,n/Si,n is a convergent to α. Further Ri,n and Si,n are coprime, and if we put m(i, n)

the integer such that Um(i,n)/Vm(i,n) = Ri,n/Si,n then:
⎧
⎨

⎩

deg am(1,n)+1 = 2a i f n is even and deg am(1,n)+1 = 2a − c i f n is odd,

deg am(2,n)+1 = 2a f or all n,

deg am(3,n)+1 = 2a i f n is even and deg am(3,n)+1 = 2a − c i f n is odd.

Moreover, we have
R3,n

S3,n
is the convergent which comes before

R1,n+1

S1,n+1
, i.e

Um(1,n+1)−1/Vm(1,n+1)−1 = R3,n/S3,n (3.11)
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Proof The equalities (3.8) and (3.9) gives that for all n ≥ 1,
R1,n

S1,n
= P2

n /Q2
n is a sequence convergent of α such

that deg am(1,n)+1 = 2a if n is even and deg am(1,n)+1 = 2a − c if n is odd.
On the other hand we have |S2,n| = |C |−1|Qn|4 ≤ |Qn+1|2 if n is odd and |S2,n| = |Qn|4 ≤ |Qn+1|2 if n is

even. Moreover, for odd n we have |S3,n| = |Qn|6|C |−1 ≤ |Qn+1|2, and for even n we have |S3,n| = |Qn|6 ≤
|Qn+1|2 then we obtain the first part of the condition (3.6).

*)For odd n:

R2,nQ
2
n+1 − S2,n P

2
n+1 = P2

n
Q2

n

C
Q2

n+1 −
(
Q4

n

C
+ 1

)
P2
n+1

= (1 − Pn+1Qn)
2 Q2

n

C
−

(
Q4

n

C
+ 1

)
Q6

n

C2

=
(
1 − Q4

n

C

)2
Q2

n

C
−

(
Q4

n

C
+ 1

)
Q6

n

C2

= Q2
n

C
.

Let H be a common divisor to R2,n and S2,n then H divides
Q2

n

C
and so H divides

Q4
n

C
. Since H divides

S2,n = Q4
n

C
+ 1 then H divides 1. Thus, R2,n and S2,n are coprime. On the other hand,

|R2,nQ
2
n+1 − S2,n P

2
n+1| = |Qn|2

|C | <
|Qn+1|2
|S2,n| = |A/C |2|Qn|2

So
R2,n

S2,n
is a convergent to α and

|am(2,n)+1| = |Qn|−2|C |2|Qn|−4|Qn+1|2 = |Qn|−2|C |2|Qn|−4|A/C |2|Qn|6 = |A|2.
*)For even n:

|R2,nQ
2
n+1 − S2,n P

2
n+1| = |P2

n Q
2
nQ

2
n+1 − (Q4

n + 1)P2
n+1|

= |(1 + Pn+1Qn)
2Q2

n − (Q4
n + 1)Q6

n|
= |(1 + Q4

n)
2Q2

n − (Q4
n + 1)Q6

n|
= |Qn|2 <

|Qn+1|2
|S2,n| = |A||Qn|2.

Moreover, it is clear that R2,n and S2,n are coprime. So
R2,n

S2,n
is a convergent to α and

|am(2,n)+1| = |Qn|−2|Qn|−4|Qn+1|2 = |Qn|−2|Qn|−4|A|2|Qn|6 = |A|2.
*)For odd n:

|R3,nQ
2
n+1 − S3,n P

2
n+1| =

∣∣∣∣P
2
n (−Q4

n

C
+ 1)Q2

n+1 + Q6
n

C
P2
n+1

∣∣∣∣

=
∣∣∣∣ − (1 − Pn+1Qn)

2(
Q4

n

C
− 1) + Q6

n

C

Q6
n

C2

∣∣∣∣
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=
∣∣∣∣ − (1 − Q4

n

C
)2(

Q4
n

C
− 1) + Q6

n

C

Q6
n

C2

∣∣∣∣

= 1 ≤ |Qn+1|2
|S3,n| = |A2C |.

This gives that R3,n and S3,n are coprime. So
R3,n

S3,n
is a convergent to α and

|am(3,n)+1| = |Qn|−6|C ||Qn+1|2 = |Qn|−6|C ||A/C |2|Qn|6 = |A2/C |.
*)For even n:

|R3,nQ
2
n+1 − S3,n P

2
n+1| = |P2

n (Q4
n + 2)Q2

n+1 − Q6
n P

2
n+1|

= |(1 − Pn+1Qn)
2(Q4

n + 2) − Q6
nQ

6
n|

= |(1 − Q4
n)

2(Q4
n + 2) − Q12

n |
= 1 ≤ |Qn+1|2

|S3,n| = |A|2.

This gives that R3,n and S3,n are coprime. So
R3,n

S3,n
is a convergent to α and

|am(3,n)+1| = |Qn|−6|Qn+1|2 = |Qn|−6|A|2|Qn|6 = |A|2.
Furthermore, we note that we have |S1,n+1| = |Qn+1|2 = |A|2|Q6

n| = |S3,n||A|2 for even n and |S1,n+1| =
|Qn+1|2 = |A/C |2|Qn|6 = |S3,n||A2/C | for odd n, this leads to deduce that R3,n/S3,n is the convergent coming
before R1,n+1/S1,n+1. 	

We introduce�1,n ,�2,n and�3,n the sequences of partial quotients which represent respectively the convergents
R1,n

S1,n
,
R2,n

S2,n
and

R3,n

S3,n
. Then:

Ri,n/Si,n = [0,�i,n] and �i,n = a1, . . . , am(i,n) f or n ≥ 0 and 1 ≤ i ≤ 3.

We have R1,1/S1,1 = 1/A2 so �1,1 = a1 = A2. Further,

R1,2/S1,2 = P2
2 /Q2

2 = [0, A2, A2/C, 2A2, 2A2/C]
so �1,2 = A2, A2/C, 2A2, 2A2/C .

Note that for n ≥ 1, we have 1 < |S1,n| < |S2,n| < |S3,n| then m(1, n) < m(2, n) < m(3, n). We put
�2,n = am(1,n)+2, . . . , am(2,n) and�3,n = am(2,n)+2, . . . , am(3,n). Then, from the previous Lemma we can write
for n ≥ 1:

�2,n = �1,n, am(1,n)+1,�2,n,

�3,n = �1,n, am(1,n)+1,�2,n, am(2,n)+1,�3,n .

So, from (3.11) we can write for n ≥ 1:

�1,n+1 = �1,n, am(1,n)+1,�2,n, am(2,n)+1,�3,n, am(3,n)+1. (3.12)

On the other hand, observations by computers of the first few hundred of partial quotients of the solution α

of (1.6) show that C divides all partial quotients with odd index of any sequence �k = a1, a2, . . . , ak and we
can compute the sequence of partial quotients of C−1�k , as we have describe above. So, we admit this in the
following Lemma, more precisely, equality (3.17) below. However, we are not able to provide a proof. For this
reason, we will state our last result as a conjecture and we will expose this problem as an open question at the
end of this section.
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Lemma 3.4 There exists, a sequences (εn)n≥1 of nonzero element of F3, such that -)For even n:

am(1,n)−k = εn
1

(2C)(−1)k
ak+1 (3.13)

for each (k, n) with 0 ≤ k ≤ m(1, n) − 1; n ≥ 1. Further, we have for n ≥ 2,
{

�3,n, am(3,n)+1 = εn+1�̃1,n = 1

2C
�1,n; �2,n = εn+1�̃2,n

am(3,n)+1 = εn+1A2; am(1,n)+1 = εn+1am(2,n)+1

-)For odd n:

am(1,n)−k = εnak+1 (3.14)

for each (k, n) with 0 ≤ k ≤ m(1, n) − 1; n ≥ 1. Further we have for n ≥ 2,
⎧
⎪⎨

⎪⎩

�3,n, am(3,n)+1 = εn+1�̃1,n = �1,n; �2,n = εn+1
1

2C
�̃2,n

am(3,n)+1 = εn+12A2/C; am(1,n)+1 = εn+1
1

2C
am(2,n)+1

Proof If n is even: By (3.10) and (3.11), we can write

Um(1,n) = ε′
n P

2
n , Vm(1,n) = ε′

nQ
2
n (3.15)

and

Um(1,n)−1 = ε′′
n P

2
n−1(−Q4

n−1C
−1 + 1), Vm(1,n)−1 = −ε′′

n Q
6
n−1/C = ε′′

n2CP2
n (3.16)

where ε′
n and ε′′

n are nonzero elements of F3. We write εn = ε′
n/ε

′′
n .

We can write Vm(1,n)/Vm(1,n)−1 = [am(1,n), am(1,n)−1, . . . , a1]. On the other hand, by (3.15) and (3.16), we
have

Vm(1,n)

Vm(1,n)−1
= εn

1

2C

Vm(1,n)

Um(1,n)

= εn
1

2C

1

[0, a1, . . . , am(1,n)] ;

therefore:

[am(1,n), am(1,n)−1, . . . , a1] = εn
1

2C
[a1, . . . , am(1,n)].

Admit that

εn
1

2C
[a1, . . . , am(1,n)] = εn[(2C)−1a1, . . . , (2C)(−1)i ai , . . . , (2C)(−1)m(1,n)

am(1,n)]. (3.17)

Then we can write �̃1,n = εn
1

2C
�1,n and we get equality (3.13).

If n is odd: Again by (3.10) and (3.11), we can write

Um(1,n) = ε′
n P

2
n , Vm(1,n) = ε′

nQ
2
n (3.18)

and

Um(1,n)−1 = ε′′
n P

2
n−1(Q

4
n − 1), Vm(1,n)−1 = ε′′

n Q
6
n−1 = P2

n (3.19)

Then we obtain

Vm(1,n)

Vm(1,n)−1
= εn

Vm(1,n)

Um(1,n)

= εn
1

[0, a1, . . . , am(1,n)] ;

therefore:

[am(1,n), am(1,n)−1, . . . , a1] = εn[a1, . . . , am(1,n)]
Then we can write �̃1,n = εn�1,n and we get equality (3.14). 	
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For n ≥ 1, we put �1,n = a1,�1,n . Hence, for n ≥ 1, (3.12) becomes

�1,n+1 = A2,�1,n, am(1,n)+1,�2,n, am(2,n)+1,�3,n, am(3,n)+1. (3.20)

For each finite sequence of nonzero polynomials, we define its degree as being the sum of the degrees of its
terms. We have deg�1,n = deg S1,n = 2 deg Qn .

*)If n is even then �̃1,n+1 = εn+1�1,n+1. Further we have deg S2,n = 4 deg Qn and deg S3,n = 6 deg Qn .
As deg Qn = 3 deg Qn−1 + a − c then if we put wn = 6 deg Qn−1 − 2c then deg�1,n = wn + 2a, deg S2,n =
12 deg Qn−1+4a−4c = 2a+wn+2a+wn and deg S3,n = 18 deg Qn−1+6a−6c = 2a+wn+2a+wn+2a+wn .
As deg am(1,n)+1 = deg am(2,n)+1 = deg am(3,n)+1 = 2a then if we write the sequence of the degrees of
the components in the right side of (3.20), we obtain the sequence, of 7 terms:2a, wn, 2a, wn, 2a, wn, 2a. As
this sequence is reversible and �̃1,n+1 = εn+1�1,n+1, it is clear that �̃3,n = εn+1�1,n , �2,n = εn+1�̃2,n ,
am(3,n)+1 = εn+1A2, am(1,n)+1 = εn+1am(2,n)+1.

*)If n is odd then �̃1,n+1 = εn+1
1

2C
�1,n+1. Further we have deg S2,n = 4 deg Qn − c and deg S3,n =

6 deg Qn − c. As deg Qn = 3 deg Qn−1 + a then if we put wn = 6 deg Qn−1 then deg�1,n = wn + 2a,
deg S2,n = 12 deg Qn−1 + 4a − c = 2a + wn + 2a − c + wn and deg S3,n = 18 deg Qn−1 + 6a − c =
2a+wn + 2a− c+wn + 2a+wn . As deg am(1,n)+1 = 2a− c, deg am(2,n)+1 = 2a and deg am(3,n)+1 = 2a− c,
then if we write the sequence of the degrees of the components in the right side of (3.20), we obtain the sequence,

of 7 terms:2a, wn, 2a−c, wn, 2a, wn, 2a−c. As �̃1,n+1 = εn+1
1

2C
�1,n+1, it is clear that �̃3,n = εn+12C�1,n ,

�2,n = εn+12C�̃2,n , am(3,n)+1 = εn+1A2/2C , am(1,n)+1 = εn+1
1

2C
am(2,n)+1.

Lemma 3.5 There exists, a sequences (εn)n≥1 of nonzero element of F3, such that:
-)For even n: we have

�2,n = (εn/C
2)�

(3)
n−1 and am(1,n)+1 = εn2A

2.

-)For odd n: we have

�2,n = (εn/2C)�
(3)
n−1 and am(1,n)+1 = εn2A

2/C.

Proof *)If n is even: We have Um(1,n)/Vm(1,n) = [0,�1,n], Um(1,n)+1/Vm(1,n)+1 = [0,�1,n, am(1,n)+1] and
Um(2,n)/Vm(2,n) = [0,�1,n, am(1,n)+1,�2,n]. If we put x2,n , the element of F3(T ) defined by [�2,n], then

we have

Um(2,n)

Vm(2,n)

= x2,nUm(1,n)+1 +Um(1,n)

x2,nVm(1,n)+1 + Vm(1,n)

. (3.21)

We know that Um(2,n)/Vm(2,n) = R2,n/S2,n = P2
n Q

2
n/(Q

4
n + 1). So if we put

P ′ = P2
n Q

2
n and Q′ = Q4

n + 1 (3.22)

the equality (3.21) gives that:

x2,n = ε′
n

P2
n Q

′ − Q2
n P

′

Vm(1,n)+1P ′ −Um(1,n)+1Q′ . (3.23)

We should determine Um(1,n)+1/Vm(1,n)+1. We use the fact that R3,n−1/S3,n−1 and
R(1,n)/S(1,n) are, from Lemma 3.3, the two reduced precedes it.
Hence we consider the polynomials P and Q of F3[T ], defined by:

P = 2A2P2
n + P3

n−1Qn and Q = 2A2Q2
n − CP2

n . (3.24)

We will apply Lemma 3.2, to prove that P/Q is a convergent to α. First we have deg Q = 2 deg Qn + 2a and
then Q �= 0. From (3.24) and (3.5), we have PQ2

n −QP2
n = P3

n−1Q
3
n +CP4

n = P3
n−1Q

3
n − P3

n Q
3
n−1 = 1, hence

gcd(P, Q) = 1. Since 2 deg Qn + 2a ≤ 2 deg Qn+1 for n ≥ 2, the first part of condition; that is |Q| < |Qn+1|2,
is satisfied. We should prove that |PQ2

n+1 − QP2
n+1| < |Qn+1|2/|Q|. We put

X1 = Q2
n+1P

2
n − Q2

n P
2
n+1 and X2 = P3

n−1QnQ
2
n+1 + CP2

n P
2
n+1.
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From (3.24), we have PQ2
n+1 − QP2

n+1 = 2A2X1 + X2. Since Pn+1Qn − Qn+1Pn = 1, and by (3.5), we have

X1 = 2QnPn+1 + 1 = Q4
n + 1

then
X2 = Q2

n+1P
3
n−1Qn + CP2

n+1P
2
n = (Qn+1/Qn)

2(1 − CP4
n ) + CP2

n+1P
2
n

X2 = (Qn+1/Qn)
2 − C(Pn/Qn)

2X1
X2 = (Qn+1/Qn)

2 − C(PnQn)
2 − C(Pn/Qn)

2.

We put X = PQ2
n+1 − QP2

n+1. Since X = 2A2X1 + X2, we have
X = 2A2 + 2A2Q4

n + (Qn+1/Qn)
2 − C(PnQn)

2 − C(Pn/Qn)
2

X = 2A2 + 2A2Q4
n + (AQ2

n − CP3
n /Qn)

2 − C(Pn/Qn)
2(Q4

n + 1)
Since Q4

n − APnQ3
n + CP4

n = Pn+1Qn − Qn+1Pn = 1 then
X = 2A2 + (ACQn P3

n + C2P6
n /Q2

n − C(Pn/Qn)
2(2Q4

n − APnQ3
n + CP4

n ))

X − 2A2 = 2ACQn P3
n +CP2

n Q
2
n = CP2

n Qn P3
n−1. Since, for n ≥ 2, |P3

n−1| < |Qn| and |C ||Pn|2 < |Qn|2,
this equality implies:

|X | < |Q4
n| = |Qn+1|2

|Q|
Consequently, P/Q is a convergent to α, and since deg Q = deg Vm(1,n) + 2a, then it is next Um(1,n)/Vm(1,n).
We can write

Um(1,n)+1 = ηn P and Vm(1,n)+1 = ηnQ. (3.25)

By (3.15), (3.16) and (3.24), and ε−1 = ε for ε ∈ F3, the first equality of (3.25) can be written

am(1,n)+1Um(1,n) +Um(1,n)−1 = ηnε
′
n2A

2Um(1,n) + ηnε
′′
nUm(1,n)−1.

Since we have degUm(1,n) > degUm(1,n)−1, it follows that am(1,n)+1 = ηnε
′
n2A

2 and ηnε
′′
n = 1, i.e ηn = ε′′

n .
Thus, since εn = ε′

nε
′′
n , we obtain:

am(1,n)+1 = εn2A
2.

So the equality (3.23) becomes:

x2,n = εn
P2
n Q

′ − Q2
n P

′

QP ′ − PQ′ . (3.26)

We are able to compute x2,n .

P2
n Q

′ − Q2
n P

′ = P2
n (Q4

n + 1) − Q2
n(PnQn)

2 = P2
n = Q6

n−1/C
2.

From we have

QP ′ − PQ′ = P2
n Q

2
n(2A

2Q2
n − CP2

n ) − (Q4
n + 1)(2A2P2

n + P3
n−1Qn)

QP ′ − PQ′ = −CP4
n Q

2
n − Q5

n P
3
n−1 − (2A2P2

n + P3
n−1Qn)

QP ′ − PQ′ = Q2
n(PnQn−1 − QnPn−1)

3 − (2A2P2
n + Q2

n − APnQn)

QP ′ − PQ′ = A2P2
n + Q2

n + APnQn

QP ′ − PQ′ = (Qn − APn)
2 = P6

n−1.

So (3.26) gives that

x2,n = εn/C
2(Qn−1/Pn−1)

6.

Furthermore

[a1, . . . , am(1,n−1)] = (Qn−1/Pn−1)
2
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then

(εn/C
2)(Qn−1/Pn−1)

6 = εn/C
2[a31, . . . , a3m(1,n−1)].

Thus, we conclude that (3.20)can be written as

�1,n+1 = �1,n, εn2A
2, (εn/C

2)�
(3)
1,n−1, εn+1εn2A

2, εn+1�̃1,n . (3.27)

*)If n is odd:
We have Um(1,n)/Vm(1,n) = [0,�1,n], Um(1,n)+1/Vm(1,n)+1 = [0,�1,n, am(1,n)+1] and
Um(2,n)/Vm(2,n) = [0,�1,n, am(1,n)+1,�2,n]. If we put x2,n , the element of F3(T ) defined by [�2,n], then

we have

Um(2,n)

Vm(2,n)

= x2,nUm(1,n)+1 +Um(1,n)

x2,nVm(1,n)+1 + Vm(1,n)

. (3.28)

We know that Um(2,n)/Vm(2,n) = R2,n/S2,n = C−1P2
n Q

2
n/(C

−1Q4
n + 1). So if we put

P ′ = C−1P2
n Q

2
n and Q′ = C−1Q4

n + 1 (3.29)

the equality (3.28) gives that:

x2,n = ε′
n

P2
n Q

′ − Q2
n P

′

Vm(1,n)+1P ′ −Um(1,n)+1Q′ . (3.30)

We should determine Um(1,n)+1/Vm(1,n)+1. We use the fact that R3,n−1/S3,n−1 and
R(1,n)/S(1,n) are, from Lemma 3.3 , the two reduced precedes it.
Hence we consider the polynomials P and Q of F3[T ], defined by:

P = (A2/C)P2
n + P3

n−1Qn and Q = (A2/C)Q2
n + P2

n . (3.31)

We will apply Lemma 3.2 to prove that P/Q is a convergent to α. First we have deg Q = 2 deg Qn + 2a − c
and then Q �= 0. From (3.33) and (3.5), we have PQ2

n − QP2
n = P3

n−1Q
3
n − P4

n = P3
n−1Q

3
n − P3

n Q
3
n−1 = −1,

hence gcd(P, Q) = 1. Since 2 deg Qn + 2a − c ≤ 2 deg Qn+1 for n ≥ 2, the first part of condition; that is
|Q| < |Qn+1|2, is satisfied. We should prove that |PQ2

n+1 − QP2
n+1| < |Qn+1|2/|Q|. We put

X1 = Q2
n+1P

2
n − Q2

n P
2
n+1 and X2 = P3

n−1QnQ
2
n+1 − P2

n P
2
n+1.

From (3.24), we have PQ2
n+1 − QP2

n+1 = (A2/C)X1 + X2. Since Pn+1Qn − Qn+1Pn = −1, and by (3.5), we
have

X1 = −QnPn+1 + 1 = C−1Q4
n + 1

then
X2 = Q2

n+1P
3
n−1Qn − P2

n+1P
2
n = (Qn+1/Qn)

2(−1 + P4
n ) − P2

n+1P
2
n

X2 = −(Qn+1/Qn)
2 + (Pn/Qn)

2X1
X2 = −(Qn+1/Qn)

2 + C−1(PnQn)
2 + (Pn/Qn)

2.

We put X = PQ2
n+1 − QP2

n+1. Since X = A2/CX1 + X2, we have
X = A2C−1 + A2C−2Q4

n − (Qn+1/Qn)
2 + C−1(PnQn)

2 + (Pn/Qn)
2

X = A2C−1 + A2C−2Q4
n − (−AC−1Q2

n + P3
n /Qn)

2 + (Pn/Qn)
2(Q4

n/C + 1)
Since 2Q4

nC
−1 + AC−1PnQ3

n − P4
n = Pn+1Qn − Qn+1Pn = −1 then

X = A2C−1 + 2AC−1QnP3
n − P6

n /Q2
n + (Pn/Qn)

2)(−Q4
nC

−1 − AC−1PnQ3
n + P4

n )

X − A2C−1 = AC−1QnP3
n − P2

n Q
2
nC

−1 = P2
n Qn(AC−1Pn − C−1Qn) = P2

n Qn P3
n−1. Since, for n ≥ 2,

|Pn−1|3 < |Qn| and |Pn|2 < |Qn|2/C , this equality implies:

|X | < |Q4
n||C |−1 = |Qn+1|2

|Q|
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Consequently, P/Q is a convergent to α, and since deg Q = deg Vm(1,n) +2a−c, then it is nextUm(1,n)/Vm(1,n).
We can write

Um(1,n)+1 = ηn P and Vm(1,n)+1 = ηnQ. (3.32)

By (3.18), (3.19) and (3.32), and ε−1 = ε for ε ∈ F3, the first equality of (3.32) can be written

am(1,n)+1Um(1,n) +Um(1,n)−1 = ηnε
′
n A

2C−1Um(1,n) + ηnε
′′
nUm(1,n)−1.

Since we have degUm(1,n) > degUm(1,n)−1, it follows that am(1,n)+1 = ηnε
′
n A

2C−1 and ηnε
′′
n = 1, i.e ηn = ε′′

n .
Thus, since εn = ε′

nε
′′
n , we obtain

am(1,n)+1 = εn A
2C−1.

So the equality (3.30) becomes:

x2,n = εn
P2
n Q

′ − Q2
n P

′

QP ′ − PQ′ . (3.33)

We are able to compute x2,n .

P2
n Q

′ − Q2
n P

′ = P2
n (C−1Q4

n + 1) − Q2
nC

−1(PnQn)
2 = P2

n = Q6
n−1.

From we have

QP ′ − PQ′ = C−1P2
n Q

2
n(A

2C−1Q2
n + P2

n ) − (C−1Q4
n + 1)(A2C−1P2

n + P3
n−1Qn)

QP ′ − PQ′ = C−1P4
n Q

2
n − C−1Q5

n P
3
n−1 − (A2C−1P2

n + P3
n−1Qn)

QP ′ − PQ′ = C−1Q2
n(PnQn−1 − QnPn−1)

3 − (A2C−1P2
n − C−1Q2

n + APnQn)

QP ′ − PQ′ = 2A2C−1P2
n + 2C−1Q2

n + 2APnQn

QP ′ − PQ′ = 2C(C−1Qn − AC−1Pn)
2 = 2CP6

n−1.

So (3.33) gives that

x2,n = εn/2C(Qn−1/Pn−1)
6.

Furthermore

[a1, . . . , am(1,n−1)] = (Qn−1/Pn−1)
2

then

εn/2C(Qn−1/Pn−1)
6 = (εn/2C)[a31, . . . , a3m(1,n−1)].

Thus, we conclude that we can write (3.20) as:

�1,n+1 = �1,n, εn A
2C−1, (εn/2C)�

(3)
1,n−1, εn+1εn A

2, (εn+1/2C)�̃1,n . (3.34)

	

Finally, we have to determine εn for all n ≥ 1. By Lemmas 3.3 and (3.14) we have simultaneously εna3m(1,n−1) =
εn+1εna31 , which implies am(1,n−1) = εn+1a1 and am(1,n−1) = εn−1a1. Therefore, εn+1 = εn−1 for even n. We
can verify that we have also εn+1 = εn−1 for odd n. Since �1,2 = 1/2C�̃1,2 and �1,3 = �̃1,3 then ε2 = ε3 = 1.
So, we obtain εn = 1 for all n ≥ 1. Finally, by Lemma 3.4, the sequence �1,n is reversible for all n odd, and so
�̃1,n = �1,n . The equality (3.34) becomes:

�1,n+1 = �1,n, A
2/C, (1/2C)�

(3)
1,n−1, 2A

2, (1/2C)�̃1,n .

The equality (3.27) becomes

�1,n+1 = �1,n, 2A
2, (1/C2)�

(3)
1,n−1, 2A

2, �̃1,n .

So we can deduce the following result.
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Conjecture 3.1 Let α ∈ F3((T−1)) be the formal power series, of strictly negative degree, satisfying (1.6). Let
(�n)n≥0 be a finite sequence of elements of F3[T ], defined by �0 = ∅, �1 = A2 and for all n ≥ 0:

⎧
⎪⎨

⎪⎩

�2n+1 = �2n, 2A2,
1

C2�
(3)
2n−1, 2A

2, �̃2n

�2n+2 = �2n+1, A2/C,
1

2C
�

(3)
2n , 2A2,

1

2C
�2n+1

(3.35)

Let �∞ be the infinite sequence beginning by �n for all n ≥ 1. Then, the continued fraction expansion of α is
α = [0,�∞].
We see that the equality (3.35) has the same shape as the equality (3.1). So this gives that the formal power series
described in Theorem 3.1 is not other than the unique solution of the quartic equation (1.6).

Example 3.1 Let (�n)n≥1 be a finite sequence of elements of F3[T ], defined by�1 = T 2,�2 = T 2, T, 2T 2, 2T
and for all n ≥ 0

⎧
⎪⎨

⎪⎩

�2n+1 = �2n, 2T 2,
1

T 2�
(3)
2n−1, 2T

2, �̃2n

�2n+2 = �2n+1, T,
1

2T
�

(3)
2n , 2T 2,

1

2T
�2n+1

Then, we have from conjecture (3.1): α = [0,�∞] = [0, T,−T 2, T 7, . . . , (−1)n−1T
3n+(−1)n+1

4 , . . .]2 and
according to theorem 3.1 we have ν(α) = 2.

In fact, α is the solution of the equation (1.6) with A = C = T . The partial quotients of �5 are:

[T 2, T, 2T 2, 2T, 2T 2, T 4, 2T 2, 2T, 2T 2, T, T 2, T, 2T 5, 2T 4, T 5, T 4, 2T 2, 2T, 2T 2, T, T 2, T, 2T 5, T,

T 2, T, 2T 2, 2T, 2T 2, T 4, T 5, 2T 4, 2T 5, 2T 4, T 14, 2T 4, 2T 5, 2T 4, T 5, T 4, 2T 2, 2T, 2T 2, T, T 2, T,

2T 5, T, T 2, T, 2T 2, 2T, 2T 2, T 4, T 5, 2T 4, 2T 5, T, T 2, T, 2T 2, 2T, 2T 2, T 4, 2T 2, 2T, 2T 2, T, T 2].
Note that in this case A2 = T 2, A2/C = T and we have:

R1,1/S1,1 = [0, T 2] = [0,�1], �1 = T 2.

R2,1/S2,1 = [0, T 2, T ]; R3,1/S3,1 = [0, T 2, T, 2T 2]
R1,2/S1,2 = [0, T 2, T, 2T 2, 2T ] = [0,�2] = [0, T 2,�1,2]

So �2 = T 2, T, 2T 2, 2T and we have �̃2 = (1/2T )�2, am(1,1)+1 = a2 = T , am(2,1)+1 = a3 = 2T 2,

am(3,1)+1 = a4 = 2T and we see that for all 1 ≤ k ≤ 3: a4−k = (2T )(−1)k+1
ak+1.

R2,2/S2,2 = [0, T 2, T, 2T 2, 2T, 2T 2, T 4] = [0,�2,2] = [0,�2, 2T
2,�2,2]

R3,2/S3,2 = [0, T 2, T, 2T 2, 2T, 2T 2, T 4, 2T 2, 2T, 2T 2, T ] = [0,�3,2]
= [0,�2, 2T

2,�2,2, 2T
2,�3,2]

R1,3/S1,3 = [0, T 2, T, 2T 2, 2T, 2T 2, T 4, 2T 2, 2T, 2T 2, T, T 2] = [0,�3] = [0, T 2,�1,3]
So �3 = �1,3 = �1,2, 2T 2,�2,2, 2T 2,�3,2, T 2 and we have am(1,2)+1 = a5 = 2T 2, am(2,2)+1 = a7 = 2T 2,

am(3,2)+1 = a11 = T 2, �2,2 = T 4 = T−2�
(3)
1 , �3,2 = 2T, 2T 2, T = �̃1,2 and we see that for all 1 ≤ k ≤ 10:

a11−k = ak+1.

R2,3/S2,3 = [0, T 2, T, 2T 2, 2T, 2T 2, T 4, 2T 2, 2T, 2T 2, T, T 2, T, 2T 5, 2T 4, T 5, T 4]
= [0,�2,3] = [0,�3, T,�2,3]

R3,3/S3,3 = [0, T 2, T, 2T 2, 2T, 2T 2, T 4, 2T 2, 2T, 2T 2, T, T 2, T, 2T 5, 2T 4, T 5, T 4,

2T 2, 2T, 2T 2, T, T 2, T, 2T 5, T, T 2, T, 2T 2]
= [0,�3,3] = [0,�3, 2T 3,�2,3, 2T 2,�3,3].

R1,4/S1,4 = [0, T 2, T, 2T 2, 2T, 2T 2, T 4, 2T 2, 2T, 2T 2, T, T 2, T, 2T 5, 2T 4, T 5, T 4,
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2T 2, 2T, 2T 2, T, T 2, T, 2T 5, T, T 2, T, 2T 2, 2T ] = [0,�4]

So �4 = �1,4 = �1,3, T,�2,3, 2T 2,�3,3, 2T and we have am(1,3)+1 = a12 = T , am(2,3)+1 =
a17 = 2T 2, am(3,3)+1 = a28 = 2T , �2,3 = 2T 5, 2T 4, T 5, T 4 = (1/2T )�

(3)
2 = 2T �̃2,3, �3,3 =

2T, 2T 2, T, T 2, T, 2T 5, T, T 2, T, 2T 2 = (1/2T )�̃1,3 and we see that for all 1 ≤ k ≤ 27: a28−k =
(2T )(−1)k+1

ak+1.

Remark 3.1 Note that the equation (2.1) can be written as α = (Cα4 + 1)/A, so ν(α4) = ν(α). Let β = 1/α4.
We will determine the equation satisfied by β. We have (Aα)4 = (Cα4 + 1)4 = C4α16 + C3α12 + Cα4 + 1.
Hence β satisfies the equation β4 + (−A4 + C)β3 + C3β + C4 = 0. So it is clear that β is hyperquadratic. We
can describe its continued fraction expansion as follow. We put γ = 1/α. Then γ satisfies the equation

γ 4 = Aγ 3 − C. (3.36)

We know that the continued fraction expansion of γ is

γ = [A,−A3C−1, A32C−2,−A33C−7, . . . , (−1)n−1A3n−1
C− 3n−1+(−1)n

4 , . . .].

From the property (1.1) of continued fractions and the equation (3.36) we get

γ 4 =
[
−C + A4,−A32−1C−3, A33+1C−6,−A34−1C−21, . . . , (−1)n−1A3n−(1)nC− 3n+3(−1)n

4 , . . .

]

= β = 1/α4.

This led us to deduce the following curious relation between square of continued fractions:

[0, A,−A3C−1, A32C−2,−A33C−7, . . . , (−1)n−1A3n−1
C− 3n−1+(−1)n

4 , . . .]2 = [0,�∞];
[0,�∞]2 = [0,−C + A4,−A32−1C−3, A33+1C−6, . . . , (−1)n−1A3n−(1)nC− 3n+3(−1)n

4 , . . .].

Remark 3.2 From Theorem 2.4, the continued fraction expansion of β solution of the equation (2.7) can be
written as:

β = [0, A/C, (A/C)3C, (A/C)3
2
C2, . . . , (A/C)3

n−1
C

3n−1+(−1)n
4 , . . .].

We wish to compute the continued fraction expansion and the approximation exponent of α = β2 =
[0, A/C, (A/C)3C, (A/C)3

2
C2, . . . , (A/C)3

n−1
C

3n−1+(−1)n
4 , . . .]2. Note that, from the equation (2.7), β sat-

isfies β = (−β4 +C)/A. So β2 = (β4 −C)2/A2, which gives that β8 − 2Cβ4 +C2 = A2β2. Then we deduce
that α satisfies the equation

α4 + Cα2 − A2α + C2 = 0 (3.37)

We have to state the following Conjecture.

Conjecture 3.2 Let α ∈ F3((T−1)) be the formal power series satisfying (3.37).
Let (�n)n≥1 be a sequence of elements of F3[T ], defined by �0 = ∅,
�1 = A2/C2 and for all n ≥ 0

{
�2n+1 = �2n, 2A2/C2,C2�

(3)
2n−1, 2A

2/C2, �̃2n

�2n+2 = �2n+1, 2A2/C,C�
(3)
2n , 2A2/C2,C�2n+1

(3.38)

Then α = [0,�∞].
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Note that obtaining this conjecture was achieved in the same way as conjecture 3.1. It is interesting to state
that we can add the family of power series satisfying (3.37) to the set of elements admitting 2 as a value of their
approximation exponents agreeing with Roth value.
At the end, we point out a question related to this work:

Open question: Let n be a positive integer and (ai )1≤i≤n be a sequence of polynomials with coefficients
in a finite field such that deg ai > 0. Let D be a nonzero polynomial with coefficients in a finite field and with
strictly positive degree such that D divides a1. Suppose that

[an, . . . , a1] = D−1 [a1, . . . , an] .

Then n is even and for all 0 ≤ k ≤ n − 1:

an−k = 1

D(−1)k
ak+1.
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