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Abstract Let a, b, c be pairwise relatively prime positive integers such that a2 + b4 = c2 and b is odd. Then
we show that the equation of the title has only one positive integer solution (x, m, n) = (a, 4, 2) under some
conditions.
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1 Introduction

In 1956, Sierpiński[13] showed that the equation 3x + 4y = 5z has only the positive integer solution (x, y, z) =
(2, 2, 2). Jeśmanowicz [8] conjectured that if a, b, c are Pythagorean numbers, i.e., positive integers satisfying
a2 + b2 = c2, then

ax + by = cz

has only the positive integer solution (x, y, z) = (2, 2, 2). As an analogue of Jeśmanowicz’ conjecture, the
author [15] proposed the following:

Conjecture 1 If a, b, c are positive integers satisfying a2 + b2 = c2 with gcd(a, b, c) = 1 and b odd, then the
equation

x2 + bm = cn (1.1)

has only one positive integer solution (x, m, n) = (a, 2, 2).

The author[15] proved that if b and c are primes such that (i) b2 + 1 = 2c and (ii) d = 1 or even if b ≡ 1
(mod 4), then Conjecture 1 is true, where d is the order of a prime divisor of (c) in the ideal class group of
Q(

√−b). In [3], [9],[10] and [19], it was shown that if b �≡ 1 (mod 8), and b or c is a prime power, then
Conjecture 1 is true. It has been verified that Conjecture 1 holds for many other Pythagorean numbers. But
Conjecture 1 is still unsolved. (See Cao[2], Terai[16], [17] and [18] for another analogue of Jeśmanowicz’
conjecture.)

Related to Conjecture 1, in [5] and [6], Cenberci and Senay proposed the following:

Conjecture 2 If a, b, c are positive integers satisfying a2 + b2 = c4 with gcd(a, b, c) = 1 and b odd, then
equation (1.1) has only one positive integer solution (x, m, n) = (a, 2, 4).
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As another analogue of Conjecture 1, we also propose the following:

Conjecture 3 If a, b, c are positive integers satisfying a2 + b4 = c2 with gcd(a, b, c) = 1 and b odd, then
equation (1.1) has only one positive integer solution (x, m, n) = (a, 4, 2).

By Magma[1], we verified that Conjecture 3 is true in the range c ≤ 105 and max{m, n} ≤ 20.
In this paper, when b has at most two distinct primes, we show that Conjecture 3 is true under some conditions.

The proof is based on elementary methods and results concerning the equation x2 + 1 = 2yn due to Ljunggren
- Störmer and the equation x2 + y4 = zn due to Ellenberg. We also verify that when b = 3p, 5p with p odd
prime, Conjecture 3 is true under a certain condition.

2 Lemmas

As well-known, primitive Pythagorean numbers a, b, c with b odd can be parametrized as follows:

a = 2u0v0, b = u2
0 − v20, c = u2

0 + v20,

where u0, v0 are positive integers such that gcd(u0, v0) = 1, u0 �≡ v0 (mod 2) and u0 > v0.
In view of the above prametrization, we obtain all positive integers a, b, c satisfying a2 + b4 = c2 with b

odd. In fact, since b2 = u2
0 − v20, we have

u2 = u0 + v0, v2 = u0 − v0

with b = uv. Then

u0 = u2 + v2

2
, v0 = u2 − v2

2
.

Thus we have shown the following:

Lemma 1 All positive integer solutions of the equation a2 + b4 = c2 with gcd(a, b, c) = 1 and b odd are given
by

a = u4 − v4

2
, b = uv, c = u4 + v4

2
, (2.1)

where u, v are positive integers such that gcd(u, v) = 1, u ≡ v ≡ 1 (mod 2) and u > v.

We also need the following lemmas to prove Theorems 1,2,3.

Lemma 2 (Störmer[14]) The Diophantine equation

x2 + 1 = 2yn

has no solutions in integers x >1, y ≥ 1 and n odd ≥ 3.

Lemma 3 (Ljunggren[11]) The Diophantine equation

x2 + 1 = 2y4

has only the positive integer solution (x, y) = (1, 1), (239, 13).

Lemma 4 (Ellenberg[7]) Let n be a positive integer with n ≥ 4. Then the equation

x2 + y4 = zn

has no solutions in nonzero pairwise coprime integers x, y, z.

The following lemma is immediate from [4] and [12].

Lemma 5 (1) The Diophantine equation

x2 + 9m = 3281n

has only the positive integer solution (x, m, n) = (3280, 4, 2).
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(2) The Diophantine equation

x2 + 15m = 25313n

has only the positive integer solution (x, m, n) = (25312, 4, 2).
(3) The Diophantine equation

x2 + 25m = 195313n

has only the positive integer solution (x, m, n) = (195312, 4, 2).
(4) The Diophantine equation

x2 + 33m = 7361n

has only the positive integer solution (x, m, n) = (7280, 4, 2).

3 The cases b = pα, pαqβ with p, q odd primes.

In this section, when b has at most two distinct primes, we show that Conjecture 3 is true under some conditions.

Theorem 1 Let a, b, c be as in (2.1). Suppose that b ≡ ±3 (mod 8) and that b satisfies at least one of the
following :

(i) b = u with u = pα and v = 1.
(ii) b = uv with u = pα and v = qβ.

(iii) b = u with u = pαqβ and v = 1,

where p, q are distinct odd primes and α, β are positive integers.
Then Conjecture 3 is true.

Proof Let a, b, c be as in Theorem 1. Let (x, m, n) be a positive integer solution of equation (1.1).
Since b ≡ ±3 (mod 8) and c ≡ 1 (mod 4), we have(

b

c

)
=

( c

b

)
=

(
2

b

)
= −1.

Hence we see that m and n are even.
Put n = 2N . From (1.1), we have

bm = (cN + x)(cN − x).

(i) b = u with u = pα and v = 1. Then we have

bm + 1 = 2cN . (3.1)

Note that b4 + 1 = 2c, since v = 1. If N=1 or 2, then we easily see that equation (3.1) has only the solution
(m, N ) = (4, 1). If N ≥ 3, then it follows from Lemmas 2, 3 that equation (3.1) has no solutions.

(ii) b = uv with u = pα and v = qβ. Then we have

bm + 1 = 2cN , (3.2)

or
um + vm = 2cN . (3.3)

First consider equation (3.2). If N ≥ 3, then it follows fromLemmas 2, 3 that equation (3.2) has no solutions.
If N=1 or 2, then equation (3.2) can be written as

(uv)m + 1 = u4 + v4 or (u4 + v4)2/2.

It is easy to show that the above equation has no solutions except for the equation

(uv)6 + 1 = (u4 + v4)2/2. (3.4)
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In view of a property of an elliptic curve, we see that equation (3.4) has no solutions. Indeed, by putting
X = 2u2v2 and Y = 2(u4 + v4), (3.4) can be reduced to the ellitptic curve

E : Y 2 = X3 + 8

with rank E(Q) = 1 and all integer points on E are (X, Y ) = (−2, 0), (1,±3), (2,±4),
(46,±312).
Next consider equation (3.3). Since m is even, the proof is divided into two cases (a) m ≡ 0 (mod 4) and
(b) m ≡ 2 (mod 4).
Case (a) m ≡ 0 (mod 4). If n ≥ 4, then it follows from Lemma 4 that equation (1.1) has no solutions. If
n = 2, i.e., N = 1, then the relation c = (u4 + v4)/2 yields m = 4 from (3.3), and hence (x, m, n) =
(a, 4, 2).
Case (b) m ≡ 2 (mod 4), say m = 2l with l odd. Then equation (3.3) becomes

(
u2 + v2

2

) (
u2l + v2l

u2 + v2

)
=

(
u4 + v4

2

)N

Let r be an odd prime of (u2 + v2)/2. Then u4 + v4 ≡ 0 (mod r). This implies that u ≡ 0 (mod r) and
v ≡ 0 (mod r), which contradicts gcd(u, v) = 1.

(iii) b = u with u = pαqβ and v = 1. Then we have

bm + 1 = 2cN , (3.5)

or

um
1 + vm

1 = 2

(
u4
1v

4
1 + 1

2

)N

(3.6)

with u1 = pα and v1 = qβ .
First consider equation (3.5). Note that b4 + 1 = 2c, since v = 1. As above, equation (3.5) has only the
solution (m, N ) = (4, 1).
Next consider equation (3.6). In view of b = u1v1 and b ≡ ±3 (mod 8), we may suppose that u1 ≡ ±3
(mod 8) and v1 ≡ ±1 (mod 8) . Since m is even, the proof is divided into two cases (a) m ≡ 0 (mod 4)
and (b) m ≡ 2 (mod 4).
Case (a) m ≡ 0 (mod 4). If n ≥ 4, then it follows from Lemma 4 that equation (1.1) has no solutions. If
n = 2, i.e., N = 1, then (3.6) has no solutions.
Case (b) m ≡ 2 (mod 4), say m = 2l with l odd. Then equation (3.6) becomes

(
u2
1 + v21

2

) (
u2l
1 + v2l

1

u2
1 + v21

)
=

(
u4
1v

4
1 + 1

2

)N

(3.7)

The right hand side of (3.7) is divisible by (u2
1 + v21)/2 ≡ 5 (mod 8). This contradicts the fact that an odd

prime factor r of A4 + B4 satisfies r ≡ 1 (mod 8). This completes the proof of Theorem 1.

��

4 The cases b = 3 p, 5 p with p odd prime.

In this section, when b = 3p, 5p with p odd prime, we consider eqaution (1.1). We do not assume that b ≡ ±3
(mod 8), i.e., p ≡ ±1 (mod 8).

Theorem 2 (i) Let p be an odd prime with p > 3. Put u = p and v = 3 in (2.1). If (3p + 1)/2 has a prime
factor other than 17 and 193, then Conjecture 3 is true. In particular, if p is an odd prime with 3 < p < 107,
then Conjecture 3 is true.

(ii) Let p be an odd prime. Put u = 3p and v = 1 in (2.1). If (p + 3)/2 and (p2 + 32)/2 have a prime factor
other than 17 and 193, respectively, then Conjecture 3 is true. In particular, if p is an odd prime satisfying
3 ≤ p < 107 with p �= 31, 383, 167039, then Conjecture 3 is true.
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Proof (i) u = p and v = 3 in (2.1). Then a = (p4 − 34)/2, b = 3p, c = (p4 + 34)/2. Suppse that our
assumptions are all satisfied. Let (x, m, n) be a positive integer solution of equation (1.1).

From (1.1), we have

( c

3

)
=

(
4c

3

)
=

(
2

3

) (
2c

3

)
= −1.

Hence we see that n are even, say n = 2N . (We do not know if m is even or not.) Thus

(3p)m = (cN + x)(cN − x).

Then we have
(3p)m + 1 = 2cN (4.1)

or
pm + 3m = 2cN . (4.2)

First consider equation (4.1). If m is odd, then equation (4.1) becomes

(
3p + 1

2

) (
(3p)m + 1

3p + 1

)
=

(
p4 + 34

2

)N

.

Note that (3p + 1)/2 is odd, since (p4 + 34)/2 is odd. Let r be an odd prime factor of (3p + 1)/2. Then
(p4 + 34)/2 ≡ 0 (mod r). This implies that 38 + 1 ≡ 0 (mod r), so r = 17, 193, which contradicts our
assumption. In the same way as in the proof of Theorem 1 (i), if m is even, we easily see that equation (4.1) has
no solutions.

Next consider equation (4.2). If m is odd, then equation (4.2) becomes

(
p + 3

2

)(
pm + 3m

p + 3

)
=

(
p4 + 34

2

)N

.

Let r be an odd prime factor of (p + 3)/2. Then p4 + 34 ≡ 0 (mod r). This implies that p ≡ 0 (mod r)

and 3 ≡ 0 (mod r), which contradicts gcd(p, 3) = 1. If m ≡ 0 (mod 4), then it follows from Lemma 4 that
equation (1.1) has only the solution (x, m, n) = (a, 4, 2). We may suppose that m ≡ 2 (mod 4), say m = 2l
with l odd. Then equation (4.2) becomes

(
p2 + 32

2

)(
p2l + 32l

p2 + 32

)
=

(
p4 + 34

2

)N

.

Let r be an odd prime factor of (p2 + 32)/2. Then p4 + 34 ≡ 0 (mod r). This implies that p ≡ 0 (mod r) and
3 ≡ 0 (mod r), which contradicts gcd(p, 3) = 1.

In particular, by Magma[1], we verified that (3p + 1)/2 has a prime other than 17 and 193 in the range
3 < p < 107 with p �= 11. When p = 11, Conjecture 3 is true from Lemma 5,(4).

(ii) u = 3p and v = 1 in (2.1). Then a = ((3p)4 − 1)/2, b = 3p, c = ((3p)4 + 1)/2. Suppse that our
assumptions are all satisfied. Let (x, m, n) be a positive integer solution of equation (1.1).

When p = 3, Conjecture 3 is true from Lemma 5,(1). We may suppose that p > 3. As in (i), equation (1.1)
is reduced to solving the following:

(3p)m + 1 = 2

(
(3p)4 + 1

2

)N

(4.3)

or

pm + 3m = 2

(
(3p)4 + 1

2

)N

. (4.4)

First consider equation (4.3). Ifm is odd, then an odd prime factor r of (3p+1)/2 divides ((3p)4+1)/2. This
implies that 2 ≡ 0 (mod r), which is impossible. If m is even, then it follows from Lemmas 1,2 that equation
(4.3) has only the solution (m, N ) = (4, 1).
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Next consider equation (4.4). If m is odd, then equation (4.4) becomes

(
p + 3

2

) (
pm + 3m

p + 3

)
=

(
(3p)4 + 1

2

)N

.

Let r be an odd prime factor of (p + 3)/2. Then (3p)4 + 1 ≡ 0 (mod r). This implies that 38 + 1 ≡ 0 (mod r),
so r = 17, 193, which contradicts our assumption. If m ≡ 0 (mod 4), then it follows from Lemma 4 that
equation (1.1) has no solutions. We may suppose that m ≡ 2 (mod 4), say m = 2l with l odd. Then equation
(4.4) becomes

(
p2 + 32

2

) (
p2l + 32l

p2 + 32

)
=

(
(3p)4 + 1

2

)N

.

Let r be an odd prime factor of (p2 + 32)/2. Then (3p)4 + 1 ≡ 0 (mod r). This implies that 38 + 1 ≡ 0
(mod r), so r = 17, 193, which contradicts our assumption.

In particular, by Magma[1], we verified that (p + 3)/2 has a prime other than 17 and 193 in the range
3 < p < 107 with p �= 31, 383, 167039, and that (p2 + 32)/2 has a prime other than 17 and 193 in the range
3 < p < 107 with p �= 5. When p = 5, Conjecture 3 is true from Lemma 5,(2). This completes the proof of
Theorem 2. ��

Similarly, when b = 5p, we can show the following:

Theorem 3 (i) Let p be an odd prime with p > 5. Put u = p and v = 5 in (2.1). If (5p + 1)/2 has a prime
factor other than 17 and 11489, then Conjecture 3 is true. In particular, if p is a prime with 5 < p < 107,
then Conjecture 3 is true.

(ii) Let p be an odd prime. Put u = 5p and v = 1 in (2.1). If (p + 5)/2 and (p2 + 52)/2 have a prime factor
other than 17 and 11489, respectively, then Conjecture 3 is true. In particular, if p is a prime satisfying
3 ≤ p < 107 with p �= 29, 22973, then Conjecture 3 is true.

Proof (i) u = p and v = 5 in (2.1). Then a = (p4 − 54)/2, b = 5p, c = (p4 + 54)/2. Suppse that our
assumptions are all satisfied. Let (x, m, n) be a positive integer solution of equation (1.1).

From (1.1), we have

( c

5

)
=

(
4c

5

)
=

(
2

5

) (
2c

5

)
= −1.

Hence we see that n are even, say n = 2N . (We do not know if m is even or not.) Thus

(5p)m = (cN + x)(cN − x).

Then we have

(5p)m + 1 = 2cN (4.5)

or

pm + 5m = 2cN . (4.6)

First consider equation (4.5). If m is odd, then equation (4.5) becomes

(
5p + 1

2

) (
(5p)m + 1

5p + 1

)
=

(
p4 + 54

2

)N

.

Note that (5p + 1)/2 is odd, since (p4 + 54)/2 is odd. Let r be an odd prime factor of (5p + 1)/2. Then
(p4 + 54)/2 ≡ 0 (mod r). This implies that 58 + 1 ≡ 0 (mod r), so r = 17, 11489, which contradicts our
assumption. In the same way as in the proof of Theorem 1 (i), if m is even, we easily see that equation (4.5) has
no solutions.
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Next consider equation (4.6). If m is odd, then equation (4.6) becomes

(
p + 5

2

)(
pm + 5m

p + 5

)
=

(
p4 + 54

2

)N

.

Let r be an odd prime factor of (p + 5)/2. Then p4 + 54 ≡ 0 (mod r). This implies that p ≡ 0 (mod r)

and 5 ≡ 0 (mod r), which contradicts gcd(p, 5) = 1. If m ≡ 0 (mod 4), then it follows from Lemma 4 that
equation (1.1) has only the solution (x, m, n) = (a, 4, 2). We may suppose that m ≡ 2 (mod 4), say m = 2l
with l odd. Then equation (4.6) becomes

(
p2 + 52

2

)(
p2l + 52l

p2 + 52

)
=

(
p4 + 54

2

)N

.

Let r be an odd prime factor of (p2 + 52)/2. Then p4 + 54 ≡ 0 (mod r). This implies that p ≡ 0 (mod r) and
5 ≡ 0 (mod r), which contradicts gcd(p, 5) = 1.

In particular, by Magma[1], we verified that (5p + 1)/2 has a prime factor other than 17 and 11489 in the
range 3 < p < 107.

(ii) u = 5p and v = 1 in (2.1). Then a = ((5p)4 − 1)/2, b = 5p, c = ((5p)4 + 1)/2. Suppse that our
assumptions are all satisfied. Let (x, m, n) be a positive integer solution of equation (1.1).

When p = 5, Conjecture 3 is true from Lemma 5,(3). We may suppose that p �= 5. As in (i), equation (1.1)
is reduced to solving the following:

(5p)m + 1 = 2

(
(5p)4 + 1

2

)N

(4.7)

or

pm + 5m = 2

(
(5p)4 + 1

2

)N

. (4.8)

First consider equation (4.7). Ifm is odd, then an odd prime factor r of (5p+1)/2 divides ((5p)4+1)/2. This
implies that 2 ≡ 0 (mod r), which is impossible. If m is even, then it follows from Lemmas 1,2 that equation
(4.7) has only the solution (m, N ) = (4, 1).

Next consider equation (4.8). If m is odd, then equation (4.8) becomes

(
p + 5

2

) (
pm + 5m

p + 5

)
=

(
(5p)4 + 1

2

)N

.

Let r be an odd prime factor of (p + 5)/2. Then (5p)4 + 1 ≡ 0 (mod r). This implies that 58 + 1 ≡ 0 (mod r),
so r = 17, 11489, which contradicts our assumption. If m ≡ 0 (mod 4), then it follows from Lemma 4 that
equation (1.1) has no solutions. We may suppose that m ≡ 2 (mod 4), say m = 2l with l odd. Then equation
(4.8) becomes

(
p2 + 52

2

) (
p2l + 52l

p2 + 52

)
=

(
(5p)4 + 1

2

)N

.

Let r be an odd prime factor of (p2 + 52)/2. Then (5p)4 + 1 ≡ 0 (mod r). This implies that 58 + 1 ≡ 0
(mod r), so r = 17, 11489, which contradicts our assumption.

In particular, by Magma[1], we verified that (p + 5)/2 has a prime factor other than 17 and 11489 in the
range 3 ≤ p < 107 with p �= 29, 22973, and that (p2 + 52)/2 has a prime factor other than 17 and 11489 in the
range 3 ≤ p < 107 with p �= 3. When p = 3, Conjecture 3 is true from Lemma 5,(2). This completes the proof
of Theorem 3. ��

Acknowledgements The author is supported by JSPS KAKENHI (No. 18K03247).

123



On the Diophantine equation... 169

References

1. W. Bosma and J. Cannon, Handbook of magma functions, Department of Math., University of Sydney. http://magma.maths.
usyd.edu.au/magma/.

2. Z. Cao, A note on the Diophantine equation ax + by = cz , Acta Arith., 91(1999), 85–93.
3. Z. Cao and X. Dong, On Terai’s conjecture, Proc. Japan Acad., 74A(1998), 127–129.
4. I. N. Cangul, M. Demirci, I. Inam, F. Luca and G. Soydan, On the Diophantine equation x2 + 2a · 3b · 11c = yn , Math. Slovaca,

63(2013), 647–659.
5. S. Cenberci and H. Senay, The Diophantine Equation x2 + Bm = yn , Int. J. Algebra, 3(2009), 657–662.
6. S. Cenberci and H. Senay, The Diophantine Equation x2 + qm = pn , Int. J. Contemp. Math. Sciences, 4(2009), 1181–1191.
7. J. S. Ellenberg, Galois representations attached to Q-curves and the generalized Fermat equation A4 + B2 = C p , Amer. J.

Math., 126(2004), 763-787.
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