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Abstract In this paper, we study an extension of the split equality equilibrium problem called the extended
split equality equilibrium problem. We give an iterative algorithm for approximating a solution of extended
split equality equilibrium and fixed point problems and obtained a strong convergence result in a real Hilbert
space. We further applied our result to solve extended split equality monotone variational inclusion and
equilibrium problems. The result of this paper complements and extends results on split equality equilibrium
problems in the literature.
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1 Introduction
Let C be a nonempty, closed and convex subset of a Hilbert space H and let T : C — C be a mapping. A
point x € C is said to be a fixed point of 7' if Tx = x. Denote the set of fixed points of the mapping 7 by F(T).

Definition 1.1 ( [36]) Let C be a nonempty, closed and convex subset of a Hilbert space H and let
4 € (—o0,1). Amapping T : C — H with F(T) # () is called A-demimetric if for any x € C and x* € F(T),

2

Clearly every /-strictly pseudocontractive mapping T with F(T) # ) is a A-demimetric mapping. Also, we

(x —x",x —Tx) > AHx—Ttz, (1.1)
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recall that a mapping T : C — H is called (o, §)- generalised hybrid (see, [21]), if there exists «, 5 € R such
that
2 2
of [Tx — Tyl + (1 — o) [|x — Ty]|
<BIITx =y + (1= B)llx =1

for all x,y € C. It has been shown that the class of («, ff)- generalised hybrid mappings generalises the
nonexpansive mappings [37], nonspreading mappings [23, 24] and the hybrid mappings [35]. Moreover, if T
is an (a, f§)- generalised hybrid mapping and F(T) # ) [37], we have that for x € C and x* € F(T),

(1.2)

| = Tx|* + (1 — ) ]2 — 7|

. . (1.3)
S B =l + (1= B =P
and hence ||Tx — x*|| <||x — x*||. Therefore, we have that
2(x — x*,x — Tx) > ||x — Tx||? (1.4)
and thus
-0
(x —x",x—Tx) > ||x — T |, (1.5)

2

which implies that every (o, §)- generalised hybrid mapping with F(T) # () is 0-demimetric.
Letf : C x C — R be a bifunction, then the equilibrium problem associated with f and the set C is: find
x € C such that

flx,y)>0,Vy € C. (1.6)

A point x € C that satisfies (1.6) is called an equilibrium point. We shall in this work denote the set of
solutions of equilibrium problem (1.6) by EP(f, C). The equilibrium problem can be applied to solve
problems from other fields such as physics and economics (see for example [34]). Also, many optimisation
problems such as variational inequality, convex minimization, and Nash equilibrium problems can be
transformed in the form of equilibrium problem (1.6).

The equilibrium problem because of its importance has attracted the interest of many mathematicians
who have developed and studied numerous iterative algorithms for the approximation of solutions of
equilibrium problems (see, [13]). Moreover, authors have also taken interest in the problems of finding a
common element of fixed points of nonlinear mappings and the set of solutions of equilibriums,
[1, 10, 15, 17]. The study of this kind of problem was inspired by certain problems arising from signal
processing, network resource allocation, and image recovery results in mathematical models whose con-
straint can be expressed as fixed point problems and/or equilibrium problems [20, 29].

Let C; and C, be nonempty closed and convex subsets of real Hilbert spaces H, and H,, respectively and
let A : Hi — H, be a bounded linear operator. The split feasibility problem (first introduced by Censor and
Elfving [8], for modelling inverse problems in R") is :

findx € C; suchthat Ax € C,. (1.7)

The split feasibility problem has been considered as a veritable area of study because of its applications in
signal processing, image reconstruction and intensity modulated therapy [6, 7].

Let H; and H; be real Hilbert spaces and let S : H; — RU {400} and g : H, — RU {+00} be closed
convex proper functions. Attouch et al. [4] introduced the following convex optimization problem:

min{S(x) + g(v) +gQ(x,y),er1,y € Hy}, (1.8)

where Q : Hy x H, — R is a nonnnegative quadratic form which couples the two variables x and y, and u
is a positive parameter. An example of the nonnnegative quadratic form Q(x, y) is Q(x,y) = ||Ax — Bx||i,3,
where A € L(Hy,H) and B € L(H,, H3) are Bounded linear operators acting from H,; to H3 and from H, to
Hj; respectively (see, [3]). The optimization problem (1.8) can be applied to solve problems from various
areas such as decision science and game theory, partial differential equations and mechanics, and optimal
control and approximation theory [2, 4, 27].
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48 F. U. Ogbuisi et al.

Inspired by this kind of problem considered by Attouch et el. [3] and the interest to cover many situations
such as decomposition methods for PDEs, Moudafi [32] introduced the following split equality problem. Let
A :H| — Hj3, B: Hy — Hj be two bounded linear operators, let C; and C, be nonempty closed and convex
subsets of real Hilbert spaces H| and H; respectively. Find

x € C1,y € CysuchthatAx = By. (1.9)

Clearly the split equality problem (1.9) is a generalization of the split feasibility problem (1.7). Moreover,
the spilt equality (1.9) allows asymmetric and partial relations between the variables x and y. Moudafi [31],
further considered the following split equality fixed point theorem. Let A : Hy — Hs, B : Hy — H3 be two
bounded linear operators, let C; and C, be nonempty closed and convex subsets of real Hilbert spaces H|
and H,, respectively. Let S: C — C and T : Q — Q be non linear operators. Find

x € F(S),y € F(T) such that Ax = By. (1.10)

Moudafi and Al-Shemas [33], proposed an iterative method for solving (1.10) for firmly quasi-nonexpansive
operators as follows:

{ X1 = S(x, — 7,A"(Ax, — Byn)),

1.11
Ynt+1 = T(yn + VnA*(Axn - Byn))vvn > 07 ( )

where y, € ( ), 24 and Ap stand for the spectral radius of A*A and B*B, respectively. Several

€, —— — €
"a+ 2B
iterative algorithms have been developed for solving the split equality problems and split convex feasibility
problems [14, 16, 18, 19, 22, 25, 28, 30, 33, 38, 39].
In 2008, Atouch et al. [3] extended the convex optimization problem (1.8) to the case of n variables.
Precisely, they considered the following general convex optimization problem:

min{iﬁ(xi)

(1.12)
1
+§1<; Qij(xi,xj)7x[€H,-,i€{1,2,-~-,n}},
Sisjsn
where for i = 1,2, -, n, H; is a real Hilbert spaces, f; : H; — R U {+o0} is convex, lower semicontinuous

and proper functional, and Q;; : H; X H; — R is a nonnnegative continuous quadratic form. Similar to (1.8),
one can choose Q;j(x;,x;) = ||Ax; — Ajxj||, where A; € L(H;, Z) is a bounded linear operator mapping H; to
Z.

Recently, Che et al. [9], inspired by the work of Atouch et al. [3], introduced the following extended split
equality problem (ESEP). Let H be a real Hilbert space. For i = 1,2,---,n, let C; be a nonempty closed
convex subset of real Hilbert spaces H; respectively and A; : H; — H be bounded linear operators. Find

X] GC],X2 GCZ,"',xn ecl’l

(1.13)
such that Ajx; = Ayxo = --- = A, x,.

They proposed the following algorithm: Let (xj1,X12,---,%1,) € Hy X Hy X --- X H, be arbitrary.
Calculate the (k+1)-th iterate via the following formula

Do Ay
Wi = )
n

Xer1,1 = Pey (1 — 1AT (A — wi)),
Xir12 = P, (k2 — 1A (Aoxin — wi)), (1.14)

Xk+1n = PC,I (xkﬁn - VkAj,(Anxk.n - W/()))

1
where the stepsize y; € (e, min {T} —€), and A4, stands for the spectral radius of AjA;. They obtained a
weak convergence result. Lsisn /g
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In this paper, we study the following Extended Split Equality Fixed Point and Equilibrium Problems
(ESEFPEP) which is to find

x1 € F(Ty) NEP(f1,Cy),x; € F(T?)
NEP(f>,C), - ,x, € F(T,) NEP(f,,C,) (1.15)

such that Ajx; = Ayxp = -+ = A,x,

where T; : C; — Ci(i = 1,2, -+, n) are demimetric mappings. We shall denote the solution set of (1.15) by
Q.

2 Preliminaries
Lemma 2.1 ([36, 37]) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H .
Let A€ (—o0,1) and let T be a 1 -demimetric mapping of C into C . Then F(T) is closed and convex.

Lemma 2.2 ([13]) Let C be a nonempty closed convex subset of a Hilbert space Hand let f : C x C — R
be a bi-function satisfying the following conditions:

(A1)  f(x,x) = Oforallx € C;
(A2) fis monotone, that is, f(x,y)+f(y,x) <0 forall x,y € C;
(A3) for each x,y,z € C,

limsupf(rz + (1 — t)x,y) <f(x,y);
110
(A4)  for each x € C,y—f(x,y) is convex and lower semi-continuous.

Let r>0and x € H. Then, there exists z € C such that
1
Sy +-y—z2-x)20,WyeC
Lemma 2.3 ( [38]). Assume that {a,} is a sequence of nonnegative real numbers such that
apy1 < (1 - an)“n + O(né,,, n> 07

where {0y} is a sequence in (0, 1) and {5,} is a sequence in R such that

(i) D5 o = oo,
(i) limsupd, <0 or > 2, [00,| <oo.

n—oo

Then lima, = 0.

n—oo

Lemma 2.4 ([13]) Let C be a nonempty closed convex subset of a Hilbert space H and let f be a bifunction
of C x Cinto R satisfying (A1) — (A4). For r > 0and x € H , define a mapping T/ : H — C as follows:

Tf(x):{ZEC:f(z,y)-i—%(y—z,z—x)ZO,VyEC}, (2.1)

for all x € H. Then the following hold:

() T/ is single-valued;
(i) T7 is firmly non-expansive, that is, for any x,y € H,

177(x) = TLO)I* < (T () = T (3),x = ¥)s

(ii) F(T) = EP(C.f),Vr > 0;
(iv) EP(C,)) is closed and convex.

Lemma 2.5 Let H be a real Hilbert space. Then the following hold:
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50 F. U. Ogbuisi et al.

(a) Hx—l—szS||y||2+2<x,x+y)f0rall x,y € H;
(b) I\x—sz:||x\|22+||y||2;2<x,y>for 61112 x,y € H. .
©) lox + (1 = a)y[|” = alfx|[” + (1 = o) |[y[|” — (1 — &) |[x — ¥[|", for all x,y € Handa € (0, 1).

Definition 2.6 Let H be a Hilbert space and let C be a nonempty, closed and convex subset of H. A
mapping T : C — H is called demiclosed if, for a sequence {x,} in C such that x, — w and x,, — T(x,,) — O,
then w = Tw holds.

3 Main Results

Theorem 3.1 Let H be a real Hilbert space. For i =1,2,---,n, let C; be a nonempty closed and convex
subset of real Hilbert space H; and let A; : H; — H be a bounded linear operator. Let T; : C; — C; be 1; -
demimetric and demiclosed mappings and let f; : C; x C; — R be bifunctions satisfying conditions (A1) —
(A4) such that Q # 0. Let (x1,1,X12, -+,X1,) € Hy X Hy X --- X H, be arbitrary and let u; € H;(i =
1,2---n) be arbitrary but fixed. Let the sequence {(Xi1,Xk2,- - Xkn)} be generated as follows:

Zl lekl
Wi = )
n

Yir = T (1 — AT (A — wi)),

X1 = ogun + (1 — o) [(1 = Bo)yea + BTk,

Vi = T2 (2 — 1As (Aoxea — wi), (3.1)
Xer12 = ot + (1 — ) [(1 = B)yeo + BiTovkn),

Yikn = T;: (xk.n - VkAZ (Anxk,n - Wk)),
Xk+1,n = Oy + (1 - O‘k)[(l - ﬁk)ykn + ﬁk nykn] k> 1.

} —€) and y,, stands for the spectral radius of A;A; . Also, {o} and {f;} are

where 7y, € (e, 1m1n {
sequences in (0, 1) satlsfymg the following conditions

(1) limk_,oo Ay = 0, leil Oy = OO

(i) O<liminff, <limsupfl, <1 — 1, 1:= max {4}.
k—o00 k—00 1<i<n

(i) re>r>0.
Then the sequence {(xx1,Xk2, - Xkn)} converges strongly to (z},25,---,25) € Q.

Proof Let (21,22, +,20) €Q, and Z7=A 171 =Ayzp = -+ = Ayzy. Since T;, i=1,2,---,n is J;-demi-
metric, we have,

ki — zi + Bi(Tivei — i) :

= [|yxi — aill? + Bl Tivei — yk,i||2
+ 2B (Vi — zi> Tivei — Yii)

<k — 2l + BellTovis — il (3.2)
— Be(1 = 2)l[yei — Toveil

= |ves — ail* + Be(Be — (1 = 2D [ Tiyies — vl

<||yki — Zi||2-

Therefore, from (3.1) and (3.2), we obtain
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ks 1 = il [P = o + (1= o) [(1 = By
+ BTivea] —
= ol — zil P + (1 — )| (1 = By
+ BiTiyki — z|
— oge(1 — a)[ | — [(1 = Bi)yw (3.3)
+ BTy |
el — zil* + (1 = ) [1(1 = B)yes
+ BTovei — zl
<oy |u; — Zi||2 + (1 = o) l[yri — Zi||2-
Also from (3.1), we get
ki — zill? = 7% (i — 2eAT (A — wi)) — 2l
<xei — 2 = 74A; (A — wi) |
= |xii = zil [ + 72 l1A] (A — wi)l®
= 20 (ki — 2, A (Aixi i — wi)
=|lxes — il + VlIAT (A — wi)?
= 29 (Ai (o — 2i), Aixiei — wi) (3.4)
=|lxes — 2l + 72 l1A] (Aixii — wi) |
+ e[~ lAixe; — Aizil
— [JAaxes — wiel | + [|Aizi — wil ]
< lxi = zil P = 7e(1 = pellAd ) A — wel
— el Aixes — Azl P + vl |Aizi — wil .
Thus it follows from (3.3) and (3.4) that

1 — zil [P <o i — 2l

2 2 2
+ (1 — ) [ka.,,- = all” = v (1 = nllAil ) [ Ak — wil|

(3.5)
n — 2
i=1 11— Ai-xk7i
_'Vk”Aixk‘i_AiZiHQ‘i‘ykZ il ] I ’
which implies
> s =zl
i=1
n 5 " 2
<o )l =+ (1= a0l = (3.6)
i=1 -

- 2
= > el = el )1 Aeus — wil -
i=1

1

Hence
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52 F. U. Ogbuisi et al.

- 2
Z ||xk+1,i - Zi||
i=1
= 2 - 2
e Y lui =zl + (1 =) Y |l — |
i=1 i=1

n ) n 2
< max{ 3 s — 2% s — 2P} (37)
i=1 i=1

n n
< max{z [|u; — Zi||za Z [|x1; — Zin}.
i1 i1

Therefore {> "1 ||xk: — zi] *} is bounded, which implies {x;;} is bounded for each i = 1,2, - -, n. We now
consider two cases to obtain the strong convergence.

Case 1. Assume that {37, ||x; — z||*} is monotonically decreasing. Then it follows that {37 ||xx; —

||’} is convergent and S [l — zil|* — S0, i — zil)* — 0,k — oo.
Now from (3.6), we have

n
(1= o) Y (1 = pllAd ) A — wel
i=1

- 2 N 2
<o (Y Mui =zl =Y b — zll) (3.8)
i=1 i=1

n n
+ ) e = zilF = > [k =zl = 0,k — oo,
i1 p
That is

fim (1= 05) > (1 = pel |4l ) JAixis — wal[* = 0,

koo i=1
which implies

lim ||Axg,; — wk||2 =0, foreachi =1,2,---,n. (3.9)
k—00

But from Lemma 2.4 (ii), we have

0< — (ki — Zis Yii — Zi)
+ ki = Zis Xk — V(A7 (A — wie) — zi) (3.10)
=(Vri — ZisXki — VAT (Aixi — Wi) — Vi),
which implies
(Vhi = X Vi — i)
< (A7 (Aixei — Wi), Zi — Vi) (3.11)
< ellA7 (Aixe; — wi)llllzi — yrall-

It then follows from Lemma 2.5(b), (3.3) and (3.11) that
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Thus

Therefore,

ki = el =i — zil > = llyes — il

+ 2(Vki — Xkis Yii — %)
<ok =zl = (1= o) lyes — @il
+ 2(Vki — Xhir Vi — i)
< eis = 2zl = [xiesrs — 2l
+ o |u; — il
+ 2(Vki — Xair Vi — i)
< eis =zl = [xiesrs — 2l
+ o ;= il
+ 29 ||AT (Aixi i — wi)l[|zi — yiall-

- 2
D ki = xill
i=1
. 2
<Dl — =il
i=1
= 2 < 2
= i =zl + o Y [ — |
=1 i—1

+ 27 ) 1A (A — wi)lll |z
i=1

— Yrill — 0,k — oo.

lim |y; = xiil] = 0,i = 1,2, n.
k—o00

Again from Lemma 2.5 (c) and (3.2), we have

which implies

s — il

= o ||u; —Zi||2
+ (1 — ou) ||y — zi + Pe(Tivei — yk,i)||2
— o1 — o) ||y
+ B Tiyi — i) — wil?
<o — zil|* + (1 — o) |ywi — z
+ BTy — i) |
<onllui — zl|* + (1 = o) |lywi — il
+ (1= ) Bl — (1= )| Tiyes — yeal-

(3.12)

(3.13)

(3.14)
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(1 = o) B (1 = 4) = B Tivei — yai |2

<ogllur — zl* + (1 = o)llyves — ail* = [Poieri — zil

< ak[””i — Zi||2 - ||xk,i — Zi||2] + (1 - O‘k)”yk.,i - xk,i||2 (3-15)
+ ok = @l [* = e — 2l

+ 2Hyk,i - xk7i||||xk,i — ZiH-

Therefore,

(1= o) Bi((1 = 2) = B) D IToves =yl
i=1

n
< o Z[Hui =l = e — zl?)
i=1

+ (1 — o) Z [|yii — xk,i||2 (3.16)
i=1
n n
2 2

+ 3 i — 2l =3 o — il

i=1 i=1

n

+2 > Aei = xwillllxe; — zil] — 0,k — oo,

i=1

which implies
HTiyk,i_yk,i”_>07k_)OO7Vi:1727"'7n' (317)
Again from (3.1), we have

o1 — Vil | < ol [t — el
+ (1= o) [|(1 = Bi) ki — i)
+ Bie(Tivei — Yiea)ll (3.18)
=] i — Y|
+ (1 — o) Bl | Tivei — yeil| — 0,k — oo

Now,

X1 — Xl | < || — Yail|

3.19
+ vk — xil| — 0,k — oo. ( )

Since {x(;} is bounded for all i =1,2,---,n there exists a subsequence {x;;} of {x;;} for each i =
1,2,---,n such that {xkj,,-} converges weakly to zi € C;. From the assumption that T;(i = 1,2,---,n) is
demiclosed, (3.13) and (3.17), we have that i € F(T;) foreachi=1,2,---,n.

We now show that z; € EP(f;, C;),i = 1,2,---,n. From y; ; = T{'kl_ (X, — yk_],A;‘(A,-xkj’,- —wy,)), we have

1
Siuisvi) + P (Vi = Viis Vigi — Xiyi)
J
1 . 3.20
+ (Vi = Yy i VAT (Aixig,i — wig ) (3:20)
ki

>0,Y, €Cii=1,2,---,n.

It then follows from the monotonicity of f;(i = 1,2, ---,n), that
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1
— <Vi = YVkjis Ykji — xkj,i>
rk/.

1 * 21
+ e (Vi = Yii» AT (Aixig i — W) (3:21)

J

Zfi(Viy)’khi)aVVi S Ciai = 1a2a Y (X

and since yy ; — z;,i = 1,2,---,n and A4 that fi(v;,z;) <0,¥v; € C;,i = 1,2,--- ,n.
For v; € C;, let y;, :=tv; + (1 — 1)z for all # € (0, 1). Then clearly y;, € C;,i = 1,2, ---,n. Therefore,
from A1 and A4, we have

0 :fi()’i,uyi,t)
<tfi(ie,vi) + (1 = 0)fi(yis, z7) (3.22)
S tfi(yi,tyvi)7

which yields fi(yi,,vi) > 0.
Thus from A3, we obtain f;(z/,v;) >0,i = 1,2,---,n.
>in1 Az
n

Letw = i , then it follows from (3.9) and the lower semicontinuity of the square norm that for

1= ]72,”',1/1,
i) = ” < lim i [[4i2 = wel = 0.
—00

Hence A;z; —w = 0, which yields

Ayt + A3+ Az, = (n— 1)Az],
Az] +A3zs + -+ Az, = (n— 1)Ayz;

Ay +A+ -+ Az, = (n— DAz,

and solving, we obtain A z] = A,z5 = - - - = A,z,.. Therefore, (z},25,---,z;) € Q. We now obtain the strong
convergence

ks i = 2112 =lloweus + (1= o) [(1 = i)y
+ BTy — 21|
< (1= o)’ |I(1 = Byei + BT — 7 |I°
+ 204 (Ui — Z; , Xe1i — 27)
< (1= og)|lywi — 2| + 20
— 27 Xky1i — Z7)
< (1 — o) — 2P
— (1 = ) [ (1 = 7l |4l A — el
— il A — |
Yo |l — Al ]
n
+ 204 (Ui — 2}, X1, — 2 )-

(3.23)

2

+ Yk

Therefore,
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n n
> i =P < (0 =) Y i — 51
i=1 i=1

] (3.24)
+ 20 Z(Mz — 2 X1 — 2 ).

Recall that in a real Hilbert space a sequence {x,} is said to converge weakly to a point x € H if (x,,y) —
(x,y) for all y € H. Now since ||xx; — x¢41,4]| — 0 and x;; — z, we have that x;; — z;. Therefore, for
eachi=1,2,---,n we get

: *
lim SuP<”i — %y Xkt 1, — Zi>
k—o00

=lim(u; — 7/, X5 — ;)
! _

= (=55~ ) = 0.

Thus it is easy to see that limsup2 > " | (u; — 2, X1 — 27) = 0, thus by Lemma 2.3, it follows that

k—o00
n
> sisri — 2117 = 0,k — oo,
i=1

which implies
||xx; —zf|] = 0,k — oo, foreachi=1,2,---,n.
That is

%
xki_>zivl:1727"'an'

3

Case 2: Asumme that {37 ||x; — z||*} is not a monotonically decreasing sequence. Set Iy =
S e — z])*,Vk>1 and let 7 : N — N be a mapping for all k > ko (for some kq large enough) by

(k) ;== max{l e N : I<k, I, <TI';}.
Clearly, t is a nondecreasing sequence such that t(n) — oo as n — oo and
0<T ) <Tryt1, forallk > ko.
After a similar conclusion from (3.17) and (3.19) respectively, it is easy to see that

||Tiyr(k Vi — Yk ||—>Ok—>OO

and
||xr(k)+1,i - xr(k),i” — 0,k — oo.
Because {x();} is bounded for all i = 1,2,---,n there exists a subsequence of {x()}, still denoted by
{20y} which converges weakly to ¥ € F(Ty), for i= 1 2.+, n. Also
limsup2 >°7 | (i — 2}, X1, — 27) = 0.
k—00

Also from (3.24), we have

2
anf i = 51 < (1= gy an, =l
n

+ 200 Z<ul - Z?axr(k)vtl,i — 7).

i=1

(3.25)

which implies
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n n
2 2
oy ) e — 11 < Y ey — 7
i=1 i=1

= ke — 711 (3.26)
i=1

+ 200k Z(Mi — 2}, Xe(k)+1i — i)
i=1

That is
DM =z IF <2 G =2 vy = 77)- (3.27)
i=1 i=1
Therefore,
n
Z||xf(k),i—z;‘||2 — 0,k — o0, (3.28)
i=1
which implies
klim |[Xey 41 — 2il| =0, fori = 1,2, ,n.

Furthermore, for k > ko, it is easy to see that Iy < T';y4 if k # (k) (that is t(k) <k), because I'; > T,
for 1(k) + 1 <j<k. As a consequence, we obtain for all k> ko,

0< T < max{l ), Ty} = Try41-

Hence, lim;_.., I'x = 0, thus

n
lim » ~ [lxe; — 7|l = 0,
koo i3

that is

l|xxi — zf|| = 0,k — o0,i=1,2,---,n.
Thus we conclude that {(xx1,xk2,---,Xk,)} converges strongly to (z},25,---,z) € Q. this completes the
proof. O
Corollary 3.2 Let H be a real Hilbert space. For i = 1,2,--- n,let C; be a nonempty closed and convex

subset of real Hilbert space H; and let A;: H; — H be bounded linear operators. For J; € (0,1), let
T;: C; — C; be J; -strictly pseudocontractive mappings (i =1,2,--- n) and let f;:C; x C; — R be
bifunctions satisfying conditions (A1) — (A4) such that Q # 0. Let (x11,X12,,X1,,) € Hl X Hy X
-+ X H, be arbitrary arbitrary and let w; € H;(i = 1,2---n) be arbitrary but fixed. Let the sequence
{(xk1, Xk 2, - Xk )} be generated as follows:

n
i A
Wi = )
n

i = Tl (xen — AT (A — wi)),

X1 = ogit + (1 —o)[(1 = B)yia + BiTiyeal,

Yi2 = T{f (2 — 7A5 (Aaxia — wi)), (3.29)
Xer12 = oty + (1 — o) [(1 = Bi)ye + BiTovenl,

Yin = TJ:Z (Xt = ViAn (AnXin — W),
Xi1,n = Oty + (1 - ak)[(l - ﬂk)yk,n + ﬁanyk,n]v k>1.
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. 1
where 1 min
e € (e’lgign{“ .

sequences in (0, 1) satisfying the following conditions

} —€) and 1y, stands for the spectral radius of AjA; . Also, {o} and {f,} are

() limgoo o =0, 377 oy = 003
(ii) 0<lign inff, <limsupf, <1 — 4, 1:= max {Ai}. Then the sequence {(xy1,Xkz2," - Xkn)} converges
—00 k—00 <i<n

strongly to (z},25,---,2,;) € Q.

Corollary 3.3 Let H be a real Hilbert space. For i =1,2,---,n, let C; be a nonempty closed and convex
subset of real Hilbert space H; and let A;: H; — H be bounded linear operators. For 9;,n; € R, let
T;: C; — C; be (di,n;) - generalised hybrid mappings (i=1,2,---,n) and let f;:C;i x C; — R be
bifunctions satisfying conditions (A1) — (A4) such that Q # 0. Let (x11,X12, " ,X1,,) € Hl X Hy X
-+ X H, be arbitrary arbitrary and let w; € H;(i = 1,2---n) be arbitrary but fixed. Let the sequence
{(xk,1, X2, - Xk n) } e generated as follows:

Dot A
Wi = )
n

Yir = T (1 — 7AT (Arxis — w)),
X1 = oy + (1 — o) [(1 = B)yia + BeTiyeal,

Yio2 = T2 (xk2 — A3 (Asxes — wi), (3.30)
Y12 = o + (1 — o) [(1 = B)ykz + BiTayial,

Yien = T,(Z (-xk,n - ’VkA::(Anxk‘n - Wk))7
Xk1,0 = Ollty + (1 - ak)[(l - ﬂk)yk,n + ﬁanyk,n]v k>1.

} —€) and 7y, stands for the spectral radius of AfA; . Also, {oy} and {f,} are

1
where v, € (¢, min
Yk ( ,ISiS"{VAi

sequences in (0, 1) satisfying the following conditions
() limgoso o =0, Y 00, oy = 00;

(ii) 0<1i]£ninfﬂk<limsupﬁk<1. Then the sequence {(xx1,Xk2,---Xkn)} converges strongly to
— k—00

(2,25, ,28) € Q.

4 Applications

Here, we apply the result of Theorem 3.1 to solve the following extended split equality monotone varia-
tional inclusion and equilibrium problems (ESEMVIEP) which is to find

x1 € (B +81) ' (0) NEP(fi,C1),x2 € (B, + $2) ' (0)

ﬁEP(fz,Cz),~-~,xn € (Bn +fn)7l(0)mEP(fnan) (4'1)
such that Ajx; = Ayxo = -+ = A,x,
where B; : H; — 2% (i = 1,2,---,n) are maximal monotone mappings and S, : H; — H; (i = 1,2, ,n)

are o;-ism mappings. We shall denote the solution set of (4.1) by €.
A mapping S : H — H is said to be a-inverse strongly monotone (x-ism), if there exists a constant o > 0
such that

(Sx — Sy,x — y) > o|Sx — Sy||2,f0rallx,y E€H.
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A set valued mapping B : H — 2# is called monotone if for all x,y € H, with u € B(x) and v € B(y) then
(x—y,u—v)y>0

and is maximal monotone if the graph of B denoted as G(B) is not properly contained in the graph of any
other monotone mapping. We recall that for multivalued mapping B,

G(B) ={(x,y) :y € B(x)}.
The resolvent operator J% associated with B and p > 0 is the mapping J,’f : H — H defined by
B(.\ _ —1
J,(x) = +pB) (x), x € H. (4.2)

The resolvent operator Jg is single valued, nonexpansive and 1-inverse strongly monotone (for example see
[5]). Moreover 0 € B(x) + S(x) if and only if x = Jg(] — pS)(x), forallp > 0 (see [26]). If S is a-ism
mapping with 0 <p <20, then Jg (I — pf) is nonexpansive and F (Jff (I — pS)) is closed and convex.

Lemma 4.1 [11, 12] Let H be a Hilbert space and T : H — H a nonexpansive mapping, then for all
x,y €H,

(x = Tx) = (y = Ty), Ty — Tx)

< Sl =) — 1y = )| -

and consequently if y € F(T) then
(x—Tx,x—y}S%HTx—tz. (4.4)
Theorem 4.2 Let H be a real Hilbert space. For i =1,2,---,n, let C; be a nonempty closed and convex

subset of real Hilbert space H; and let A; : H; — H be bounded linear operators. Let B;: H; — 25 be
maximal monotone mappings, S; : H; — H; be ; -ism mappings with 0<p<2u; andlet f; : C; x C; = R
be bifunctions satisfying conditions (Al) — (A4) such that Q; # 0. Let (xy1,X12,--+,X1,,) € Hy X Hy X
-+ X H, be arbitrary and let u; € Hi(i=1,2---n) be arbitrary but fixed. Let the sequence
{(xk1,%k2, - - xkn)} De generated as follows:

A

Wi = 2121 xk= ,
n

Vki = TJ,(; (k1 — Pe(Arixe — wy)),

Xerr1 = ogy + (1= o) [(1 = By + B 5 (I = pSt)yal, k > 1.

Ye2 = TJ:f, (k2 — Pe(Aoxi2 — wi)), (4.5)

X1 = gt + (1 — o) [(1 = B)ywa + B2 (1 — pS2)yia),

Ykn = Ter (-xk"l - yk(Anxk,n - Wk))7
Xier1n = Okln + (1 - Ock)Kl - ﬁk)yk,n + ﬂkJ,If”(I - pSn)ykﬁn]v k>1

1
where 7, € (€, min {—} —€) and )y, stands for the spectral radius of AfA; . Also, {ox} and {p} are
sequences in (0=15 Satisfying the following conditions

1) im0 =0, D07 | o = 00;

(i) 0< liI{n inff;, <limsupf;, <1. Then the sequence {(xii,Xk2, - Xkn)} converges strongly to

k—o00

(513227'“32n) S Ql'

Proof From the assumption O0<p<2u;, we have that Jf" (I — pS;) is nonexpansive for each
i=1,2,---,n, Thus from Lemma 4.1 (4.4), we have that
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(x = J5(I — pSi)x,x —y)

1,5 5
< SIE( = pS;px =) (4.6)

1-0, 5
=W — pSix =

that is Jf' (I — pS;) foreach i =1,2,---,n, is a A-demimetric mapping with A = 0. Thus the proof follows
from Theorem 3.1. O
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