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Abstract Let a, b, ¢ be pairwise relatively prime positive integers such that > + b* = ¢? and b is odd. Then
we show that the equation of the title has only one positive integer solution (x, m, n) = (a, 4, 2) under some
conditions.
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1 Introduction

In 1956, Sierpinski[13] showed that the equation 3* + 47 = 5% has only the positive integer solution (x, y, z) =
(2,2,2). Jesmanowicz [8] conjectured that if a, b, ¢ are Pythagorean numbers, i.e., positive integers satisfying
a? + b? = 2, then

a*+ b’ =ct

has only the positive integer solution (x, y,z) = (2, 2, 2). As an analogue of JeSmanowicz’ conjecture, the
author [15] proposed the following:

Conjecture 1 If a, b, c are positive integers satisfying a*> + b> = ¢ with ged(a, b, ¢) = 1 and b odd, then the
equation

24" =" (1.1)
has only one positive integer solution (x, m,n) = (a, 2, 2).

The author[15] proved that if b and ¢ are primes such that (i) b*+1=2cand (ii)d = 1 orevenifb = 1
(mod 4), then Conjecture 1 is true, where d is the order of a prime divisor of (c) in the ideal class group of
QG/=Db). In [3], [9],[10] and [19], it was shown that if b # 1 (mod 8), and b or ¢ is a prime power, then
Conjecture 1 is true. It has been verified that Conjecture 1 holds for many other Pythagorean numbers. But
Conjecture 1 is still unsolved. (See Cao[2], Terai[16], [17] and [18] for another analogue of JeSmanowicz’
conjecture.)

Related to Conjecture 1, in [S] and [6], Cenberci and Senay proposed the following:

Conjecture 2 If a, b, ¢ are positive integers satisfying a*> + b* = ¢* with ged(a, b, ¢) = 1 and b odd, then
equation (1.1) has only one positive integer solution (x, m,n) = (a, 2, 4).
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As another analogue of Conjecture 1, we also propose the following:

Conjecture 3 If a, b, ¢ are positive integers satisfying a*> + b* = ¢* with ged(a, b, ¢c) = 1 and b odd, then
equation (1.1) has only one positive integer solution (x, m,n) = (a, 4, 2).

By Magma[1], we verified that Conjecture 3 is true in the range ¢ < 10° and max{m, n} < 20.

In this paper, when b has at most two distinct primes, we show that Conjecture 3 is true under some conditions.
The proof is based on elementary methods and results concerning the equation x> 4+ 1 = 2y” due to Ljunggren
- Stérmer and the equation x2 + y* = z” due to Ellenberg. We also verify that when b = 3p, 5p with p odd
prime, Conjecture 3 is true under a certain condition.

2 Lemmas

As well-known, primitive Pythagorean numbers a, b, ¢ with b odd can be parametrized as follows:

a=2ugvg, b=ud—v3 c=ul+v3,

where ug, vo are positive integers such that ged(ug, vo) = 1, ug # vo (mod 2) and ugp > vo.

In view of the above prametrization, we obtain all positive integers a, b, ¢ satisfying a’ + b* = ¢* with b

odd. In fact, since b* = u% — v(%, we have

u2:u0+v0, v2=u0—vo

with b = uv. Then
u? + v? u? — 2

up=——H>— Vo=
2

Thus we have shown the following:
Lemma 1 All positive integer solutions of the equation a® + b* = ¢* with gcd(a, b, ¢) = 1 and b odd are given
” ut — vt ut vt
a=——— b=uv, C:T, 2.1
where u, v are positive integers such that gcd(u,v) = 1, u =v =1 (mod 2) and u > v.
We also need the following lemmas to prove Theorems 1,2,3.
Lemma 2 (Stormer([14]) The Diophantine equation
x4 1=2y"
has no solutions in integers x >1, y > 1 and n odd > 3.
Lemma 3 (Ljunggren[11]) The Diophantine equation
X2+ 1=2y"
has only the positive integer solution (x, y) = (1, 1), (239, 13).
Lemma 4 (Ellenberg[7]) Let n be a positive integer with n > 4. Then the equation
2yt
has no solutions in nonzero pairwise coprime integers x, y, Z.
The following lemma is immediate from [4] and [12].
Lemma 5 (1) The Diophantine equation
x? + 9" =3281"

has only the positive integer solution (x, m, n) = (3280, 4, 2).
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(2) The Diophantine equation
x? + 15" = 25313"

has only the positive integer solution (x, m, n) = (25312, 4, 2).
(3) The Diophantine equation

x2 +25™ = 195313"

has only the positive integer solution (x, m,n) = (195312, 4, 2).
(4) The Diophantine equation

x2 + 33" = 7361"

has only the positive integer solution (x, m, n) = (7280, 4, 2).

3 The cases b = p®, p®q® with p, g odd primes.

In this section, when b has at most two distinct primes, we show that Conjecture 3 is true under some conditions.

Theorem 1 Let a, b, ¢ be as in (2.1). Suppose that b = +3 (mod 8) and that b satisfies at least one of the
following :

(i) b=uwithu = p*andv =1.
(ii) b = uv withu = p® and v = ¢P.
(iii) b =u withu = p*q®? and v = 1,

where p, q are distinct odd primes and o, B are positive integers.
Then Conjecture 3 is true.

Proof Leta, b, c be as in Theorem 1. Let (x, m, n) be a positive integer solution of equation (1.1).
Since b = +3 (mod 8) and ¢ = 1 (mod 4), we have

()-6)- ()

" = (N + x)N - x).

Hence we see that m and n are even.
Putn = 2N. From (1.1), we have

(1) b =u withu = p* and v = 1. Then we have
" +1=2cV. (3.1

Note that b* + 1 = 2¢, since v = 1. If N=1 or 2, then we easily see that equation (3.1) has only the solution
(m, N) = (4, 1). If N > 3, then it follows from Lemmas 2, 3 that equation (3.1) has no solutions.
(i) b = uv withu = p* and v = ¢#. Then we have

p" 4+ 1 =2V, (3.2)

or
u™ o™ =2cN. (3.3)

First consider equation (3.2). If N > 3, then it follows from Lemmas 2, 3 that equation (3.2) has no solutions.
If N=1 or 2, then equation (3.2) can be written as

wv)" +1=u*+v* or w*+v4?)2.
It is easy to show that the above equation has no solutions except for the equation

@)’ +1 = @*+vH?/2.
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In view of a property of an elliptic curve, we see that equation (3.4) has no solutions. Indeed, by putting
X = 2uv? and Y = 2(u* + v*), (3.4) can be reduced to the ellitptic curve

E: Y =X+8

with rank E(Q) = 1 and all integer points on E are (X, Y) = (—2,0), (1, £3), (2, +4),

(46, £312).

Next consider equation (3.3). Since m is even, the proof is divided into two cases (a) m = 0 (mod 4) and
(b)ym =2 (mod 4).

Case (a) m = 0 (mod 4). If n > 4, then it follows from Lemma 4 that equation (1.1) has no solutions. If
n = 2,1ie., N = 1, then the relation ¢ = (u4 + v4)/2 yields m = 4 from (3.3), and hence (x,m, n) =
(a,4,2).

Case (b) m =2 (mod 4), say m = 2[ with [ odd. Then equation (3.3) becomes

u? + 02 w2l 2 B ut 4 vt N
2 w2402 ) 2
Let r be an odd prime of (u? 4+ v?)/2. Then u* + v* = 0 (mod r). This implies that # = 0 (mod r) and

v =0 (mod r), which contradicts ged(u, v) = 1.
(iii) b = u with u = p*g”® and v = 1. Then we have

p" +1 =2V, (3.5)
or

N
IM——i_l) (3.6)

m m:2
up + vy ( >

with u; = p® and v; = ¢P.

First consider equation (3.5). Note that b* + 1 = 2¢, since v = 1. As above, equation (3.5) has only the
solution (m, N) = (4, 1).

Next consider equation (3.6). In view of b = ujv; and b = £3 (mod 8), we may suppose that u; = £3
(mod 8) and vy = £1 (mod 8) . Since m is even, the proof is divided into two cases (a) m = 0 (mod 4)
and (b) m = 2 (mod 4).

Case (a) m = 0 (mod 4). If n > 4, then it follows from Lemma 4 that equation (1.1) has no solutions. If
n =2,i.e., N = 1, then (3.6) has no solutions.

Case (b) m =2 (mod 4), say m = 2/ with [/ odd. Then equation (3.6) becomes

N
T A I A o
2 u%—{—v% - 2 ’

The right hand side of (3.7) is divisible by (u% + v%) /2 =35 (mod 8). This contradicts the fact that an odd
prime factor r of A* + B* satisfies r = 1 (mod 8). This completes the proof of Theorem 1.

4 The cases b = 3p, 5p with p odd prime.

In this section, when b = 3 p, 5p with p odd prime, we consider eqaution (1.1). We do not assume that b = £3
(mod 8), i.e., p = £1 (mod 8).

Theorem 2 (i) Let p be an odd prime with p > 3. Putu = p and v = 3 in (2.1). If Bp + 1)/2 has a prime
factor other than 17 and 193, then Conjecture 3 is true. In particular, if p is an odd prime with3 < p < 107,
then Conjecture 3 is true.

(ii) Let p be an odd prime. Putu = 3p and v = 1 in (2.1). If (p + 3)/2 and (p* + 3%)/2 have a prime factor
other than 17 and 193, respectively, then Conjecture 3 is true. In particular, if p is an odd prime satisfying
3 < p < 107 with p # 31,383, 167039, then Conjecture 3 is true.
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Proof (i) u = p and v = 3 in (2.1). Then a = (p* — 3% /2, b = 3p, ¢ = (p* + 3%)/2. Suppse that our
assumptions are all satisfied. Let (x, m, n) be a positive integer solution of equation (1.1).

From (1.1), we have
5-(5)-C)3)-~
3 3 3 3

Hence we see that n are even, say n = 2N. (We do not know if m is even or not.) Thus
GBp)" =" + 0" - x).

Then we have
Gp)"+1=2N 4.1

or
pr 43" =2cN, 4.2)

First consider equation (4.1). If m is odd, then equation (4.1) becomes

31\ (Gpm 41 _ (43"
2 3p+1 ) 2 '
Note that (3p + 1)/2 is odd, since (p* + 3%)/2 is odd. Let r be an odd prime factor of (3p + 1)/2. Then
(p* +3%/2 = 0 (mod r). This implies that 38 + 1 = 0 (mod r), so r = 17, 193, which contradicts our
assumption. In the same way as in the proof of Theorem 1 (i), if m is even, we easily see that equation (4.1) has

no solutions.
Next consider equation (4.2). If m is odd, then equation (4.2) becomes

P3N (P3N (3
2 p+3 ) 2 ’
Let r be an odd prime factor of (p + 3)/2. Then p* + 3* = 0 (mod r). This implies that p = 0 (mod r)
and 3 = 0 (mod r), which contradicts gcd(p,3) = 1. If m = 0 (mod 4), then it follows from Lemma 4 that

equation (1.1) has only the solution (x, m, n) = (a, 4, 2). We may suppose that m = 2 (mod 4), say m = 2/
with / odd. Then equation (4.2) becomes

P+ 32 P 32 P34 N
(=) () - (57

Let r be an odd prime factor of (p? 4+ 32)/2. Then p* 4+ 3* = 0 (mod r). This implies that p = 0 (mod r) and
3 =0 (mod r), which contradicts ged(p, 3) = 1.

In particular, by Magmal1], we verified that (3p + 1)/2 has a prime other than 17 and 193 in the range
3 < p < 107 with p # 11. When p = 11, Conjecture 3 is true from Lemma 5,(4).

(i)u =3pand v = 1in (2.1). Thena = (3p)* — 1)/2, b =3p, ¢ = (Bp)* + 1)/2. Suppse that our
assumptions are all satisfied. Let (x, m, n) be a positive integer solution of equation (1.1).

When p = 3, Conjecture 3 is true from Lemma 5,(1). We may suppose that p > 3. As in (i), equation (1.1)
is reduced to solving the following:

4 N
Gp)"+1=2 <%> 4.3)
or N
Y1

First consider equation (4.3). If m is odd, then an odd prime factor r of (3p+1)/2 divides ((3p)4 +1)/2. This
implies that 2 = 0 (mod r), which is impossible. If m is even, then it follows from Lemmas 1,2 that equation
(4.3) has only the solution (m, N) = (4, 1).
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Next consider equation (4.4). If m is odd, then equation (4.4) becomes

P3N [ P +3"\ (Gt 1)\
2 p+3 ) 2 ‘
Let r be an odd prime factor of (p + 3)/2. Then Bp)*+1=0 (mod r). This implies that 334+ 1=0 (mod r),

so r = 17,193, which contradicts our assumption. If m = 0 (mod 4), then it follows from Lemma 4 that
equation (1.1) has no solutions. We may suppose that m = 2 (mod 4), say m = 2[ with / odd. Then equation

(4.4) becomes
PP+3\ (P73 epteY
2 p2+32 ) 2 ’

Let r be an odd prime factor of (p* +32%)/2. Then 3p)* +1 = 0 (mod r). This implies that 3¥4+1=0
(mod r), sor = 17, 193, which contradicts our assumption.

In particular, by Magmal[1], we verified that (p 4+ 3)/2 has a prime other than 17 and 193 in the range
3 < p < 107 with p # 31, 383, 167039, and that (p> + 3%)/2 has a prime other than 17 and 193 in the range
3 < p < 107 with p # 5. When p = 5, Conjecture 3 is true from Lemma 5,(2). This completes the proof of
Theorem 2. O

Similarly, when b = 5p, we can show the following:

Theorem 3 (i) Let p be an odd prime with p > 5. Putu = pandv = 5in (2.1). If Sp + 1)/2 has a prime
factor other than 17 and 11489, then Conjecture 3 is true. In particular, if p is a prime with 5 < p < 107,
then Conjecture 3 is true.

(ii) Let p be an odd prime. Put u = 5p and v = 1 in (2.1). If (p + 5)/2 and (p* + 5%)/2 have a prime factor
other than 17 and 11489, respectively, then Conjecture 3 is true. In particular, if p is a prime satisfying
3 < p < 107 with p # 29, 22973, then Conjecture 3 is true.

Proof (i) u = p and v = 5in (2.1). Then a = (p* — 5%/2, b = 5p, ¢ = (p* + 5% /2. Suppse that our
assumptions are all satisfied. Let (x, m, n) be a positive integer solution of equation (1.1).

From (1.1), we have
5-(3)-()3)
5 5 5 5

Hence we see that n are even, say n = 2N. (We do not know if m is even or not.) Thus
Gp)" = (N + ) —x).

Then we have
Gp)m+1=2cN (4.5)

or
pm 45" =2cN. (4.6)

First consider equation (4.5). If m is odd, then equation (4.5) becomes

SpA1\ [ Gpm+1Y [ pt 454\
2 5p+1 ) 2 '
Note that (5p + 1)/2 is odd, since (p* + 5%)/2 is odd. Let r be an odd prime factor of (5p + 1)/2. Then
(p* +5%/2 = 0 (mod r). This implies that 53 + 1 = 0 (mod r), so r = 17, 11489, which contradicts our

assumption. In the same way as in the proof of Theorem 1 (i), if m is even, we easily see that equation (4.5) has
no solutions.
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Next consider equation (4.6). If m is odd, then equation (4.6) becomes

PSP+ pr 5\
2 p+5 ) 2 '
Let r be an odd prime factor of (p 4+ 5)/2. Then p* + 5% = 0 (mod r). This implies that p = 0 (mod r)
and 5 = 0 (mod r), which contradicts gcd(p,5) = 1. If m = 0 (mod 4), then it follows from Lemma 4 that

equation (1.1) has only the solution (x, m, n) = (a, 4, 2). We may suppose that m = 2 (mod 4), say m = 2/
with [ odd. Then equation (4.6) becomes

PP +52 P52 st N
(=) G- (57)

Let r be an odd prime factor of (p? 4+ 5%)/2. Then p* +5* = 0 (mod r). This implies that p = 0 (mod r) and
5 =0 (mod r), which contradicts ged(p, 5) = 1.

In particular, by Magma[1], we verified that (5p + 1)/2 has a prime factor other than 17 and 11489 in the
range 3 < p < 107.

(i) u = Spand v = 1in (2.1). Thena = ((5p)* — 1)/2, b = 5p, ¢ = ((5p)* + 1)/2. Suppse that our
assumptions are all satisfied. Let (x, m, n) be a positive integer solution of equation (1.1).

When p =5, Conjecture 3 is true from Lemma 5,(3). We may suppose that p # 5. As in (i), equation (1.1)
is reduced to solving the following:

4 N
Gp"+1=2 (MT—H> 4.7
or
4 N
PSS =2 <%> . (4.8)

First consider equation (4.7). If m is odd, then an odd prime factor r of (Sp+1) /2 divides ((5 p)4 +1)/2. This
implies that 2 = 0 (mod r), which is impossible. If m is even, then it follows from Lemmas 1,2 that equation
(4.7) has only the solution (m, N) = (4, 1).

Next consider equation (4.8). If m is odd, then equation (4.8) becomes

(p+5 pm+5m>_ Gpt+1\"
2 p+5 ) 2 '
Let r be an odd prime factor of (p +5)/2. Then (5p)*+1=0 (mod r). This implies that 554+ 1=0 (mod r),

so r = 17, 11489, which contradicts our assumption. If m = 0 (mod 4), then it follows from Lemma 4 that
equation (1.1) has no solutions. We may suppose that m = 2 (mod 4), say m = 2[ with [ odd. Then equation

(4.8) becomes
PP+ (PN GpteY
2 p2+52 ) 2 ’
Let r be an odd prime factor of (p? + 5%)/2. Then (5p)* + 1 = 0 (mod r). This implies that 53 + 1 = 0
(mod r), sor = 17, 11489, which contradicts our assumption.
In particular, by Magmal1], we verified that (p + 5)/2 has a prime factor other than 17 and 11489 in the
range 3 < p < 107 with p # 29, 22973, and that (p? + 5%)/2 has a prime factor other than 17 and 11489 in the

range 3 < p < 107 with p % 3. When p = 3, Conjecture 3 is true from Lemma 5,(2). This completes the proof
of Theorem 3. o
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