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Abstract During the past three decades fundamental progress has been made on constructing large torsion-free
subgroups (i.e. subgroups of finite index) of the unit group U(ZG) of the integral group ring ZG of a finite
group G. These constructions rely on explicit constructions of units in ZG and proofs of main results make
use of the description of the Wedderburn components of the rational group algebra QG. The latter relies on
explicit constructions of primitive central idempotents and the rational representations of G. It turns out that the
existence of reduced two degree representations play a crucial role. Although the unit group is far from being
understood, some structure results on this group have been obtained. In this paper we give a survey of some of
the fundamental results and the essential needed techniques.
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1 Introduction

The integral group ring ZG of a finite group G is a ring that, in some sense, solely is based on the defining
group G. So, the group ring ZG is a tool that serves as a meeting place between group and ring theory. The
defining group G is a subgroup of the unit group U(ZG), and hence, if the interplay works well, there should
be strong relation between the group G and the unit group U(ZG). The integral group ring ZG is an order
in the finite dimensional semisimple rational group algebra QG. The latter can be well described as a product
of matrix algebras over division algebras by using strong structure theorems and the rational representations.
However, since there are many many orders in QG it is a difficult problem to rediscover ZG from such a matrix
decomposition.

Several books have been dedicated to algebraic structural topics in noncommutative group rings: A. Bovdi
[12], N. Gupta [15], G. Karpilovsky [20–25], G. Lee [28], D.S. Passman [30–32], I.B.S. Passi [29], W. Plesken
[33], C. Polcino Milies [34], I. Reiner [36], K.W. Roggenkamp [37], K.W Roggenkamp and M.J. Taylor [38],
S.K. Sehgal [40], M. Taylor [43], A.E. Zalesskii, andA.V. Mihalev [44]. The following books are specifically
dedicated to the study of units of integral groups rings of finite groups: C. Polcino Milies and S.K. Sehgal [35],
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688 E. Jespers

S.K. Sehgal [41] and E. Jespers and Á del Río [18,19]. In [18,19] the state of the art is given (up to 2016) on the
construction of large (torsion-free) subgroups of U(ZG), for finite groups G, and on structural results of U(ZG).
The aim of this paper is to give the reader an intuition and thus to invite researchers to the topic. This is done
by guiding the reader through the following topics: (1) the essential constructions of units and large subgroups,
(2) surveying the fundamental methods needed (such as the construction of primitive central idempotents of
the rational group algebra QG and the description of its simple components), (3) constructions of large central
subgroups, (4) constructions of free groups, (5) structure results, in particular abelianisation and amalgamation
results. The last topics are recent results that are not included in [18,19]. The other topics covered are based on
[18,19] and the reader should consult these books in case no explicit references are given. For further references
we refer to the bibliography in these books. For some topics we will include references to some recent results,
without the aim of being comprehensive. Only few proofs will be included.

2 The unit group versus the isomorphism class

Let R be a ring and G a group. The group ring RG is the free R-module with basis G, i.e. it consists of all formal
sums

∑
g∈G rgg, with only a finite number of coefficients rg ∈ R different from 0, and with addition defined as

∑

g∈G

rgg +
∑

g∈G

r ′
gg =

∑

g∈G

(rg + r ′
g)g,

and a product that extends the products of both R and G, i.e.
⎛

⎝
∑

g∈G

rgg

⎞

⎠

(
∑

h∈G

shh

)

=
∑

x∈G

⎛

⎝
∑

g,h∈G, gh=x

rgsh

⎞

⎠ x .

The support of an element α = ∑
g∈G rgg ∈ RG is the finite set supp(α) = {g ∈ G | rg �= 0}.

The augmentation map of RG is the ring homomorphism

aug : RG → R :
∑

g∈G

rgg �→
∑

g∈G

rg.

More generally, for a normal subgroup N of G, the augmentation map modulo N (also called the relative
augmentation map) is the ring homomorphism

augG,N ,R RG → R(G/N ) :
∑

g∈G

rgg �→
∑

g∈G

rg(gN ).

The kernel of augG,N ,R is called the augmentation ideal of RG modulo N . If the ring R is clear then from the
context we simply denote this map as augG,N . It readily is verified that

ker(augG,N ,R) =
∑

n∈N

(n − 1)RG =
∑

n∈N

RG(n − 1).

If, furthermore, N is finite then

Ñ =
∑

n∈N

n

is a central element of RG and Ñ (1 − n) = 0 for all n ∈ N . Hence,

Ñ 2 = |N |Ñ .

Moreover,

ker(augG,N ,R) = AnnRG(Ñ ) = {α ∈ RG | α Ñ = 0}.
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Structure of group rings and the group of units... 689

If, furthermore |N | is invertible in R then

N̂ = 1

|N | Ñ

is a central idempotent in RG and

RG = RG N̂ ⊕ RG(1 − N̂ ) and R(G/N ) = RG N̂ .

The unit group of a ring R, denoted U(R), is the group

U(R) = {u ∈ R | uv = 1 = vu, some v ∈ R}.
Our interest mainly goes to the unit group of the integral group ring ZG of a finite group G. Of course, if
α = ∑

g∈G rgg ∈ U(ZG) then aug(α) = ∑
g∈G rg = ±1. A unit α ∈ ZG is said to be normalized if

aug(α) = 1. The group consisting of all normalized units of ZG is denoted U1(ZG). Clearly

U(ZG) = ±U1(ZG).

Note that if R is a commutative ring then the group ring RG is endowed with an involution ∗ (often called the
classical involution)

∗ : RG → RG :
∑

g∈G

rgg �→
∑

g∈G

rgg−1.

The integral group ring is the ring that links group theory to ring theory. One hence has a natural fundamental
question: the isomorphism problem for integral group rings of finite groups G and H :

Is it true that the a ring ismorphism ZG ∼= ZH
implies a group isomorphism G ∼= H? (ISO)

This question first was posed by Higman in his thesis [17]. The following proposition is a remarkable fact for
group rings: an integral group ring isomorphism is equivalent with unit group isomorphism. To prove this, we
first need a lemma. Of course ZG is a subring of the rational group algebra QG; and thus one can talk of (Q-)
independent elements in ZG.

Lemma 2.1 Let G be a finite group. The following properties hold for a subgroup H of G.

1. (Berman) If α = ∑
g∈G zgg is a unit of finite order in U1(ZG) such that z1 �= 0 (with 1 the identity of G)

then α = 1. In particular, if α is a normalized central unit of finite order then u ∈ Z(G).
2. H is a set of independent elements; in particular, |H | ≤ |G|.
3. If |H | = |G| then ZG = ZH.

Proof We only prove the second and third part.
(2) Assume that

∑
h∈H zhh = 0, with each zh ∈ Z. Let x ∈ H . Since, by assumption, H is finite, also

hx−1 is unit of finite order in U1(ZG). Clearly, hx−1 �= 1 if h �= x . Hence, by part (1), the coefficient of 1 in
hx−1 = 0. Since the coefficient of 1 in

∑
h∈H zhhx−1 equals zx , we conclude that zx = 0. Since x is arbitrary,

part (2) follows.
(3) Assume H is a finite subgroup of U1(ZG) and |H | = |G|. By part (2) the elements of H are independent

and thus QG = QH . So, ZH ⊆ ZG and nZG ⊆ ZH for some positive integer n. It remains to show that
if g ∈ G then g ∈ ZH . So, let g ∈ G and write ng = ∑

h∈H zhh, with each zh ∈ Z. Then ngh−1 =
zh + ∑

h′∈H,h′ �=h zh(h′h−1). As 1 �= h′h−1 is periodic, it follows from part (1) that the coefficient of 1 of h′h−1

is 0. Therefore, the coefficient of 1 in ngh−1 equals zh . Hence it has to be divisible by n. As h is arbitrary we
have shown that for every h ∈ H in the support of ng we have that n|h. Consequently, ng ∈ nZH and thus
g ∈ ZH , as desired. �
Proposition 2.2 Let G and H be finite groups. The following statements are equivalent.

1. ZG ∼= ZH (ring isomorphism),
2. U1(ZG) ∼= U1(ZH) (group isomorphism),
3. U(ZG) ∼= U(ZH) (group isomorphism).
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690 E. Jespers

Proof Clearly (1) implies (3). For the other implication it is useful to turn any isomorphism into a normalized
isomorphism. This is done as follows, for any commutative ring R. Let f : U(RG) → U(RH) be a group
isomorphism. Define

f ∗ : U(RG) → U(RH) :
∑

g∈G

rgg �→
∑

g∈G

rg
(
augH ( f (g))

)−1
f (g).

It is readily verified that f ∗ is an isomorphism that preserves augmentation, i.e. augH ( f ∗(g)) = 1 for all g ∈ G
and thus augH ( f ∗(α)) = augG(α) for all α ∈ U(RG). Hence, (3) implies (2).

Now, assume (2) holds, i.e. assume f : U1(ZH) → U1(ZG) is a group isomorphism. Then f (H) is a finite
subgroup of U1(ZG) that is isomorphic to H . Hence, by Lemma 2.1, |H | = | f (H)| ≤ |G|. Similarly, |G| ≤ |H |
and thus |H | = |G|. Furthermore, by Lemma 2.1, the Z f (H) = ZG and thus we obtain an isomorphism
ZH → ZG, as desired. �

Hence, (ISO) is equivalent with

U(ZG) ∼= U(ZH) �⇒ G ∼= H. (ISO’)

It thus is a fundamental problem to describe the unit group of the integral group ring of a finite group. It is
a hard problem to fully describe this group and hence one often focusses on describing a large subgroup, i.e. a
subgroup of finite index. Preferably one would like a torsion-free subgroup of index exactly |G|. In other words
one has the following problem.

Problem 2.3 : Let G be a finite group. Does there exists a torsion-free normal subgroup of finite index, say N
such that |U1(ZG)/N | = |G|. This means that

U1(ZG) = N � G,

a semidirect product of groups (i.e. the inclusion G → U1(ZG) splits).

It easily is verified (see [41, Chapter 4]) that an affirmative answer to Problem 2.3 gives an affirmative answer
to (ISO). In case G is a nilpotent group it is sufficient to check that there is a normal complement.

Note that Roggenkamp and Scott gave ametabelian counter example to the problem (nevertheless,Withcomb
proved (ISO) holds for finite metabelian groups). However, because of the link with (ISO), it remains a challenge
to determine classes of groups for which there is a positive answer. A positive answer to Problem 2.3 also has
been proven for finite groups G having an abelian normal subgroup A such that either G/A has exponent dividing
4 or 6, or G/A is abelian of odd order (by Cliff-Sehgal-Weiss). We refer the reader to [41] for proofs.

However, the general problem remains open. Sehgal in [41, Problems 29 and 30] stated two challenging
problems.

Problem 2.4 (Sehgal) Does Problem 2.3 have an affirmative answer if G is a finite nilpotent group? Even in
case G has nilpotency class three the answer is not known. For class two the answer is affirmative.

Nevertheless, using other methods, (ISO) has been proven for the following classes of finite groups:
metabelian groups (Whitcomb), nilpotent groups (Roggenkamp and Scott) and simple groups (Kimmerle, Lyons,
Sandling). Hertweck [16] has given a counter example to the isomorphism problem. It is a group of order 2219728,
with a normal Sylow 97-subgroup and the group has derived length 4.

3 Construction of units

In order to study the unit group U(ZG), with G a finite group, one first would like to know some generic
construction of units. Apart from the trivial units there are two main constructions: the Bass units (introduced
by Bass) and the bicyclic units (introduced by Ritter and Sehgal).

Trivial units
Clearly ±G ⊆ U(ZG). The elements of ±G are called the trivial units.

Unipotent units and bicyclic units
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Structure of group rings and the group of units... 691

Let R be an associative ring with identity element 1. Let η be a nilpotent element of R, i.e. ηk = 0 for some
positive integer k. Then

(1 − η)(1 + η + · · · + ηk−1) = 1 = (1 + η + · · · + ηk−1)(1 − η).

So, from nilpotent elements one can construct units. Note that the rational group algebra QG has no non-zero
nilpotent elements if and only if QG is a direct sum of division algebras. Hence, for most finite groups the group
algebra has nilpotent elements (the only exceptions being the abelian groups and the Hamiltonian groups of order
2mt , with t an odd number such that the multiplicative order of 2 modulo t is odd).

One can construct nilpotent elements from almost idempotent elements e ∈ R (i.e. e2 = ne for some positive
integer n). For any r ∈ R,

((n − e)re)2 = 0

and thus

1 + (n − e)re

is a unipotent unit (with inverse 1 − (n − e)re).
Let G be a finite group and let e be an idempotent inQG (recall thatZG only contains 0 and 1 as idempotents,

see Section 6). Let ne be the smallest positive integer such that nee ∈ ZG. Then, for h ∈ G,

b(h, e) = 1 + n2
e(1 − e)he and b(e, h) = 1 + n2

eeh(1 − e)

are unipotent units in ZG. They are called generalized bicyclic units.
In rational group algebras one can easily construct idempotents. Indeed, let g ∈ G be an element of order n.

Then,

ĝ = 〈̂g〉 = 1

n
〈̃g〉 = 1

n
g̃ = 1

n

∑

0≤i≤n−1

gi

is an idempotent in QG and g̃ is an almost idempotent in ZG. The units

b(h, g̃) = 1 + (1 − g)hg̃ and b(g̃, h) = 1 + g̃h(1 − g)

are called the bicyclic units of ZG. Obviously, b(h, g̃)−1 = b(−h, g̃). Note that a bicyclic unit b(h, g̃) is trivial
unit if and only if h ∈ NG(〈g〉); otherwise it is a unit of infinite order. Note that b(h, ĝ) = b(α, g̃) for some
α ∈ Z〈g〉.
Cyclotomic units and Bass units
Let R be an associative ring and x a unit of finite order n. Let k and n be relatively prime positive integers and
let m be a positive integer such that km ≡ 1 mod n. Then

uk,m(x) = (1 + x + · · · + xk−1)m + 1 − km

n
(1 + x + · · · + xn−1)

is an invertible element in R with inverse ul,m(xk), where l is a positive integer such that kl ≡ 1mod n. Note that if
R is a domain and x �= 1 then (1−x)((1+x +· · ·+xn−1) = 0 implies that 1+x +· · ·+xn−1 = 0 and thus, in this

case, uk,m = (1+ x +· · ·+ xk−1)m . If, furthermore, R is a field then uk,m = (1+ x +· · ·+ xk−1)m =
(
1−xk

1−x

)m
.

The unit 1−xk

1−x is called a cyclotomic unit and is denoted

ηk(x) = 1 − xk

1 − x
.

Note that (ηk(x))−1 = ηl(xk), where l is a positive integer such that lk ≡ 1 mod n. Hence ηk(x) ∈ U(Z[x]).
We also remark that if x ∈ R is a unit of finite odd order then −x has even order and uk,m(−x) =

(1 − x + x2 + · · · + (−1)k−1)m . Such units are called alternating units in integral group rings [41].
Let G be a finite group. We remark that, for g ∈ G,

uk,m(g) = uk′,m(g) if k ≡ k′ mod |g|.
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692 E. Jespers

Hence, in the definition of uk,m(g) we may assume that 1 < k < |g|. The units uk,m(g), with g ∈ G and
(k, |g|) = 1 are called the Bass units of ZG. These were introduced by Bass in [10]. One can also show that

uk,m(g)uk,m1(g) = uk,m+m1(g).

We now show that almost all Bass units are of infinite order.

Lemma 3.1 Let G be a finite group and g ∈ G. A Bass unit uk,m(g) is torsion if and only if k ≡ ±1 mod |g|.
Proof Let n = |g| and let u = uk,m(g). If k ≡ 1 mod n then u = 1 and the result is clear in this case.

So, assume that k �≡ 1 mod n and in particular n > 1. If k = n − 1 and m = 2 then u = (g̃ − gn−1)2 −
1−(n−1)2

n g̃ = g−2. If k ≡ −1 mod n then m is a multiple of 2 and thus u = un−1,m(g) = un−1,2(g)
m
2 = g−m .

This proves that if k ≡ ±1 mod n then u is torsion.
Conversely, assume that u is torsion. Let ζ be a complex root of unity of order n. By the Universal Property of

GroupRings, the group isomorphism 〈g〉 → 〈ζ 〉, mapping g to ζ , extends to a ring homomorphism f : ZG → C.
As n > 1, f (g̃) = 0 and therefore f (u) = ηk(ζ )m . Since u is torsion, f (u) is a root of unity, hence so is ηk(ζ ).
This implies that |ζ k − 1| = |ζ − 1|. Thus ζ and ζ k are two vertices of a regular polygon with n vertices so that
ζ and ζ k are at the same distance to 1. This implies that ζ k is either ζ or ζ = ζ−1. Then k ≡ ±1 mod n, as
desired. �

We have introduced two type of units: the Bass units and the bicyclic units. The constructions of these are
based on the cyclotomic units and unipotent units. These units are of great importance for the unit group U(ZG).
The main reason being the following results.

Theorem 3.2 Let ξ be a complex root of unity. The cyclotomic units of Z[ξ ] generate a subgroup of finite index
in U(Z[ξ ]).

For a ring R and positive integer n, we denote by

ei j (r) ∈ Mn(R)

the unipotent matrix 1 + r Ei j , where Ei j is the elementary matrix that has only one nonzero entry (at position
(i, j)) and this entry equals 1. A useful formula is

Ei j Ekl = δ jk Eil .

Proposition 3.3 1. The group SLn(Z) is generated by the matrices ei j = 1 + Ei j with i �= j .
2. (Sanov) Let z1, z2 ∈ C such that |z1z2| ≥ 4 then 〈e12(z1), e21(z2)〉 is a free group of rank 2.

3. The group

{(
a b
c d

)

∈ SL2(Z) | a ≡ d ≡ 1 mod 4,

}

is a free group of rank 2 generated by e12(2) and

e21(2).

Let R be a commutative Noetherian domain with field of fractions F and let A be a finite dimensional F-
algebra. A full R-lattice in a finite dimensional F-vector space V is a finitely generated R-submodule of V (i.e.
an R-lattice in V ) that contains a basis of V . An R-order in A is a subring of A which also is a full R-lattice in
A. A Z-order will be simply called an order. Because Z is a PID, an order contains a Z-basis and this obviously
also is a Q-basis of A. Clearly, Mn(R) is an R-order in Mn(F). Also, if O is an order in A then Mn(O) is an

order in Mn(A). The integral quaternions
(−1,−1

Z

)
is an order in the division algbera

(−1,−1
Q

)
(see Section 4).

Obviously, if G is a finite group then ZG is an order in QG
With “elementary methods” (see [18, Chapter 1]) one can calculate the unit group of some some well known

rings. By ξn we denote a complex root of unity of order n.

1. U(Z) = {−1, 1}.
2. U(Z[i]) = {1,−1, i,−i}.
3. U(Z[ξ3]) = {±1,±ξ3,±ξ23 }.
4. U(Z[ξ6]) = 〈ξ6〉.
5. U(Z[ξ8]) = 〈ξ8〉 × 〈1 + √

2〉 = 〈ξ8〉 × 〈η3(ξ8)〉 = C8 × C∞ and η3(ξ8) = 1 + ξ8 + ξ28 .
6. U (ZC5) = ±C5 × 〈g + g4 − 1〉, where C5 = 〈g | g5 = 1〉.
7. U1(ZC8) = C8 × 〈u3,2(g)〉 = C8 × C∞, where C8 = 〈g | g8 = 1〉.
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Structure of group rings and the group of units... 693

8. U
((−1,−1

Z

))
= Q8, where Q8 is the quaternion group of order 8.

9. (Higman) U1(ZQ8) = Q8
10. U1(ZD8) = B � D8, where B is the subgroup generated by the bicyclic units. Furthermore, B is a free group

of rank 3

The previous list contains several examples of unit groups that are finite. Actually all relevant groups are
included in these examples as shown by the following result of Higman.

Theorem 3.4 (Higman) The following conditions are equivalent for a finite group G.

1. U1(ZG) is finite.
2. U1(ZG) = G.
3. G is an abelian group of exponent dividing 4 or 6, or G ∼= Q8 × E, with Q8 the quaternion group of order

8 and E an elementarry abelian 2-group (i.e. a direct product of copies of the cyclic group C2 of order 2).

For the proof of this result one can make use of the Bass units and bicylic units and of the fact that if U1(ZG)

is finite then so is the unit group U1(Z(G × C2)).
So, for almost all finite groups G, the unit group U1(ZG) is infinite. Actually one can prove that if the unit

group U(ZG) is infinite and G is not abelian and not a Hamiltonian group, i.e. not all subgroups are normal,
then U(ZG) contains a free group of rank 2 generated by two bicyclic units.

To prove this result Salwa [39] showed a more general result.

Theorem 3.5 Let R be a torsion-free ring and a, b ∈ R such that a2 = b2 = 0. Then the group 〈1 + a, 1 + b〉
is free if and only if either ab is transcendental or ab is algebraic (over Q) and one of the eigenvalues λ of ab is
a free point (that is 〈e12(1), e21(λ)〉 is a free group).

Proof Since we are mainly interested in group rings of finite groups in this paper, we will indicate a proof in
the case ab is algebraic. Without loss of generality, we may assume that R = Z[a, b], that is, R is a Z-module
and as a ring it is generated by Z and a and b. Let A = Q[a, b]. Let J = J (A) denote the Jacobson radical of
A. By assumption ab is algebraic over Q and thus Q[a, b] = Q[ab] + bQ[ab] + Q[ab]a + bQ[ab]a is finite
dimensional over Q and J is a nilpotent ideal. As (1 + J n)/(1 + J n+1) is central in (1 + J )/(1 + J n+1) we
deduce that 1 + J is a nilpotent group and hence so is (1 + J ) ∩ 〈1 + a, 1 + b〉. Thus 〈1 + a, 1 + b〉 is free if
and only if so is 〈1 + a, 1 + b〉 ⊆ U(A/J ).

Now, let ρ denote the regular representation of A over Q. Let λ1, . . . , λk be the non-zero eigenvalues of
ρ(ab). One then can prove that

A = A/J ∼= Q
m ⊕

n∏

i=1

M2(Q(μi )),

with {μ1, . . . , μn} = {λ1, . . . , λk} and the isomorphism associates 1 + a and 1 + b with
(1, . . . , 1, e12(1), . . . , e12(1)) and (1, . . . , 1, e21(μ1), . . . , e21(μk)) respectively. It follows that 〈1 + a, 1 + b〉
is free if and only if each 〈e12(1), e21(μi )〉 is a free group and thus the result follows. �

If G is a finite group of order n and R is a commutative ring then the trace function of RG is the map
T : RG → R associating to each element of RG the coefficient of 1, i.e. T (

∑
g∈G rgg) = r1. Let ρ denote

the regular representation given by left multiplication. Then T (x) = 1
n tr(ρ(x)), for every x ∈ RG. So, in case

R = C then T can be considered as the restriction of 1
n tr to CG. Salwa also proved the following

Recall that a trace function T on a complex algebra A is a C linear map A → C such that T (ab) = T (ba)

for a, b ∈ A, T (e) is a positive real number for all non-zero idempotents e ∈ A and T (a) = 0 for every nilpotent
element a ∈ A.

Proposition 3.6 Let A be a complex algebra and let T be a trace function on A. If a, b ∈ A are such that
a2 = b2 = 0 and |T (ab)| ≥ 2T (1) then 〈1 + a, 1 + b〉 is a free group.

Theorem 3.7 (Marciniak-Sehgal) Let G be a finite group and let u be a non-trivial bicyclic unit then 〈u, u∗〉 is
a free group of rank 2.

Proof Let T be the above mentioned trace map om CG and let u = b(g, h̃) �= 1 with g, h ∈ G. Let a = u −1 =
(1 − h)gh̃ and b = a∗ = h̃g−1(1 − h−1). Then ba = h̃g−1(2 − h − h−1)gh̃ = h̃(2 − z − z−1)̃h, with z /∈ 〈h〉.
Therefore, T (ab) = T (ba) = 2|h| ≥ 4 = 4T (1). Hence, 〈u = 1 + 1, u∗ = 1 + b〉 is free by the previous
Proposition. This proves the result for u = b(g, h̃) �= 1. A similar argument deals with u = b(̃h, g). �
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694 E. Jespers

4 Primitive central idempotents and simple components

In this section we discuss the decomposition of the semisimple rational group algebra QG of a finite group into
a product of simple components, the so called Wedderburn components. We begin by recalling the fundamental
theorem describing semisimple rings.

Theorem 4.1 (Wedderburn-Artin) A ring R is semisimple if and only if R is isomorphic to a finite direct product
of matrix rings over division rings.

So, if R is a semisimple algebra then

R = Re1 × · · · × Rek ∼= Mn1(D1) × · · · × Mnk (Dk),

where n1, . . . , nk are positive integers, each Di is a division ring and each ei is a primitive central idempotent.

Theorem 4.2 (Maschke’s Theorem) Let R be a ring and G a group. The group ring RG is semisimple if and
only if R is semisimple, G is finite and |G| is invertible in R (i.e. |G|r = 1 for some r ∈ R). In case R is a field,
the latter means that |G| is not a multiple of the characteristic of R

If F is a field and G is a finite group such that FG is semisimple then

FG = FGe1 × · · · × FGek ∼= Mn1(D1) × · · · × Mnk (Dk),

and each simple algebra FGei is as an F-algebra generated by the finite group Gei = {gei | g ∈ G}. Clearly,
Gei ∼= G/SG(ei ), where SG(ei ) = {g ∈ G | gei = ei }, the stabiliser of ei in G. In case G is abelian then, of
course, each ni = 1 and Di is a field. Since finite subgroups of a field are cyclic, we get that, in this case each
FGei = F(ξni ), where ξni is a primitive ni -th root of unity in the algebraic closure of F . One can then prove
the following result.

Theorem 4.3 (Perlis-Walker) Let G be a finite abelian group and F a field of characteristic 0. Let kd denote the
number of cyclic subgroups of G of order d. Then

FG ∼=
∏

d, d||G|
F(ξd)

kd
[Q(ξd ):Q]
[F(ξd ):F] .

In particular,

QG ∼=
∏

d, d||G|
Q(ξd)kd .

One can also compute the primitive central idempotents of a rational group algebra of a finite abelian group.
To do so, we introduce some notation.

Let G be a finite group and N a normal subgroup of G. Let F be a field whose characteristic does not divide
|G|. In FG consider the elements

ε(G, N ) =
{

Ĝ if G = N∏
D/N∈M(G/N )(N̂ − D̂), otherwise

Here M(G/N ) denotes the set of the minimal non-trivial normal subgroups D/N of G/N , with D a subgroup
of G containing N . It easily is verified that ε(G, N ) is a central idempotent of FG.

Lemma 4.4 If e is a primitive central idempotent of QG such that QGe is a field then e = ε(G, N ) where
N = SG(e) and QGe = Q(ξd), where d = |G/N |.
Corollary 4.5 Let G be a finite abelian group. The primitive central idempotents of QG are the elements ε(G, N )

with N a subgroup of G such that G/N is a cyclic group.
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Note that primitive central idempotents of a complex groupCG of a finite group also are well known. Indeed,
denote by Irr(G) the set of the irreducible complex characters of G. If χ ∈ Irr(G) then

e(χ) = χ(1)

|G|
∑

g∈G

χ(g−1)g

is a primitive central idempotent of CG. Moreover, it is the unique primitive central idempotent e ∈ CG such
that χ(e) �= 0. One can replace, in the above, the field C by any splitting field F of G, that is, F is a field such
that FG = ∏

i Mni (F). The Brauer splitting theorem states that Q(ξ|G|) is a splitting field of G (where ξ|G| is a
primitve |G|-th root of unity). More generally, it says that if F is a field and FG is semisimple then F(ξ|G|) is a
splitting field of G.

If FG is not necessarily split, then it is much more complicated to describe the primitive central idempotents
of FG. In theory one can determine the primitive central idempotents of FG, via Galois-descent, from the
primitive central idempotents of F(ξ|G|)G. However, this does not necessarily result in some nice generic
formulas. Nevertheless, for some classes of groups one can obtain nice descriptions in terms of the subgroups
of G. The class includes the abelian-by-supersolvable groups. We will explain such formulas for QG.

We need to introduce some terminology and notation.

Proposition 4.6 Let G be a finite group and H and K subgroups of G such that K ⊆ H. Then, Lin(H, K ) =
{χ | χ a linear complex character of H with ker(χ) = K } �= ∅ if and only if the following conditions hold

(S1) K � H,
(S2) H/K is cyclic.

Assume that (S1) and (S2) hold for χ ∈ Lin(H, K ). Then χG is absolutely irreducible if and only if (H, K )

satisfies the following condition:
(S3) for every g ∈ G \ H there exists h ∈ H such that (h, g) ∈ H \ K .
A Shoda pair of a finite group G is a pair (H, K ) of subgroups of G satisfying conditions (S1), (S2) and (S3).

Proof The first part follows from the fact that every finite subbgroup of a field is cyclic. The second part is due
to Shoda. �
Theorem 4.7 (Olivieri, del Río, Simón) If (H, K ) is a Shoda pair of a finite subgroup G and χ ∈ Lin(H, K ) then
χG is an absolutely irreducible character and there is a unique primitve central idempotent e of QG, denoted,
eQ(χ), such that χG(e) �= 0. Furthermore,

eQ(χG) = [CenG(ε(H, K )) : H ]
[Q(χ) : Q(χG)] e(G, H, K ),

where

e(G, H, K ) =
∑

t∈T

ε(H, K )t

and T is a right transversal of CenG(ε(H, K )) in G. The unique Wedderburn component containing e(G, H, K )

is QGe(G, H, K ), it will be denoted AQ(G, H, K ).

A character of a finite group is said to be monomial if it is the character afforded by a representation induced
from a linear character. One says that G is a monomial group if every irreducible complex character of G is
monomial.

Corollary 4.8 A finite group G is monomial if and only if every primitive central idempotent of QG is of the
form qe(G, H, K ) for (H, K ) a Shoda pair of G and q ∈ Q.

This result allows to compute all primitive central idempotents of QG for G a finite monomial group and this
without actually computing the monomial absolutely irreducible characters of G. It suffices to compute all the
Shoda pairs (H, K ) of G, compute e(G, H, K ) and then compute the rational number q such that qe(G, H, K )

is an idempotent. Note that different Shoda pairs can determine the same primitive central idempotent. Janssens
determined a formula for all primitive central idempotents of QG for arbitrary finite groups G (the main tool
used is Artin’s Induction Theorem). Note that the formula yields a rational linear combination of elements of the
form e(G, C, C) where C is a cyclic subgroup of G; but in general e(G, C, C) is not an idempotent.
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So, for some classes of groups one can compute explicitly the primitive central idempotents e. A next step is
to determine a description of the simple component QGe for a given central idempotent e(G, H, K ). In order to
compute the unit group U(ZG) one would like to obtain a concrete description that yields control on the rational
representations (without having to calculate the character table of G). We now state how this can be done for
e(G, H, K ) provided the Shoda Pair satisfies some additional conditions. All these results are due to Olivieri,
del Río and Simón.

A useful lemma is the following.

Lemma 4.9 Let H and K be subgroups of a finite group G such that K � H and H/K is cyclic. Assume
ε(H, K )ε(H, K )g = 0 for all g ∈ G \CenG(ε(H, K )). Then CenG(ε(H, K )) = NG(K ) = {g ∈ G | g−1K g =
K }.
Proposition 4.10 Let G be a finite group and let H and K be subgroups such that K ⊆ H. The following
conditions are equivalent.

1. (H, K ) is a Shoda pair of G, H � NG(K ) and the different G-conjugates of ε(H, K ) are orthognal.
2. (H, K ) is a strong Shoda pair, that is,
(SS1) H � NG(K ),
(SS2) H/K is cyclic and maximal abelian subgroup of NG(K )/K and
(SS3) for every g ∈ G \ NG(K ), ε(H, K )ε(H, K )g = 0
3. The following conditions hold
(SS1’) H � Cen(ε(H, K )),
(SS2’) H/K is cyclic and a maximal abelian subgroup of Cen(ε(H, K )) and
(SS3’) for every g ∈ G \ Cen(ε(H, K )), ε(H, K )ε(H, K )g = 0.

A finite group is said to be strongly monomial if every irreducible complex character of G is strongly monomial,
i.e. it is of the form χG for χ ∈ Lin(H, K ) and (H, K ) a strong Shoda pair of G. Note that for such a group
every primitive central idempotent of QG is of the form e(G, H, K ) with (H, K ) a strong Shoda pair of G.

Theorem 4.11 Every abelian-by-supersolvable finite group is strongly monomial.

A useful fact to prove this result is the following. If G is finite supersolvable group and N a maximal abelian
normal subgroup of G then N is a maximal abelian subgroup of G.

Proposition 4.12 Let (H, K ) be a pair of subgroups of a finite group G such that K � H � G and satisfying
(SS2) (i.e. H/K is cyclic and a maximal abelian subgroup of NG(K )/K ). Then (H, K ) is a strong Shoda pair
of G.

Theorem 4.13 Let G be a finite metabelian group and let A be a maximal abelian subgroup of G containing
the commutator subgroup G ′. The primitive central idempotents of QG are the elements of the form e(G, H, K )

where (H, K ) is a pair of subgroups of G satisfying the following conditions:

1. H is a maximal element in the set {B ≤ G | A ≤ B and B ′ ⊆ K ⊆ B} and
2. H/K is cyclic.

For a finite group G one can describe the simple component of QG associated to a strong Shoda Pair.

Theorem 4.14 Let (H, K ) be a strong Shoda pair of the finite group G and χ ∈ Lin(H, K ), N = NG(K ),
n = [G : N ], h = [H : K ] and x = x K a generator of the group H/K . The following properties hold.

1. N = CenG(ε(H, K )),
2. eQ(χG) = e(G, H, K ),
3. The mapping σ : N/H → Gal(Q(ξh)/Q(χG)) defined by y �→ σy , for y ∈ N/H, with

σy(ξh) = ξ i
h

where i is such that yx y−1 = xi , is an isomorphism.
4. AQ(G, H, K ) ∼= Mn (Q(ξh) ∗ (N/H)) ∼= Mn(Q(ξh)/Q(χG), f ), where f is the element of H2(N/H, H/K )

associated to the extension

1 → H/K
χ∼= 〈ξh〉 → N/K → N/H

σ∼= Gal(Q(ξh)/Q(χG)) → 1.
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More precisely, for every a ∈ N/H fix a preimage ua of a ∈ N/K . Then,

f (a, b) = ξ
j

h ,

where j is such that uaub = x j uab. More explicit, choose a right transversal T of H in N. Then

Q(ξh) ∗ (N/H) =
∑

t∈T

Q(ξh)ut

The action α : N/H → Aut(Q(ξh)) is defined in part (3) as follows. For y ∈ N/H, αy = σy . The twisting

f : N/H × N/H → U(Q(ξh)) is defined by f (x, y) = ξ
j

h if tx ty = x j kxytxy with tx , ty ∈ T so that
tx H = x, ty H = y, kxy ∈ K and j ∈ Z.

5. Let F be a field of characteristic zero and let G F = Gal(F(χ)/F(χG)). Consider G F as a subgroup of GQ

via the restriction G F → GQ. Then

AF (χG) = Mnd(F(ξh)/F(χG), f ′),

where d = [Q(ξh):Q(χG )]
[F(ξh):F(χG )] and f ′(σ, τ ) = f (σ |Q(ξh), τ |Q(ξh)) (and this is the unique simple component FGe

with χG(e) �= 0).

In [4] Bakshi and Kaur introduced the class of generalized strongly monomial groups. This is based on
generalized strong Shoda pairs of a finite group and leads to the class of generalized strongly monomial groups.
In addition to strongly monomial groups, the class of generalized strongly monomial groups also contains all
subnormally monomial groups and, more generally, the class of finite groups G such that all subgroups and
quotient groups of subgroups of G satisfy the following property: either they are abelian or they contain a
noncentral abelian normal subgroup. For the class of generalized strongly monomial finite groups the primitive
central idempotents of its rational group algebra are described, as well as the corresponding simple component
associated to each generalized strong Shoda pair of G. For other recent work on the topic of describing primitive
central idempotents we refer to [5–8]. For references on applications of the description of primitive central
idempotents and their corresponding simple components we refer the reader to [18,19].

5 Rational Wedderburn decomposition

Let F be a field of characteristic different from 2. Recall that an F-algebra A is said to be a quaternion algebra
over F if there exists a, b ∈ U(F) such that

A =
(

a, b

F

)

= F〈i, j〉
(i2 = a, j2 = b, i j = − j i)

= F1 + Fi + F j + Fk,

where k = i j . Recall the norm map N :
(

a,b
F

)
→ F , defined by x = x0 + x1i + x2 j + x3k �→ xx , where

x = x0 − x1i − x2 j − x3k, (with x0, x1, x2, x3 ∈ F). The map x �→ x defines an involution on
(

a,b
F

)
, called the

quaternion conjugation.

Note that A =
(

a,b
F

)
is a simple algebra with center F (i.e. it is a central simple F-algebra) and thus it is

either a division algebra or it is isomorphic to M2(F). The following conditions are equivalent:

1. A = M2(F),
2. N (x) = 0 for some 0 �= x ∈ A,
3. u2 = av2 + bw2 for some 0 �= (u, v, w) ∈ F3.

Definition 5.1 A simple finite dimensional rational algebra is said to be exceptional if it is one of the following
types:

type 1: a non-commutative division algebra other then a totally definite quaternion algebra
(

a,b
F

)
over a number

field F , that is, F is totally real and a, b < 0.
type 2: a 2×2-matrix ring over the rationals, a quadratic imaginary extension of the rationals or over a totally definite

quaternion algebra over Q.
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Amitsur described the finite subgroups that are contained in an exceptional simple component of type 1. Unit
groups of orders in such division algebras are a big unknown. The reader is referred to Kleinert’s book on this
topic [27]. Note that, because of Dirichlet’s unit theorem (see below) and a result of Kleinert, the exceptional
simple components of type 2 are precisely those M2(D) for which an orderO in D has only finitely many units.
Further, all finite dimensional rational non-commutative division algebras are of type 1 except those for which
the unit group of an order has a central subgroup of finite index.

For a field F and a finite dimensional semisimple rational algebra A, we denote by rF (A) the number of
simple Wedderburn components of F ⊗Q A.

Theorem 5.2 (Dirichlet’s Unit Theorem) Let F be a number field and assume that F has r real embeddings and
s pairs of complex non-real embedding. If R is the ring of integers of F then

U(R) = T × A,

where T is a finite group formed by roots of units in F and A is a free abelian group of rank r + s − 1. Note that
this rank equals rR(F) − rQ(F) and F ⊗Q R ∼= R

r × C
s .

We recall some notions concerning the rational group algebra QG. Let e1, . . . , en be the primitive central
idempotents of QG, then

QG = QGe1 ⊕ · · · ⊕ QGen,

where each QGei is identified with the matrix ring Mni (Di ) for some division algebra Di . For every i , let Oi
be an order in Di . Then Mni (Oi ) is an order in QGei . Denote by GLni (Oi ) the group of invertible matrices in
Mni (Oi ).

Let O be an order in a finite dimensional rational division algebra D. Then

SLn(O) = {x ∈ GLn(O) : nr(x) = 1},
where nr is the reduced norm, and for subset I in O we put

E(I ) = 〈I + x Elm | x ∈ I, 1 ≤ l, m ≤ ni , l �= m, Elm a matrix unit〉 ⊆ SLn(O).

Theorem 5.3 (Bass-Vaseršteı̆n-Liehl-Venkataramana) Let O be an order in a finite dimensional rational divi-
sion algebra D. Assume that n is an integer and n ≥ 2. If the simple algebra Mn(D) is not exceptional then
[SLn(O) : E(I )] < ∞ for any non-zero ideal I of O.

In this section we restrict the type of 2×2-matrices which can occur as simple components in theWedderburn
decomposition ofQG for finite groups G. We also give a classification of those finite groups which have a faithful
exceptional 2 × 2-matrix ring component (i.e. G embeds naturally into the simple component).

Surprisingly, if one assumes M2(D) to be an exceptional component of QG, then the possible parameters d

(resp. (a, b)) of D = Q(
√−d) (resp.

(
a,b
Q

)
) are very limited. It was proven by Eisele, Kiefer and Van Gelder

[14] that only a finite number of division algebras can occur and, moreover, the possible parameters have been
described. Together with the results of Bächle, Janssens, Jespers, Kiefer and D. Temmerman in [2] one has the
following result.

Theorem 5.4 Let G be a finite group and e a primitive central idempotent of QG such that QGe is exceptional.
Then

1. if QGe is of type 2 over a field Q(
√−d), then d ∈ {0,−1,−2,−3},

2. if QGe is of type 2 over a quaternion algebra
(

a,b
Q

)
,

then (a, b) ∈ {(−1,−1), (−1,−3), (−2,−5)},
3. if G is cut, i.e. all central units are trivial, and QGe ∼= M2

(−1,−3
Q

)
or QGe ∼= M2(Q(

√−2)) then there

exists another primitive central idempotent e′ such that QGe′ ∼= M2(Q) or QGe′ ∼= M2(Q(i)),

4. there exists a primitive central idempotent e of QG such that QGe ∼= M2

(−2,−5
Q

)
if and only if G maps

onto G240,90, (we refer to the Small Groups Library of GAP for the definition of G240,90),

5. if G is solvable and cut, then QGe � M2

(−2,−5
Q

)
,

6. if G is cut, then QGe cannot be of type 1.
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In the above theorem, also the groups Ge that yield an exceptional simple component of type 2 can be
described; there are less than 60 such groups.

All the fields and division algebras appearing in the previous theorem have the peculiar property to contain
a Euclidean order O which therefore is maximal and unique up to conjugation. This yields that also all the
2 × 2-matrix algebras in the Theorem have, up to conjugation, a unique maximal order, namely M2(O). Recall
that in case of Q(

√−d), with d ∈ {0, 1, 2, 3}, the unique maximal order is their respective ring of integers Id
and in case of H2, H3, H5 the respective maximal orders can easily be described; where

H2 =
(−1,−1

Q

)

, H3 =
(−1,−3

Q

)

and H5 =
(−2,−5

Q

)

.

Recall that a domain R is said to be a left Euclidean ring if there exists a map δ from R \ {0} to the non-negative
integers such that

∀ a, b ∈ R with b �= 0, ∃ q, r ∈ R : a = qb + r with δ(r) < δ(b) or r = 0;
and R is said to be a right Euclidean ring if there exists a map δ from R \ {0} to the non-negative integers such
that

∀ a, b ∈ R with b �= 0, ∃ q, r ∈ R : a = bq + r with δ(r) < δ(b) or r = 0.

6 Generators for a subgroup of finite index

Let G be a finite group. We know that ZG is an order in QG and that ZG only has trivial idempotents.

Lemma 6.1 Let K be a field extension of Q and let e = ∑
g∈G egg ∈ K G, with each eg ∈ K . If e2 = e /∈ {0, 1}

then e1 is a rational number in the interval (0, 1).

Now if e1, . . . , en are the primitive central idempotents of QG then also
∑n

i=1 ZGei is an order in QG that
contains ZG. Their unit groups, however, do not differ a lot in size. Indeed we have the following properties.

Lemma 6.2 Let A be a semisimple finite dimensional rational algebra. Let e1, . . . , en be the primitive central
idempotents of A.

1. Every element of an order O in A is integral over Z.
2. The intersection of two orders of A is again an order in A.
3. Every order of A is contained in a maximal order of A, say M. Furthermore, M = ∑n

i=1Mei and each
Mei is a maximal order in Aei .

4. Suppose O1 ⊆ O2 are two orders in A. Then
(a) u ∈ O1 is invertible in O2 if u−1 ∈ O1.
(b) the index of the unit groups (U(O2) : U(O1)) is finite.

Proof We only prove part (4).
(a) Let u ∈ O1 and assume u−1 ∈ O2. Using indices of additive subgroups, we get [O2 : uO1] = [uO2 :

uO1] ≤ [O2 : O1]. Hence, uO2 = O1 and thus u is invertible in O1. The converse is obvious.
(b) Since O2 is a free Z-module containing O1, they both have equal Z-rank, say n. Thus the index of the

addtive groups satisfies [O2 : O1] = m < ∞. Hence, mO2 ⊆ O1. Suppose now that u, v ∈ U(O2) such
that u + mO2 = v + mO2. Then u−1v − 1 ∈ mO2 ⊆ O1 and thus u−1v ∈ O1. Similarly, v−1u ∈ O1. So,
u−1v ∈ U(O1). Hence, we have shown that (U(O2) : U(O1) ⊆ [O2 : mO2] < ∞. �

Hence, to compute a subgroup of finite index in U(ZG) it is sufficient to construct for each primitive central
idempotent ei of QG units u of U(ZG), that belong to (1 − ei ) + ZGei , and they are such that all the units
uei generate a subgroup of finite index in U(ZGei ). The next proposition shows that for the latter we have to
describe units that contribute both to a large subgroup of the center of U(ZGei ) and to a large subgroup of the
units of reduced norm one in ZGei .

Proposition 6.3 Let O be an order in a simple finite dimensional rational algebra A. Then GLn(O) contains
a subgroup of finite index which is isomorphic to a subgroup of finite index in SLn(O) × U(R), where R is the
unique maximal order in the center of A.
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Let us now focus on the units of reduced norm one. For this a crucial and well known lemma is the following.

Lemma 6.4 Let D be a finite dimensional rational division algebra and let n be an integer with n > 1. If f is
a non-central idempotent in Mn(D) then there exist matrix units Ei, j , with 1 ≤ i, j ≤ n (that is,

∑n
i=1 Ei,i = 1

and Ei, j Ek,l = δ j,k Ei,l ) such that

f = E1,1 + · · · + El.l ,

with 0 < l < n. Moreover, Mn(D) = Mn(D′), with D′ the centraliser of all Ei, j .

One can then prove the following result. We first introduce some notation. Let A be a semisimple finite
dimensional rational algebra such that AG is semisimple. Let R be an order in A and let x1, . . . , xm be a
generating set of R as an Z-module. For a given set of idempotents F of AG we put

GBicF (RG) = 〈b(xi g, f ), b( f, xi g) | f ∈ F , g ∈ G, 1 ≤ i ≤ m〉.
If R = Z then we simply put

GBicF (G).

If, furthermore, F = {ĝ | g ∈ G} then we put

Bic(G)

for this group.

Theorem 6.5 (Jespers-Leal) Let G be a finite group and R an order in a semisimple finite dimensional algebra
A. Assume AG is semisimple, e is a primitive central idempotent of AG and O is an order in AGe. Assume the
simple component AGe is not exceptional. If f is an idempotent of AG such that e f is non-central (in AGe)
then GBic{e}(RG) contains a subgroup of finite index in the reduced norm one elements of 1 − e + O.

Proof Let n f be the minimal positive integer such that n f f ∈ RG. Let x1, . . . , xm be a generating set of R
as a Z-module. As AGe = Mn(D), for some division algebra D, by Lemma 6.4 there is a set of matrix units
{Ei, j : 1 ≤ i, j ≤ n} of AGe with f = E1,1 + · · · + El,l for some 0 < l < n. Recall from Lemma 6.2 that the
unit groups of two orders in AGe are commensurable. Hence, without loss of generality, we may assume that
Mn(O) is the order chosen in the statement, with O an order in D. Let J = GBic{ f }(RG). Note that

[
1 + n2

f f xi g(1 − f )
]k [

1 + n2
f f x j h(1 − f )

]l =
[
1 + n2

f f (kxi g + lx j h)(1 − f )
]
,

for every k, l ∈ Z, g, h ∈ G and 1 ≤ i, j ≤ m. So, the group generated by these units contains all elements of
the form

1 + n2
f f α(1 − f ), and 1 + n2

f (1 − f )α f,

with α ∈ RG.

Since
{
1 + n2

f f α(1 − f ), 1 + n2
f (1 − f )α f : α ∈ RG

}
⊆ J,

it follows that
{
1 + nen2

f f α(1 − f )e, 1 + nen2
f (1 − f )α f e : α ∈ RG

}
⊆ J.

Let i ≤ l and l + 1 ≥ j ≥ n. Then,

f OEi, j (1 − f )e = OEi, j .

Hence, as O is a finitely generated Z-module, there exists a positive integer ni, j such that

1 + ni, jOEi, j ⊆ J ∩ SLn(O).
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And similarly,

1 + n j,iOE j,i ⊆ J ∩ SLn(O),

for some positive integer n j,i .
So we have shown the existence of a positive integer x with

1 + xOEi, j ⊆ J ∩ SLn(O) and 1 + xOE j,i ⊆ J ∩ SLn(O),

for all 1 ≤ i ≤ l and l + 1 ≤ j ≤ n.
Now let 1 ≤ i, j ≤ l, i �= j and α ∈ O. Then one easily verifies that

1 + x2αEi, j = (1 + xαEi,l+1, 1 + x El+1, j ) ∈ J ∩ SLn(O).

Similarly, for l + 1 ≤ i, j ≤ ni , i �= j , it follows that

1 + x2OEi, j ⊆ J ∩ SLn(O).

Because of the assumptions, the result now follows from Theorem 5.3. �
The next step is to construct in a simple component QGe a non-central idempotent. This can be done if Ge

is not fixed point free and one can show that this can be done with an idempotent of the type ĝe. Recall that a
finite group is said to be fixed point free if it has an (irreducible) complex representation ρ such that 1 is not an
eigenvalue of ρ(g) for all 1 �= g ∈ G. Such groups show up naturally, as every non-trivial finite subgroup of a
division algebra is fixed point free.

Indeed, Let e be a primitive central idempotent of Q(ξ)G with Ge not commutative and Ge not fixed point
free. Thus, there exists a primitive central idempotent e1 of CGe such that the non-linear complex representation
ρ : G → (CG)e1 mapping x onto xe1 has eigenvalue 1 for some ρ(g), with g ∈ G and ge1 �= e1. Since ρ(g) is
diagonalizable one may assume that

ρ(g) =
(

I j 0
0 D

)

with 1 ≤ j < n and D = diag(ξ j+1, . . . , ξn)

and ξ j+1, . . . , ξn are roots of unity different from 1. Consequently

ρ(ĝ) =
(

I j 0
0 0

)

.

Hence ĝe1 is a non-central idempotent ofCG. It follows that ĝe is a non-zero idempotent inQ(ξ)Ge.Furthermore
ĝe �= e, because otherwise ĝe1 = ĝe1e = e1e = e1, a contradiction.

Now it remains to find units that cover the center of U(ZG). This is done via the following beautiful result
of Bass-Milnor. Let O be an order in a semisimple finite dimensional rational algebra A and let G be a finite
group. Then the natural images of the units of Z(O)C , where C runs through the cyclic subgroups of G, give
a subgroup of finite index in K1(Z(OG)). Now another beautiful result of Bass-Milnor says that the Bass units
uk,m(ξ i g) generate a subgroup of finite index in U(Z[ξ ]〈g〉). One knows even specific Bass units that are a basis
of free abelian subgroup of finite index..

All the above mentioned results then give the following result.

Theorem 6.6 Let G be a finite group and ξ a root of unity. Suppose that Q(ξ)G does not have exceptional simple
components. Let C = {ĝ | g ∈ G}. Suppose that for every primitive central idempotent e of QG the group Ge is
not fixed point free. Then

〈GBicC(Z[ξ ]G) ∪ Bass (Z[ξ ]G)〉
is of finite index in U(Z[ξ ]G).

The result also implies that the unit group is finitely generated. One has a much stronger result due to Siegel.

Theorem 6.7 Let O be an order in a finite dimensional semisimple rational algebra A. Then U(O) is finitely
presented.
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We give some examples of finite 2-groups G such that the Bass units together with the bicyclic units do not
generate a subgroup of finite index in U(ZG). The following result is due to Jespers and Parmenter.

Theorem 6.8 Let D8 = 〈a, b | a4 = 1, b2 = 1, ba = a3b〉, the dihedral group of order 8. Let G be a finite
2-group and suppose there exists an epimorphism f : G → D8. If at least two of the elements b, ab, a2b, a3b
do not have preimages in G of order 2, then the Bass units together with the bicyclic units in ZG do not generate
a subgroup of finite index in U(ZG).

In particular, this applies to the groups Q16, 〈a, b mod a8 = 1, b2 = 1, ba = a3b〉, C4 � C2 and
(〈z〉2 × 〈a〉4) � 〈b〉2, with z central and ab = za.

Proof The Z-linear extension of f to a ring epimorphism ZG → ZD8, as well as the induced group homomor-
phism U(ZG) → U(ZD8), we also denote by f .

Since every Bass unit of ZD8 belongs to D8, every Bass unit in ZG must map to an element of D8.
Next consider a bicyclic unit b(g, h̃) in ZG. Then either f (b(g, h̃)) = 1 or

f (b(g, h̃)) = 1 + c(1 − f (g)) f (h) f̃ (g) = (1 + (1 − f (g)) f (h) f̃ (g))c,

where c = o(g)
o( f (g))

.

The bicyclic units of ZD8 are u1 = b(a, b̃), u2 = b(a, ãb), u3 = b(a, ã2b) and u4 = b(a, ã3b). Further
u4 = u−1

3 u−1
2 u−1

1 . It is easily verified that the given condition on G yields that at least two of these bicyclic units
are not images of bicyclic units in ZG.

It is known that

V = U(ZD8) ∩ (1 + ker(aug)(1 − a2)) = U(ZD8) ∩ (1 + ker(aug)(1 − a))

is a normal complement of the trivial units ±D8 and it is a free group of rank three, generated by the bicyclic
units of the type b(g, h̃). Let B be the subgroup of U(ZG) generated by the Bass units and the bicyclic units of
the type b(g, h̃). Since G is a 2-group, it follows from the remarks above that f (B) is a proper subgroup of V
requiring at most 4 generators. Since V is a free group of rank 3, we conclude that f (B)must be of infinite index
in V . Indeed, by the Nielsen-Schreier Theorem, if f (B) has index n in V then f (B) is free of rank 2n + 1. As
f (B) is generated by at most 4 elements, necessarily n = 1 and hence f (B) = V , a contradiction.

For a positive integer i , let Vi denote the subgroup of V consisting of those units which can be written in the
form 1 + 2iβ(1 − a2) for some β ∈ ZD8. Because (1 − a2)2 = 2(1 − a2), it follows that each Vi ⊆ V . Also
note that for all i , Vi is a normal subgroup of V and that the groups V/V1 and Vi/Vi+1 are of exponent 2 and
thus abelian. Since U(ZD8) is finitely generated, so is the group V . Consequently, V/V1 and all Vi/Vi+1 are
finite. So, each V/Vi is finite.

Let K = ker( f ). Obviously, |K | = 2l for some l ≥ 1. We claim that Vl ⊆ f (U(ZG)). Indeed, let
1 + 2lβ(1 − a2) ∈ Vl . Choose a1, β1 ∈ ZG such that f (a1) = a and f (β1) = β. Put u = 1 + K̃β1(1 − a2

1).
Clearly uK̂ = K̂ (1+ 2lβ1(1− a2

1)) is a unit in ZG K̂ ∼= ZD8. Since u(1− K̂ ) = 1− K̂ is a unit in ZG(1− K̂ ),
we get that u ∈ ZG is a unit in the order ZG K̂ ⊕ ZG(1 − K̂ ). Hence, because of Lemma 6.2, u ∈ U(ZG).
Obviously, f (u) = 1 + 2lβ(1 − a2). So, u ∈ f (U(ZG)) and the claim has been proved.

Suppose that f (B) is of finite index in f (U(ZG)). Since f (B) ⊆ V , this yields f (B) is of finite index in
f (U(ZG)) ∩ V . Because Vl ⊆ f (U(ZG))V and Vl is of finite index in V , it follows that f (B) is of finite index
in V . However this contradicts the earlier fact that f (B) is of infinite index in V . Therefore, we have shown that
f (B) is of infinite index in f (U(ZG)).

To finish the proof we note that if f (b(g, h̃)) �= 1 then it is a power of a bicyclic unit b( f̃ (h), f (g)) =
1 + (1 + f (h)) f (g)(1 − f (h)). Since b( f̃ (h), f (g)) = b( f (g), ã2 f (h)), we obtain that f (Bix(G)) =
f
(〈b(g, h̃) | g, h ∈ G〉〉). So, from the previous, f (〈Bix(G) ∪ Bass(G)〉) is of infinite index in f (U(ZG))

and thus 〈Bix(G) ∪ Bass(G)〉 is of infinite index in U(ZG). �

7 Constructions of central units from Bass units

We know that the central units of an order in a finite dimensional rational algebra form a finitely generated group.
As a consequence of Dirichlet’s Unit Theorem and Lemma 6.2, the rank of this group also can be determined.
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Theorem 7.1 Let A be a finite dimensional semisimple rational algebra and O an order in A. Then

U(Z(O)) = T × F,

where T is a finite group and F is a free abelian group of rank rR(A) − rQ(A).
If G is a finite group then for any finite field extension K of Q, rK (K G) is the number of irreducible

K -characters of G and it also equals the number of Wedderburn components of K G.
Hence

Z(U(ZG)) = ±Z(G) × F,

where F is a free abelian group of rank rR(RG) − rQ(QG).
In particular, if G is a finite abelian group of order n. Then F has rank

n + 1 + k2 − 2c

2
=

∑

d|n, d>2

kd

(
ϕ(d)

2
− 1

)

,

where c is the number of cyclic subgroups of G and kd is the number of cyclic subgroups of G of order d.

A result of Artin says that if G is a finite group then rQ(QG), the number of irreducible Q-characters of G,
equals the number of conjugacy classes of cyclic subgroups of G.

As a consequence one obtains the following formula for the rank of the central units in a group ring.

Corollary 7.2 Let G be a finite group. Then, the rank of Z(U(ZG)) is

c + c′

2
− d,

where c′ is the number of conjugacy classes of G closed under taking inverses and d is the number of conjugacy
classes of cyclic subgroups of G

Ritter and Sehgal determined necessary and sufficient conditions for all central units to be trivial. A proof
relies on the following lemma.

The following notation is used. Let G be a finite group and K a field. One says that two elements g and h
of G are K -conjugate in G if there exists r ∈ UK (n) = {r ∈ Zn | σ(ξn) = ξ r

n , for some σ ∈ Gal(K (ξn)/K )}
(ξn a primitive n-th root of unity in an extension of K ) such that g and hr are conjugate in G; where n is the
exponent of G. This defines an equivalence relation ∼K in G. The equivalence class containing g ∈ G is called
the K -conjugacy class of g in G and it is denoted gG

K . The conjugacy class of g in G is simply denoted gG .
Hence,

gG
K = ∪r∈UK (n)(g

r )G .

Note that if K contains a primitive n-th root of unity, then gG
K = gG . Further note that g ∼Q h if and only if g is

conjugate of hr in G for some r coprime with n; equivalently 〈g〉 is a conjugate of 〈h〉 in G. One can also easily
verify that g ∼R h if and only if g is a conjugate of h or h−1, that is gG

R
= gG ∪ (g−1)G .

Lemma 7.3 Let G be a finite group of exponent n and let g ∈ G. Then gG
Q

= gG
R

if and only if g is conjugate to
gm or g−m for every integer m with (m, n) = 1.

Corollary 7.4 (Ritter and Sehgal) For a finite group G the following properties are equivalent.

1. Z(U(ZG)) is finite (or equivalently, G is a cut group), i.e. all central units are trivial.
2. For every g ∈ G and every integer m with (m, |G|) = 1 the elements gm and g−m are conjugate.

Representation theoretically cut groups are those groups such that the character fields are either the rationals
or a quadratic imaginary extensions over Q. So, for example, rational groups are cut. Recently, cut groups gained
in interest, but especially the subclass of rational groups has already a long tradition in classical representation
theory. We refer the reader to for example [1,9,13].

Also for strongly monomial groups one can determine a formula for the rank of the central units and, with
some restriction, one can determine an independent set of central units that generates a subgroup of finite index.
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We have seen that for many finite groups the group generated by the Bass units and the bicyclic units generate
a subgroup of finite index in U(ZG). In particular, the subgroup contains a subgroup of finite index in the center
Z(U(ZG)). As the bicyclic units contain a subgroup that only “contributes” to a subgroup of finite index in
reduced norm one subgroups of orders in the simple components, one might be tempted to think that the Bass
units contain a subgroup of finite index in the center of U(ZG). Note, however, that Bass units in general are not
central elements.

Jespers, Parmenter and Sehgal showed that for finite nilpotent groups the group generated by the Bass units
contains a subgroup of finite index in the unit group of the center. To do so, one needs, in first instance, a method
to construct from a Bass unit a central unit. Jespers, Olteanu, Van Gelder and del Río proved that this also can be
done for the class of abelian-by-supersolvable groups G such that every cyclic subgroup of order not a divisor of
4 or 6 is subnormal in G. Obviously, dihedral groups are examples of such groups. Also nilpotent finite groups
N are examples. Indeed, let Zi = Zi (N ) denote the i-th center of N , i.e Z0 = {1} and Zi/Zi−1 = Z(G/Zi−1)

for i ≥ 1. Then, for x ∈ N , the series 〈x〉 � 〈Z1, x〉 � · · · � 〈Zn, x〉 = N (for some integer n) is a subnormal
series in N .

So, suppose G is an finite abelian-by-supersolvable group such that every cyclic subgroup of order not a
divisor of 4 or 6 is subnormal in G. Let g ∈ G be of order not a divisor or 4 or 6 and let

N : N0 = 〈g〉 � N1 � N2 � · · · � Nm = G

be a subnormal series in G. For u ∈ U(Z〈g〉) put

cNo (u) = u

and

cNi (u) =
∏

h∈Ti

cNi−1(u)h,

where Ti is a transversal for Ni−1 in Ni , i ≥ 1. That this construction is well defined follows from the following
lemma.

Lemma 7.5 With notation as above.

1. cNi−1(u)x ∈ ZNi−1 for x ∈ Ni ,

2. cNi−1(u)x = cNi−1(u) for x ∈ Ni−1,

3. cNi (u) is independent of the chosen transversal Ti .

In particular, cNm (u) ∈ Z(U(ZG)).

Because the class of abelian-by-supersolvable groups is closed under taking subgroups (a property that does
not hold for the larger class consisting of strongly monomial groups) one can prove the following result.

Theorem 7.6 (Jespers, Olteanu, del Río and Van Gelder) Let G be a finite abelian-by-supersolvable group such
that every cyclic subgroup of order not a divisor of 4 or 6 is subnormal in G. Let g ∈ G be of order not a divisor
or 4 or 6. Then, the group generated by the Bass units of ZG contains a subgroup of finite index in Z(Z(U(ZG))).

Actually, for each subgroup 〈g〉, of order not dividing 4 or 6, fix a subnormal series Ng from 〈g〉 to G. Then

〈cNg (bg) | bg a Bass unit based on g, g ∈ G〉,

is of finite index in Z(U(ZG)).

Recently, a beautiful generalization of this result has been obtained by Bakshi and Kaur [4] for a much wider
class of groups, the class consisting of the generalized strongly monomial groups (which defined are via the
notion of generalized strong Shoda pair).
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8 Structure theorems of unit groups

The exceptional simple components are an obstruction for the construction of finitely many generators for a
subgroup of finite index in the unit group of ZG (for a finite group G). Maybe surprisingly, many of these
components are not an obstruction for proving a “structure theorem”, on the contrary.

According to Kleinert[26] a “Unit Theorem” for the unit group U(ZG) is a statement that should at least
consist, in purely group theoretical terms, of a class of groups G such that almost all torsionfree subgroups of
finite index in U(ZG) are members of G.

So one can pose the following general problem.

Problem 8.1 For a class of groups G, classify the finite groups G, such that U(ZG) constains a subgroup of
finite index in G.

In the following results we state the answer for the class of groups G that consists of direct products of free
products of abelian groups (Jespers and del Río) and for the class of groups that consists of the direct products
of free-by-free groups (Jespers, Pita, del Río, Ruiz, P. Zalesskii).

Theorem 8.2 The following properties are equivalent for a finite group G.

1. U(ZG) is either virtually abelian or virtually nonabelian free.
2. U(ZG) is virtually a free product of abelian groups.

3. QG is a direct product of fields, division rings of the form
(−1,−3

Q

)
, or H(K ) with K = Q, Q(

√
2) or Q(

√
3)

and at most one copy of M2(Q).
4. One of the following conditions hold:

(a) G = Q8 × Cn
2 ,

(b) G is abelian,
(c) G is one of the following groups: D6, D8, Q12 = 〈a, b | a6 = 1, b2 = a3, ba = a5b〉, P = 〈a, b |

a4 = 1, b4 = 1, aba−1b−1 = a2〉 (in this case U(ZG) is virtually nonabelian free).

Note that the respective Wedderburn decomposition of the mentioned rational group algebras is as follows.

QD6 ∼= 2Q ⊕ M2(Q),

QD8 ∼= 4Q ⊕ M2(Q),

QQ8 ∼= 4Q ⊕ H(Q),

QP ∼= 4Q ⊕ 2Q(i) ⊕ H(Q) ⊕ M2(Q)

QQ12 ∼= 2Q ⊕ Q(
√−3) +

(−1,−3

Q

)

⊕ M2(Q),

Theorem 8.3 The following properties are equivalent for a finite group G.

1. U(ZG) is virtually a direct product of free-by-free groups.
2. For every simple component A of QG and some (every) orderO in A, the group of reduced norm one elements

in O is virtually free-by-free.
3. Every simple component of QG is either a field, a totally definite quaternion algebra, or M2(K ) where K is

either Q(i), Q(
√−2), Q(

√−3).
4. G is either abelian or an epimorphic image of A × H, where A is an abelian group and one of the following

conditions holds:
(a) A has exponent 6 and H is one of the groups W , W1n or W2n.
(b) A has exponent 4 and H is one of the groups V , V1n, V2n, U1 or U2.
(c) A has exponent 2 and H is one of the group T , T1n, T2n or T3n.
(d) H = M � P = (M × Q) : 〈u〉2, where M is an elementary abelian 3-group, P = Q : 〈u〉2, mu = m−1

for every m ∈ M, and one of the following conditions holds:

– A has exponent 4 and P = C8,
– A has exponent 6, P = W1n and Q = 〈y1, . . . , yn, t1, . . . , tn, x2〉,
– A has exponent 2, P = W21 and Q = 〈y21 , x〉.

The non-nilpotent groups are those listed in (4) with M non-trivial.
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The first class consists of the following groups.

W =
(
〈t〉2 × 〈x2〉2 × 〈y2〉2

)
: (〈x〉2 × 〈y〉2) ,

with t = (x, y) and Z(W) = 〈x2, y2, t〉.

W1n =
(

n∏

i=1

〈ti 〉2 ×
n∏

i=1

〈yi 〉2
)

� 〈x〉4,

with ti = (x, yi ) and Z(W1n) = 〈t1, . . . , tn, x2〉.

W2n =
(

n∏

i=1

〈yi 〉4
)

� 〈x〉4,

with ti = (x, yi ) = y2i and Z(W2n) = 〈t1, . . . , tn, x2〉.
The second class of groups consists of the following groups.

V =
(
〈t〉2 × 〈x2〉4 × 〈y2〉4

)
: (〈x〉2 × 〈y〉2) ,

with t = (x, y) and Z(V) = 〈x2, y2, t〉.

V1n =
(

n∏

i=1

〈ti 〉2 ×
n∏

i=1

〈yi 〉4
)

� 〈x〉8,

with ti = (x, yi ) and Z(V1n) = 〈t1, . . . , tn, y21 , . . . , y2n , x2〉.

V2n =
(

n∏

i=1

〈yi 〉8
)

� 〈x〉8,

with ti = (x, yi ) = y4i and Z(V2n) = 〈t1, . . . , tn, x2〉.
The third class consists of the following groups.

U1 =
⎛

⎝
∏

1≤i< j≤3

〈ti j 〉2
⎞

⎠ :
(

3∏

k=1

〈yk〉4
)

,

with Z(U1) = 〈t12, t13, t23, y21 , y22 , y23 〉, ti j = (yi , y j ) and y4i = 1.

U2 =
⎛

⎝
∏

1≤i< j≤3

〈ti j 〉2
⎞

⎠ :
(

3∏

k=1

〈yk〉4
)

,

with Z(U2) = 〈t12, t13, t23, y21 , y22 , y23 〉, ti j = (yi , y j ),

y41 = 1, y42 = t12 and y43 = t13.

The following groups form part of the fourth class of groups.

T1n =
(

n∏

i=1

〈ti 〉4 ×
n∏

i=1

〈yi 〉4
)

� 〈x〉8,

with ti = (x, yi ), (x, ti ) = t2i and Z(T1n) = 〈t21 , . . . , t2n , x2〉.
A major issue remains the lack of knowledge of constructung large subgroups of the unit group of an order

in a finite dimensional rational division algebra (so dealing with orders in exceptional components of type 1).

Problem 8.4 Discover generic constructions of units in orders of division algebras that are simple components
of a rational group algebra QG of a finite group. Discover generators of large subgroups in such orders.

Problem 8.5 Describe finitely many generators for the following unit groups:

U(Z(Q8 × C3)) and U(Z(Q8 × C7)).
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In recent work by Bächle, Janssens, Jespers, Kiefer, Temmerman [2], it has been investigated when the unit
group U(ZG) (or more specifically the group generated by the bicyclic units) can or cannot be decomposed into
a non-trivial amalgamated product. This is done under the assumption that U(ZG)ab is finite. Because U(ZG)

is a finitely generated group, a result of Serre [42] says that being both not a non-trivial amalgamated product
and U(ZG)ab finite precisely occurs when U(ZG) has property FA. Recall that a group has property FA if every
action on a simplicial tree has a global fixed point. Since unit theorems concern a property on all subgroups of
finite index, one considers the hereditary property, denoted HFA, and a finite abelianization property, denoted
FAb. One says that a group has HFA if all its finite index subgroups have property FA and one says that a group
has property FAb if every subgroup of finite index has finite abelianization. It is well-known that property FA
follows fromKazhdan’s property T (see [11]). Recall fromDelorme-Guichardet’s Theorem [11, Theorem 2.12.4]
that a countable discrete group � has property (T) if and only if every affine isometric action of � on a real
Hilbert space has a fixed point.

Bächle, Janssens, Jespers, Kiefer, Temmerman proved in [2] a characterization of whenU(ZG) satisfies these
hereditary properties. Surprisingly, all these fixed point properties are equivalent and are controlled both in terms
of G and in terms of the Wedderburn decomposition of QG.

Theorem 8.6 Let G be a finite group. The following properties are equivalent:

1. The group U(ZG) has property HFA,
2. The group U(ZG) has property T,
3. The group U(ZG) has property FAb,
4. G is cut and QG has no exceptional components,
5. G is cut and G does not map onto one of 10 explicitly described groups.

In particular, if these conditions are satisfied, then the group generated by the bicyclic units is not a non-trivial
amalgamated product.

Furthermore, if G does not have exceptional simple components (e.g. G is of odd order), then the above
conditions are equivalent to the following two equivalent conditions

6. U(ZG)ab is finite,
7. G is a cut group.

In [3], Bächle, Janssens, Jespers, Kiefer, Temmerman proved the following dichotomy.

Theorem 8.7 Let G be finite group which is solvable or 5 � ||G|. If G is a cut group, then exactly one of the
following properties holds:

1. U(ZG) has property T.
2. U(ZG) is commensurable with a non-trivial amalgamated product.

In [3], Bächle, Janssens, Jespers, Kiefer, Temmerman also proved the following unit theorem.

Theorem 8.8 Let G be a finite group having D8 or S3 as an epimorphic image. Then U(ZG) is virtually a
non-trivial amalgamated product.
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