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Abstract Let � be a fixed odd positive integer. In this paper, using some classical results on the generalized
Ramanujan-Nagell equation, we completely derive all solutions (p, x, m, n) of the equation x2 = 4pn −4pm +�2

with �2 < 4pm for any � > 1, where p is a prime, x, m, n are positive integers satisfying gcd(x, �) = 1 and
m < n. Meanwhile we give a method to solve the equation with l2 > 4pm . As an example of using this method,
we find all solutions (p, x, m, n) of the equation for � ∈ {5, 7}.
Keywords Polynomial-exponential Diophantine equation · Generalized Ramanujan-Nagell equation · Baker’s
method

Mathematics Subject Classification 11D61

1 Introduction

Let Z, N, Q, R, C, P be the sets of all integers, positive integers, rational numbers, real numbers, complex
numbers and primes, respectively. Suppose that � is a fixed odd positive integer.

The first work on the title equation was done by C. Skinner who was a high school student in 1987/88. He
was only 15 years old. In 1989, C. Skinner [10] proved that if p �= 2, then the equation

x2 = 4pn − 4p + 1, p ∈ P, x, n ∈ N, n ≥ 1 (1.1)

has only the solutions

(x, n) =

⎧
⎪⎨

⎪⎩

(1, 1), (5, 2), (31, 5), if p = 3,
(1, 1), (9, 2), (559, 7), if p = 5,
(1, 1), (2p − 1, 2), if p > 5.
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To solve the equation (1.1) for all odd p primes, he used unique factorization of ideals alongwith linear recurrences
and congruences. At the same time, P.-Z. Yuan was also interested in the title equation with � = 1 due to the
group theoretical property of the solutions of generalized Ramanujan-Nagell equation. In the same year, P.-Z.
Yuan [14] proved that if � = 1 and p �= 2, then the equation

x2 = 4pn − 4pm + �2, p ∈ P, x, m, n ∈ N, gcd(x, �) = 1, m < n (1.2)

has only the solutions

(x, m, n) =

⎧
⎪⎨

⎪⎩

(5, 1, 2), (31, 1, 5), if p = 3,
(9, 1, 2), (559, 1, 7), if p = 5,
(2pr − 1, r, 2r), for any r ∈ N, otherwise.

In 2002, F. Luca [9] considered the equation (1.2) where � = 1 and p is a prime power. Referring the
solutions m = n, x = 1 and n = 2m, x = 2pm − 1 for all m ≥ 0 as trivial, he proved that the only non-trivial
solutions of equation (1.2) with p a prime power and n ≥ m ≥ 0 but (n, m) �= (1, 0) are (x, p, m, n) =
(37, 7, 0, 3), (5, 2, 1, 3), (11, 2, 1, 5), (181, 2, 1, 13), (31, 3, 1, 5), (559, 5, 1, 7). The proof was an interesting
combination of standard algebraic number theory with previous results, mainly found in the important paper of
Y. F. Bilu, G. Hanrot and P. M. Voutier [2] concerning the primitive divisors of Lucas and Lehmer numbers. We
also recall that all the solutions of the analogous Diophantine equation

x2 = 4pn + 4pm + 1

where found, for m = 1 and m = 2, by N. Tzanakis and J. Wolfskill in [12], and for general m, by M.-H. Le in
[7].

In 2017, M. A. Bennett and A. M. Scheerer [1] considered a more general equation with the form

x2 = N pn + Mpm + �2, p ∈ P, x, �, m, n ∈ N, m < n, (1.3)

where M, N are nonzero integers with N ≥ 1. They proved that if p �= 2 and

max{|M |, N , �2} ≤ p − 1, (1.4)

then the solutions (p, x, m, n) of (1.3) satisfy either

n = 2m, and x = pm · x0 ± �, �, x0 ∈ Z with max{x20 , 2�x0} < p

or

m ≤ 3.

Their proofs were based upon Padé approximation to the binomial functions.
In this paper, we consider the equation (1.3) where � > 1 odd, M = −4 and N = 4. We first give the relation

between (1.2) and generalized Ramanujan-Nagell equation as follows:

Theorem 1.1 The Diophantine equation (1.2) has a solution (p, x, m, n) with �2 < 4pm (or �2 > 4pm) if and
only if the equation

X2 + (4pm − �2) = 4pZ , X, Z ∈ N (1.5)

(or

X2 − (�2 − 4pm) = 4pZ , X, Z ∈ N (1.6)

has a solution (X, Z) with Z > m. Moreover, if the above condition holds, then (x, n) = (X, Z).

Next, by Theorem 1.1, using some classical results on the generalized Ramanujan-Nagell equation, all
solutions of (1.2) with �2 < 4pm can be derived.

Theorem 1.2 For � > 1, the Diophantine equation (1.2) has only the following solutions (p, x, m, n) with
�2 < 4pm :

� = 3, p = 2, (x, m, n) = (5, 2, 3), (11, 2, 5), (181, 2, 13), (45, 3, 9).
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� = 5, p = 2, (x, m, n) = (11, 3, 5), (181, 3, 13).
� = 5, p = 3, (x, m, n) = (31, 2, 5).
� = 9, p = 5, (x, m, n) = (559, 2, 7).
� = 11, p = 2, (x, m, n) = (181, 5, 13).

For any fixed �, let pm1
1 , · · · , pmr

r denote all prime powers satisfying �2 > 4pmi
i and pi � � (i = 1, · · · , r).

By Theorem 1.1, all the solutions (p, x, m, n) of (1.2) with �2 > 4pm and (p, m) = (pi , mi ) (i = 1, · · · , r)

can be determined by solving the equations

X2 − (�2 − 4pmi
i ) = pZ

i , X, Z ∈ N, i = 1, · · · , r. (1.7)

Finally, as an example of using the above method, we find all solutions (p, x, m, n) of (1.2) for � ∈ {5, 7}.
Theorem 1.3 For � = 5, the Diophantine equation (1.2) has only the following solutions:

p = 2, (x, m, n) = (11, 3, 5), (181, 3, 13), (7, 1, 3), (9, 1, 4), (23, 1, 7).
p = 3, (x, m, n) = (31, 2, 5), (7, 1, 2), (11, 1, 3).

Theorem 1.4 For � = 7, the Diophantine equation (1.2) has only the following solutions:

p = 2, (x, m, n) = (13, 1, 5), (17, 2, 6), (9, 3, 4), (23, 3, 7).
p = 3, (x, m, n) = (11, 2, 3), (19, 1, 4).
p = 11, (x, m, n) = (73, 1, 3).

2 Preliminaries

Let D be an odd positive integer.

Lemma 2.1 (Theorem 2 of [4]) The equation

X2 + D = 4 · 2Z , X, Z ∈ N

has at most one solution (X, Z), except for the following cases:

D = 7, (X, Z) = (1, 1), (3, 2), (5, 3), (11, 5), (191, 13).
D = 23, (X, Z) = (3, 3), (45, 9).
D = 2s+2 − 1, (X, Z) = (1, s), (2s+1 − 1, 2s) where s is a positive integer with s > 1.

Lemma 2.2 (Theorem 2 of [4]) If p is an odd prime with p � D, then the equation

X2 + D = 4pZ , X, Z ∈ N

has at most one solution (X, Z), except for the following cases:

D = 11, p = 3, (X, Z) = (1, 1), (5, 2), (31, 5).
D = 19, p = 5, (X, Z) = (1, 1), (9, 2), (559, 7).
D = 4ps − 1, (X, Z) = (1, s), (2ps − 1, 2s) where s is a positive integer with s > 1.

Lemma 2.3 ([11]) For D ∈ {9, 17, 33, 41}, the equation

X2 − D = 4 · 2Z , X, Z ∈ N

has only the following solutions:

D = 9, (X, Z) = (5, 2).
D = 17, (X, Z) = (5, 1), (7, 3), (9, 4), (23, 7).
D = 33, (X, Z) = (7, 2), (17, 6).
D = 41, (X, Z) = (7, 1), (13, 5).

Lemma 2.4 ([3]) The equation

X2 − 13 = 4 · 3Z , X, Z ∈ N

has the only solutions (X, Z) = (5, 1), (7, 2), (11, 3).
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Lemma 2.5 ([12]) If q > 3, then the equation

x2 = 4qn + 4q + 1, x, n ∈ N, n > 1

has the only solution (x, n) = (2q + 1, 2).

Lemma 2.6 ([7]) The equation

x2 = 4qn + 4qm + 1, x, m, n ∈ N, n > m > 1, gcd(m, n) = 1

has the only solution (x, m, , n).

Lemma 2.7 The equation

X2 − 37 = 4 · 3Z , X, Z ∈ N (2.1)

has the only solutions (X, Z) = (7, 1), (19, 4).

Proof We now assume that (X, Z) is a solution of (2.1) with (X, Z) �= (7, 1) and (19, 4). Then we have

X2 = 4 · 3Z + 4 · 32 + 1, Z > 2. (2.2)

However, by [12], we see from (2.2) that 2 � Z , and by [7], it is impossible. Thus, the lemma is proved. ��
To prove the subsequent Lemma 2.11, the following lemmas are introduced.

Lemma 2.8 (Theorem 10.9.1 and 10.9.2 of [5])

u2 − Dv2 = 1, u, v ∈ Z (2.3)

has positive integer solutions (u, v), and it has a unique positive integer solution (u1, v1) such that u1+v1
√

D ≤
u + v

√
D, where (u, v) through all positive integer solutions of (2.3). Every solution (u, v) of (2.3) can be

expressed as

u + v
√

D = ±(u1 + v1
√

D)r , r ∈ Z.

Lemma 2.9 ([8,13]) If D is not a square, p is an odd prime with p � D and the equation

A − DB2 = pC , A, B, C ∈ Z, gcd(A, B) = 1, C > 0 (2.4)

has solutions (A, B, C), then it has a unique positive integer solution (A1, B1, C1) such that C1 ≤ C and
1 < (A1 + B1

√
D)/(A1 − B1

√
D) < u1 + v1

√
D, where C through all solutions of (2.4), (u1, v1) is the least

solution of (2.3). The solution (A1, B1, C1) is called the least solution of (2.4). Every solution (A, B, C) of
(2.4) can be expressed as

C = C1t, t ∈ N,

A + B
√

D = (A1 + δB1
√

D)t (u + v
√

D), δ ∈ {1,−1},
where (u, v) is a solution of (2.3).

For any algebraic number of α of degree k over Q, let

h(α) = 1

k

(

log |a0| +
k∑

i=1

logmax
{
1, |α(i)|}

)

be the absolute logarithmic height of α, where a0 is the leading coefficient of the minimal polynomial of α

over Z, and α(i) (i = 1, 2, · · · , k) are the conjugates of α in C. Let α1, α2 be two algebraic numbers with
min{|α1|, |α2|} ≥ 1, and let logα1, logα2 be any determinations of their logarithms. Further, let b1, b2 be
positive integers, and let � = b1 logα1 − b2 logα2.
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Lemma 2.10 If � �= 0 and α1, α2, logα1, logα2 are real and positive, then

log |�| ≥ −19.7 × d4 × (log A1)(log A2)

(

max

{

1,
20

d
, 0.38 + log E

})2

,

where d = [Q(α1, α2) : Q]/[R(α1, α2) : R],

log A j ≥ max

{
1

d
,
| logα j |

d
, h(α j )

}

, j = 1, 2,

E = b1
d log A2

+ b2
d log A1

.

Proof This lemma is the special case of Corollary 2 of [6] for m = 20. ��
Lemma 2.11 The equation

X2 − 5 = 4 · 11Z , X, Z ∈ N (2.5)

has the only solutions (X, Z) = (7, 1), (73, 3).

Proof We assume that (X, Z) is a solution of (2.5) with (X, Z) �= (7, 1) and (73, 3). So, it is clear that 2 � X .
If 2 | Z , then 5 = X2 − 4 · 11Z = X2 − (2 · 11Z/2)2 = (X − 2 · 11Z/2)(X + 2 · 11Z/2) ≥ X + 2 · 11Z/2 > 5,
a contradiction. Hence we have 2 � Z , Z ≥ 5 and X > 73. Let λ = (−1)(X−1)/2. Since X ≡ λ (mod 4),
(3X + 5λ)/4 and (X + 3λ)/4 are coprime positive integers. By (2.5), we get

(
3X + 5λ

4

)2

− 5

(
X + 3λ

4

)2

= 11Z . (2.6)

We see from (2.6) that the equation

A − 5B2 = 11C , A, B, C ∈ Z, gcd(A, B) = 1, C > 0 (2.7)

has a solution

(A, B, C) =
(
3X + 5λ

4
,

X + 3λ

4
, Z

)

. (2.8)

Notice that 42 − 5 · 12 = 11 and (u1, v1) = (9, 4) is the least solution of the equation

u2 − 5v2 = 1, u, v ∈ Z. (2.9)

By the definition given in Lemma 2.9, (A1, B1, C1) = (4, 1, 1) is the least solution of (2.7). Therefore, applying
Lemma 2.9 to (2.8), we get either

3X + 5λ

4
+ X + 3λ

4

√
5 = (4 + √

5)Z (u + v
√
5) (2.10)

or

3X + 5λ

4
+ X + 3λ

4

√
5 = (4 − √

5)Z (u + v
√
5) (2.11)

where (u, v) is a solution of (2.9).
When (2.10) holds, we have

3X + 5λ

4
− X + 3λ

4
= (4 − √

5)Z (u − v
√
5). (2.12)

Since (3X + 5λ)/4 + (X + 3λ)
√
5/4 > 0 and 4 + √

5 > 0, we see from (2.10) that u + v
√
5 > 0. Hence, by

Lemma 2.8, we get

u + v
√
5 = (9 + 4

√
5)r , r ∈ Z. (2.13)
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Further, since X > 73, by (2.10), (2.12) and (2.13), we have

1 <
(3X + 5λ) + (X + 3λ)

√
5

(3X + 5λ) − (X + 3λ)
√
5

=
(

X + λ
√
5

X − λ
√
5

)(
3 + √

5

3 − √
5

)

=
(
4 + √

5

4 − √
5

)Z

(9 + 4
√
5)2r < 9 + 4

√
5.

(2.14)

Since Z ≥ 5, we find from (2.14) that r < 0. Let

s = −r, (2.15)

α = 4 + √
5, ᾱ = 4 − √

5 β = 9 + 4
√
5, β̄ = 9 − 4

√
5 (2.16)

Then, s is a positive integer, by (2.10), (2.12), (2.13), (2.15) and (2.16), we have

3X + 5λ

4
+ X + 3λ

4

√
5 = αZ β̄s,

3X + 5λ

4
− X + 3λ

4

√
5 = ᾱZβr . (2.17)

Further, eliminating X in (2.17), we get

αZ β̄s

(
3 − √

5

2

)

− ᾱZβs

(
3 + √

5

2

)

= λ
√
5. (2.18)

Let

ρ = 3 + √
5

2
, ρ̄ = 3 − √

5

2
. (2.19)

Since β = ρ3 and β̄ = ρ̄3, by (2.18) and (2.19), we obtain

αZ ρ̄3s+1 − ᾱZρ3s+1 = λ
√
5. (2.20)

Similarly, when (2.11) holds, we can deduce that

αZ ρ̄3s−1 − ᾱZρ3s−1 = −λ
√
5, (2.21)

where s is a positive integer. The combination of (2.20) and (2.21) yields
∣
∣
∣α

Z ρ̄3s+θ − ᾱZρ3s+θ
∣
∣
∣ = √

5, θ ∈ {1,−1}. (2.22)

Further, since log(1 + z) < z for any z > 0, by (2.22), we have

0 <

∣
∣
∣Z log

α

ᾱ
− 2(3s + θ) log ρ

∣
∣
∣ <

√
5

min{αZ ρ̄3s+θ , ᾱZρ3s+θ } . (2.23)

Furthermore, since min{αZ ρ̄3s+θ , ᾱZρ3s+θ } ≥ ᾱZρ3s+θ −√
5 >

1

2
ᾱZρ3s+θ by (2.22), we get from (2.23) that

0 <

∣
∣
∣Z log

α

ᾱ
− 2(3s + θ) log ρ

∣
∣
∣ <

2
√
5

ᾱZρ3s+θ
. (2.24)

Let α1 = α/ᾱ, α2 = ρ and

� = Z logα1 − 2(3s + θ) logα2. (2.25)

By (2.16) and (2.19), we have Q(α1, α2) = Q(
√
5),

[Q(α1, α2) : Q]
[R(α1, α2) : R] = 2, h(α1) = log(4 + √

5), h(α2) = 1

2
log

(
3 + √

5

2

)

. (2.26)

123



A note on the Diophantine equation x2 = 4pn − 4pm + �2 921

Applying Lemma 2.10 to (2.26), we may choose that

d = 2, log A1 ≥ log(4 + √
5), log A2 ≥ 1

2
. (2.27)

Therefore, using Lemma 2.10, by (2.24), (2.25) and (2.27), we have

log |�| ≥ −19.7 × 24 × (log(4 + √
5)) × 1

2
(max{10, 0.38 + log E})2

> −288.47 (max{10, 0.38 + log E})2 ,

(2.28)

where

E = Z + 3s + θ

log(4 + √
5)

. (2.29)

By (2.24), (2.28) and (2.29), we get

log(2
√
5) + 288.47

(
max{10, 0.38 + log E})2 > log(ᾱZρ3s+θ

)

= Z log(4 − √
5) + (3s + θ) log ρ >

(

Z + 3s + θ

log(4 + √
5)

)

(log(4 − √
5))

> 0.56E .

(2.30)

Therefore, by (2.30), we obtain

2.67 + 515.13 (max{10, 0.38 + log E})2 > E . (2.31)

If 10 < 0.38 + log E , then from (2.31) we get

2.67 + 515.13(0.38 + log E)2 > E,

whence we can deduce that

E < 68260. (2.32)

If 10 ≥ 0.38 + log E , then (2.32) is still true. Therefore, by (2.29) and (2.32), we get Z < 68260. But, using
MAPLE 2016, (2.5) has no solution (X, Z) with 3 < Z < 68260. Thus, the lemma is proved. ��

3 Proofs of Theorems

Proof of Theorem 1.1 By comparing (1.1), (1.2), (1.5) and (1.6), the theorem follows easily. ��
Proof of Theorem 1.2 Since � > 1, by Theorem 1.1, if (1.2) has a solution (p, x, m, n) with �2 < 4pm , then
(1.5) or (1.6) has at least two solutions (X, Z) = (X1, Z1) and (X2, Z2) such that (X1, Z1) = (�, m) and
1 < X1 < X2. Therefore, by Lemmas 2.1 and 2.2, we obtain the theorem immediately. ��
Proof of Theorem 1.3 For � = 5, by Theorem 1.2, (1.2) has only the solutions

p = 2, (x, m, n) = (11, 1, 5), (181, 3, 13) and

p = 3, (x, m, n) = (31, 2, 5)
(3.1)

with �2 < 4pm .

On the other hand, since pm = 2, 3 and 4 are all prime powers satisfying �2 > 4pm and p � �, by Theorem1.1,
all the solutions (p, x, m, n) of (1.2) with �2 > 4pm can be determined by solving the equations

X2 − 17 = 4 · 2Z , X, Z ∈ N,

X2 − 13 = 4 · 3Z X, Z ∈ N
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and

X2 − 9 = 4 · 2Z X, Z ∈ N.

Therefore, by Lemmas 2.3 and 2.4, (1.2) has only the solutions

p = 2, (x, m, n) = (7, 1, 3), (9, 1, 4), (23, 1, 7) and

p = 3, (x, m, n) = (7, 1, 2), (11, 1, 3)
(3.2)

with �2 > 4pm . Thus, the combination of (3.1) and (3.2) yields the theorem. ��
Proof of Theorem 1.4 Using the same method as in the proof of Theorem 1.3, by Lemmas 2.3, 2.4, 2.7 and 2.11,
we can obtain the theorem immediately. ��
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