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Abstract This paper proposes a parametric method for solving a generalized fractional programming
problem which is called sum-of-ratios problem. The sum-of-ratios problems occur in many fields including
computer vision, finance, engineering and management. Compared with other methods based on branch-
and-bound procedure, our algorithm is based on Newton-like method for solving a system of nonlinear
equations with parameters and it needs to solve convex programming problem in each iteration. We showed
the global linear and local superlinear/quadratic rate of convergence of the algorithm. We demonstrated the
practical efficiency of the algorithm by numerical experiments for various kinds of sum-of-ratios problem.
In the numerical experiments, our method exhibited better solution quality and better convergence rate than
other methods.

Keywords Fractional programming � Sum-of-ratios problem � Parametric convex programming approach

1 Introduction

The sum-of-ratios problem, which is to minimize (maximize) a sum of several fractional functions in convex
set, is a non-convex optimization problem that is difficult to solve by the traditional optimization methods.
The sum-of-ratios problem has attracted great interest over the 40 years for its practical and theoretical
significance. The problem occurs in many important applications such as finite element method, computer
graphics, finance, engineering and management [5, 6, 12, 15, 17]. In [12], many problems in projective
geometry such as multi-view triangulation, camera resectioning and homography estimation were formu-
lated as the sum-of-ratios problem and the branch-and-bound method,which is based on the recent devel-
opments in fractional programming and the theory of convex underestimators
[2–5, 9, 14, 16, 17, 21, 24–26],was employed to find its global solution. In the method of [12], the number of
variables increases as twice as the number of fractional functions and it requires to solve a second-order
cone programming problem to obtain a lower bound of the optimal value in each iteration. In recent years,
some algorithms has been developed for the global solution to these optimization problems
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[2, 3, 9, 11, 18, 19, 25]. Given any tolerance e, if the optimization problem is feasible, the algorithms return
a solution which is at most e far from the global optimum. But the methods based on branch-and-bound
procedure require a lot of computations and have low convergence rate.Furthermore, it is not easy to find a
reasonable branching strategy.

In this paper, we propose an efficient algorithm which transforms the sum-of-ratios problem into
parametric convex programming problem and solves the convex programming problem in each iteration.
Unlike the methods based on the branch-and-bound, our method does not need to introduce new variables
and constraints, and it also does not need to use additional complicated computations for obtaining the upper
bounds and lower bounds for numerators and denominators of every ratio, so it is easier to implement than
the previous methods. This paper is organized as follows. In Section 2,we show that the sum-of-ratios
problem is equivalent to some kind of parametric convex programming problem. In Section 3, it is about a
Newton-like algorithm for finding optimal parameters associated with the optimal solution of the sum-of-
ratios problem and its convergence characteristics were amply considered. In Section 4, several test
problems in the previous studies are used to show the advantage of our algorithm over the other methods,
and the experiment results show that our algorithm has better performance than other methods. Finally,
Section 5 provides some discussions.

2 Equivalent parametric convex programming

The sum-of-ratios problem is to minimize the sum of fractional functions subject to convex constraints,
which is formulated as follows.

min
Xp

i¼1

FiðxÞ; s.t. x 2 X ð1Þ

where FiðxÞ ¼ fiðxÞ
hiðxÞ ; i ¼ 1; � � � ; p; X ¼ fx 2 RnjgiðxÞ� 0; i ¼ 1; � � � ;mg, and fiðxÞ; giðxÞ and �hiðxÞ are

twice continuously differentiable convex functions.
It is assumed that the feasible set X is bounded, fiðxÞ� 0 and hiðxÞ[ 0 for every x 2 X, and that

intX ¼ fx 2 RnjgiðxÞ\0; i ¼ 1; � � � ;mg 6¼ ; (Slater condition). Even with these restrictions the above
problem is NP-complete [8].

It is easy to see that the problem (1) is equivalent to the following problem.

min
Xp

i¼1

bi; s.t.

FiðxÞ� bi; i ¼ 1; � � � ; p; x 2 X; b 2 Rp

ð2Þ

Let b ¼ ðb1; � � � ;bpÞ and c ¼ ðc1; � � � ; cpÞ.
Theorem 1. If ð�x; �bÞ is the solution of the problem (2), then there exists �c such that �x is a solution of the
following convex programming problem for fixed c ¼ �c and b ¼ �b.

min
Xp

i¼1

ciðfiðxÞ � bihiðxÞÞ; s.t. x 2 X ð3Þ

And �x also satisfies the following system of equations for c ¼ �c and b ¼ �b:

ci ¼
1

hiðxÞ
; i ¼ 1; � � � ; p ð4Þ

fiðxÞ � bihiðxÞ ¼ 0; i ¼ 1; � � � ; p ð5Þ

Proof. The constraint FiðxÞ� bi is equivalent to fiðxÞ � bihiðxÞ� 0. Let’s define the following function for
the problem (2).
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Lðx; b;w; c; vÞ ¼ w
Xp

i¼1

bi þ
Xp

i¼1

ciðfiðxÞ � bihiðxÞÞ

þ
Xm

i¼1

vigiðxÞ:

By Fritz-John optimality condition (Theorem 4.2.8 of [1]), there exist �w; �c ¼ ð�c1; � � � ; �cpÞ and �v ¼
ð�v1; � � � ; �vmÞ such that

oL

ox
¼
Xp

i¼1

�ciðrfið�xÞ � �birhið�xÞÞ þ
Xm

i¼1

�virgið�xÞ ¼ 0 ð6Þ

oL

obi
¼ �w� �cihið�xÞ ¼ 0; i ¼ 1; � � � ; p ð7Þ

�ci
oL

oci
¼ �ciðfið�xÞ � �bihið�xÞÞ ¼ 0; i ¼ 1; � � � ; p ð8Þ

�vi
oL

ovi
¼ �vigið�xÞ ¼ 0; i ¼ 1; � � � ;m ð9Þ

gið�xÞ� 0; �vi � 0; i ¼ 1; � � � ;m ð10Þ

fið�xÞ � �bihið�xÞ� 0; �ci � 0; i ¼ 1; � � � ; p ð11Þ

�w� 0; ð �w; �c; �vÞ 6¼ ð0; 0; 0Þ ð12Þ

Suppose that �w ¼ 0. Then, by (7), we have �c ¼ 0 because hiðxÞ[ 0; i ¼ 1; � � � ; p for all x 2 X. Hence, it
follows from (6), (9), (10) and (12) that

X

i2Ið�xÞ
�virgið�xÞ ¼ 0; ð13Þ

X

i2Ið�xÞ
�vi [ 0; �vi � 0; i 2 Ið�xÞ; ð14Þ

where Ið�xÞ ¼ fijgið�xÞ ¼ 0; 1� i�mg. By Slater condition, there exists a point x0 such that

giðx0Þ\0; i ¼ 1; � � � ;m: ð15Þ

Since giðxÞ; i ¼ 1; � � � ;m are convex, it follows from (15) that

rgið�xÞTðx0 � �xÞ� giðx0Þ � gið�xÞ\0; i 2 Ið�xÞ ð16Þ

Letting d ¼ x0 � �x, from (16) and (14), we have
P

i2Ið�xÞ
�virgið�xÞ

 !T

d\0, which contradicts (13). Thus, we
have �w[ 0.

Denoting �c
�w and �v

�w by �c and �v, respectively, we see that (7) is equivalent to (4) and so (8) is equivalent to
(5) because �ci [ 0; i ¼ 1; � � � ; p by (4).

Given c ¼ �c and b ¼ �b, (6), (9) and (10) is just the KKT condition for the problem (3). Since the problem
(3) is convex programming for parameters c[ 0 and b� 0, the KKT condition is also sufficient optimality
condition and then �x is the solution of (3) for c ¼ �c and b ¼ �b. h

Let a ¼ ðb; cÞ denote parameter vector and let

X ¼ fa ¼ ðb; cÞ 2 R2pj0� b� bu; cl � c� cug;

where
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bu ¼ ðbu1; � � � ;b
u
pÞ; cl ¼ ðcl1; � � � ; clpÞ; cu ¼ ðcu1; � � � ; cupÞ;

bui ¼ max
x2X

fiðxÞ
hiðxÞ

; cui ¼ max
x2X

1

hiðxÞ
;

cli ¼ min
x2X

1

hiðxÞ
; i ¼ 1; � � � ; p:

and it is obvious that cli [ 0; i ¼ 1; � � � ; p:
Remark 1.

(i) Since the feasible set X is bounded by the assumption, the bu; cl and cu are well defined, and the set X is
bounded.

(ii) The bu; cl and cu involved in the definition of X are only necessary for theoretical consideration but in
solving the problem (1) at all.

Let xðaÞ be the solution of the problem (3) for fixed a 2 X and let

w1
i ðaÞ � /iðxðaÞ; aÞ ¼ �fiðxðaÞÞ þ bihiðxðaÞÞ; i ¼ 1; � � � ; p; ð17Þ

w2
i ðaÞ � /pþiðxðaÞ; aÞ ¼ �1þ cihiðxðaÞÞ; i ¼ 1; � � � ; p ð18Þ

Let

X̂ ¼ fa 2 Xjw1
i ðaÞ ¼ 0;w2

i ðaÞ ¼ 0; i ¼ 1; � � � ; pg:

and consider the following system of nonlinear equations:

w1
i ðaÞ ¼ 0; i ¼ 1; � � � ; p; ð19Þ

w2
i ðaÞ ¼ 0; i ¼ 1; � � � ; p ð20Þ

Corollary 1. If �x is the solution for the problem (1), then there exists �a 2 X such that �x ¼ xð�aÞ and �a 2 X̂.

Proof. The proof follows from Theorem 1 because (5) and (4) implies (19) and (20), respectively. h

Corollary 2. If the problem (1) has a solution �x , then X̂ 6¼ ;. And if X̂ consists of only one point a�, i.e.
X̂ ¼ fa�g, then xða�Þ is the solution of the problem (1).

Proof. It follows from Corollary 1 that X̂ 6¼ ;. If X̂ ¼ fa�g, the xða�Þ is the solution for the problem (1)
because �x ¼ xða�Þ by Corollary 1. h

It follows from Corollary 2 that the problem (1) is reduced to find the solution xðaÞ of the problem (3)

satisfying (19) and (20) for parameter vector a. If X̂ ¼ fa�g, then solving the problem (1) is equivalent to

finding the a� 2 X̂.
In the next section, we establish the uniqueness of X̂ under some assumptions and propose an algorithm

to find the unique element of X̂, i.e. the global optimal solution for the problem (1).

3 Algorithm and its convergence

In this section, first, we consider the system of equations to be satisfied by the parameters corresponding to the
optimal solution of the problem (1) in Lemma 2 and Lemma 3. We show the existence and uniqueness of the
solution to the system (Theorem 2, Corollary 3) and then construct a Newton-like algorithm ((46) or (59)) to
solve the system. Second, we prove the global linear and local superlinear/quadratic convergence of the
algorithm (Corollary 4, Theorem 3). Finally, we show that the solution of the convex programming problem
(3) corresponding to the optimal parameter vector, which is any accumulation point of the sequence generated
by the algorithm, is the solution of the original problem (1) under some assumptions (Theorem 5). Let

wiðaÞ ¼ w1
i ðaÞ; wpþiðaÞ ¼ w2

i ðaÞ; i ¼ 1; � � � ; p: ð21Þ

Then (19) and (20) can be rewritten as
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wðaÞ ¼ 0 ð22Þ

Now, let’s derive Jacobian matrix w0ðaÞ to construct a Newton-like algorithm. If xðaÞ is differentiable, we
have the followings by (17) and (18):

owiðaÞ
oaj

¼ rx/
T
i

oxðaÞ
oaj

þ o/iðaÞ
oaj

; i ¼ 1; � � � ; 2p; j ¼ 1; � � � ; 2p ð23Þ

o/iðaÞ
oaj

¼
hiðxðaÞÞ if i ¼ j;

0 if i 6¼ j;

�
ð24Þ

o/pþiðaÞ
oaj

¼
hiðxðaÞÞ if pþ i ¼ j;

0 if pþ i 6¼ j

�
ð25Þ

for i ¼ 1; � � � ; p; j ¼ 1; � � � ; 2p. Therefore, defining A and B as

A ¼ rx/
T
i

oxðaÞ
oaj

� �

i;j¼1;���;2p
;

B ¼
diagðhiðxðaÞÞi¼1;...;p 0

0 diagðhiðxðaÞÞi¼1;...;p

 !
;

ð26Þ

we have

w0ðaÞ ¼ Aþ B: ð27Þ

To compute A, we need to find derivatives of xðaÞ. Since xðaÞ is the optimal solution of the problem (3) for
given a ¼ ðb; cÞ, there exists a Lagrange multiplier vector vðaÞ� 0 such that xðaÞ and vðaÞ satisfy the
following equations:

Xp

i¼1

ciðrfiðxðaÞÞ � birhiðxðaÞÞÞ þ
Xm

i¼1

viðaÞrgiðxðaÞÞ ¼ 0;

viðaÞgiðxðaÞÞ ¼ 0; i ¼ 1; � � � ;m:

letting Fðx; aÞ ¼
Pp

i¼1 ciðfiðxÞ � bihiðxÞÞ,x 2 X,a ¼ ðb; cÞ, rGðxðaÞÞ ¼ ðrg1ðxðaÞÞ; � � � ;rgmðxðaÞÞÞ, we
have

rxFðxðaÞ; aÞ þ rGðxðaÞÞvðaÞ ¼ 0; ð28Þ

viðaÞgiðxðaÞÞ ¼ 0; i ¼ 1; � � � ;m ð29Þ

Let

IðxÞ ¼ fijgiðxÞ ¼ 0; 1� i�mg ¼ fi1; � � � ; ilg;
G1ðxÞ ¼ ðgi1ðxÞ; � � � ; gilðxÞÞ

T
and v1 ¼ ðvi1 ; � � � ; vilÞ

T :

Then (28) and (29) can be written by

rxFðxðaÞ; aÞ þ rG1ðxðaÞÞv1ðaÞ ¼ 0; ð30Þ

G1ðxðaÞÞ ¼ 0: ð31Þ

By differentiating (30) and (31) with variables aj; j ¼ 1; � � � ; 2p, we have

½r2
xF þ ðr2G1ÞTv1� ox

oaj
þrG1 ov

1

oaj

¼ � o2F

oxoaj
� o2G1

oxoaj

� �T

v1;

ð32Þ
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ðrG1ÞT ox

oaj
¼ � oG1

oaj
; ð33Þ

where

ðr2G1ÞTv1 ¼
X

i2IðxðaÞÞ
v1ir2

xgiðxðaÞÞ: ð34Þ

Since giðxÞ; i ¼ 1; � � � ;m don’t involve any parameters, we have

oG1

oaj
¼ 0;

o2G1

oxoaj
¼ 0; j ¼ 1; � � � ; 2p: ð35Þ

Therefore, by denoting

y ¼
x

v1

� �
;

Myj ¼
ox
oaj

ov1

oaj

0

@

1

A;

JðaÞ ¼ r2
xF þ ðr2

xG
1ÞTv1 rG1

ðrG1ÞT 0

 !
;

JjðaÞ ¼ �
o2F
oxoaj

0

 !
;

we can write (32) as

JðaÞMyjðaÞ ¼ JjðaÞ; j ¼ 1; � � � ; 2p:

Hence, if JðaÞ is nonsingular, we have

MyjðaÞ ¼
oxðaÞ
oaj

ov1ðaÞ
oaj

0
@

1
A ¼ J�1ðaÞJjðaÞ; j ¼ 1; � � � ; 2p: ð36Þ

Thus, we have the following result.

Lemma 1. If r2
xF þ ðr2

xG
1ÞTv1 is nonsingular, we have for every j ¼ 1; � � � ; 2p

oxðaÞ
oaj

¼ ½r2
xF

þ ðr2
xG

1ÞTv1��1 rG1M�1ðrG1ÞT ½r2
xF þ ðr2

xG
1ÞTv1��1 � I

n o

o2F

oxoaj
;

ð37Þ

where M ¼ ðrG1ÞT ½r2
xF þ ðr2

xG
1ÞTv1��1rG1:

Proof. If r2
xF þ ðr2

xG
1ÞTv1 is nonsingular,we have

oxðaÞ
oaj

¼ �½r2
xF þ ðr2

xG
1ÞTv1��1 rG1 ov

1

oaj
þ o2F

oxoaj

� �
ð38Þ

by (32) and (35). By substituting (38) in (33) and taking (35) into account, we have

ðrG1ÞT ½r2
xF þ ðr2

xG
1ÞTv1��1 rG1 ov

1

oaj
þ o2F

oxoaj

� �
¼ 0:

Therefore, we have
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ov1

oaj
¼ �M�1ðrG1ÞT ½r2

xF þ ðr2
xG

1ÞTv1��1 o2F

oxoaj
: ð39Þ

By substituting (39) in (38), we have (37). h

Remark 2. Since c[ 0 and b� 0 for every a ¼ ðb; cÞ 2 X, if there exists a k 2 f1; � � � ; pg such that fkðxÞ
is strictly convex, then r2

xF is positive definite and r2giðxÞ; i 2 IðxÞ are positive semidefinite because of the
convexity of fiðxÞ;�hiðxÞ; i ¼ 1; � � � ; p and giðxÞ; i ¼ 1; � � � ;m. It follows from (34)that r2

xF þ ðr2
xG

1ÞTv1 is
also positive definite, which shows that (38) is well-defined.

In the above, we exploited the differentiability of xðaÞ and vðaÞ. Now, for the differentiability of xðaÞ and
vðaÞ, it needs the following assumption.

(H1) In the problem (3) for each a 2 X, LICQ(linear independence constraint qualification), second-
order sufficiency condition and strict complementarity condition are satisfied at xðaÞ
Remark 3. The assumption (H1) is often required when applying the classical implicit function theorem to
obtain differentiability of the optimal solution in parametric optimization problem. Under the assumption
(H1), we have the existence and the uniqueness of differentiable xðaÞ and vðaÞ satisfying (28) and (29) and
have the non-singularity of the matrix JðaÞ (Theorem 2.1 of [7]). Therefore, it follows that the matrix M
defined in Lemma 1 is nonsingular.

For the sake of convenient analysis for a Newton-like algorithm to be presented below, the following
assumption is needed.

(H2)rG1 is nonsingular for each a 2 X, i.e. jIðxðaÞÞj ¼ n for each a 2 X.

Remark 4. The assumption (H2) implies that ox
oaj

¼ 0; j ¼ 1; � � � ; 2p from (33) and (35). Therefore, it
follows from (26) and (27) that w0ðaÞ ¼ B. As we will show below, the assumption (H1) and (H2) is a
sufficient condition under which the system wðaÞ ¼ 0 has a unique solution and Newton method for the
system always finds the global minimizer of the initial problem. It may be possible to apply the Newton
method for the problems which don’t satisfy the assumption (H1)and (H2).

Lemma 2. Under the assumption (H1)and (H2), wðaÞ is strongly monotone with constant d[ 0 in X,
where

d ¼ min
i
di; di ¼ min

x2X
hiðxÞ; i ¼ 1; � � � ; p

Proof. By (26) and Remark 4, the Jacobian matrix of wðaÞ is as follows.

w0ðaÞ ¼

h1ðxðaÞÞ 0 . . . 0 0 0 . . . 0

0 h2ðxðaÞÞ . . . 0 0 0 . . . 0

..

. ..
.

. . . ..
. ..

. ..
.

. . . ..
.

0 0 . . . hNðxðaÞÞ 0 0 . . . 0

0 0 . . . 0 h1ðxðaÞÞ 0 . . . 0

0 0 . . . 0 0 h2ðxðaÞÞ . . . 0

..

. ..
.

. . . ..
. ..

. ..
.

. . . ..
.

0 0 . . . 0 0 0 . . . hNðxðaÞÞ

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð40Þ

Then w0ðaÞ is positive definite because xðaÞ 2 X and hiðxðaÞÞ[ 0; i ¼ 1; � � � ; p. Therefore, for any z 2 R2p,
we have
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zTw0ðaÞz ¼
Xp

i¼1

z2i hiðxðaÞÞ þ
Xp

i¼1

z2iþphiðxðaÞÞ

¼
Xp

i¼1

ðz2i þ z2iþpÞhiðxðaÞÞ�
Xp

i¼1

ðz2i þ z2iþpÞdi

� d
X2p

i¼1

z2i ¼ dkzk2;

which completes the proof. h

Let

AiðaÞ ¼
fiðxðaÞÞ
hiðxðaÞÞ

; ApþiðaÞ ¼
1

hiðxðaÞÞ
;

i ¼ 1; � � � ; p;AðaÞ ¼ ðA1ðaÞÞ;
� � � ;ApðaÞ;Apþ1ðaÞ; � � � ;A2pðaÞ

Lemma 3. The equation wðaÞ ¼ 0 is equivalent to the equation a ¼ AðaÞ. If the problem (1) has an
optimal solution, the equation (22) has at least one solution in X.

Proof. The first proposition is obvious from the definition of AðaÞ and wðaÞ. It follows from Corollary 1
that there is a 2 X such that wðaÞ ¼ 0. h

Let’s introduce a mapping BkðaÞ ¼ pXða� kwðaÞÞ to establish the existence and uniqueness of the solution
of (22), where k is a positive constant and pXðaÞ denotes the projection of a onto X, i.e. pXðaÞ is the solution
of the following problem:

min kx� ak2; s.t. x 2 X

Lemma 4. For all a 2 Rp and for all x 2 X,

ðpXðaÞ � aÞTðx� pXðaÞÞ� 0; ð41Þ

and for alla; b 2 RpkpXðaÞ � pXðbÞk� ka� bk ð42Þ

Proof. See Kinderlehrer and Stampcchia [13]. h

Lemma 5. Assume that wðaÞ is differentiable, and satisfies (40) and Lipschitz condition with the constant
M in X. Then Bk : X ! X is a contractive mapping for all k 2 ð0; 2d=M2Þ.
Proof. Since wðaÞ is strongly monotone with the constant d by Lemma 2,

ðwða0Þ � wðaÞÞTða0 � aÞ� dka0 � ak2: ð43Þ

By (42), (43) and the Lipschitz condition, we have
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kBkða0Þ � BkðaÞk2 ¼ kpXða0 � kwða0ÞÞ
� pXða� kwðaÞÞk2

�ka0 � kwða0Þ � ða� kwðaÞÞk2 ¼
kða0 � aÞ � kðwða0Þ � wðaÞÞk2

¼ ka0 � ak2 � 2kða0 � aÞTðwða0Þ � wðaÞÞ
þ k2kwða0Þ � wðaÞk2

�ka0 � ak2 � 2kdka0 � ak2

þ k2kwða0Þ � wðaÞk2

�ð1� 2kdþ k2M2Þka0 � ak2;

which implies that

kBkða0Þ � BkðaÞk� qka0 � ak

for all k 2 ð0; 2d=M2Þ, where q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2kdþ k2M2

p
\1. h

Theorem 2. Assume that the problem (1) has an optimal solution. Suppose that wðaÞ is differentiable, and
satisfies (40) and the Lipschitz condition in X. The equation a ¼ BkðaÞ for all k 2 ð0; 2d=M2Þ is equivalent
to the equation wðaÞ ¼ 0 and the equation (22) has a unique solution.

Proof. By Lemma 5 and the contractive mapping principle, BkðaÞ has only one fixed point a� in X for all

k 2 ð0; 2d=M2Þ, i.e. Bkða�Þ ¼ a�. From (41), we have

½pXða� � kwða�ÞÞ � ða� � kwða�ÞÞ�T ½a� pXða� � kwða�ÞÞ ¼
¼ ½a� � ða� � kwða�ÞÞ�Tða� a�Þ� 0

for a 2 X; i.e. for every a 2
X; we havewða�ÞTða� a�Þ � 0: ð44Þ

Since the problem (1) has an optimal solution, there is a �a 2 X such that wð�aÞ ¼ 0 by Lemma 3. Then, it
follows from (44) that

½wða�Þ � wð�aÞ�Tð�a� a�Þ� 0: ð45Þ

By Lemma 2, wðaÞ is strongly monotone with the constant d and so we have

½wða�Þ � wð�aÞ�Tða� � �aÞ� dka� � �ak2:

This inequality and (45) together implies 0� ½wða�Þ � wð�aÞ�Tð�a� a�Þ� � dka� � �ak2. Therefore,
ka� � �ak ¼ 0, i.e. a� ¼ �a . Thus , wða�Þ ¼ 0 , which means that a� is a solution of (22).

By the definition of BkðaÞ, it is obvious that a 2 X with wðaÞ ¼ 0 is also the solution of a ¼ BkðaÞ:
Suppose that a0 2 X is a solution of (22) that is different from a�. Then, a0 ¼ Bkða0Þ, which is

contradiction because a� is an unique fixed point of BkðaÞ in X. Thus, a� is a unique solution of the equation
(22). h

Corollary 3. Suppose that the assumptions of Theorem 2 are satisfied. Then, the equation a ¼ AðaÞ has an
unique solution which is the unique solution of the equation (22).

Proof. By Lemma 3, a ¼ AðaÞ is equivalent to wðaÞ ¼ 0 which is in turn equivalent to a ¼ BkðaÞ by
Theorem 2. Therefore, it follows from Theorem 2 that equation a ¼ AðaÞ has a unique solution which is the
unique solution of the equation (22). h

As shown in Lemma 3, a is a fixed point of AðaÞ if and only if a is a root of wðaÞ . We can construct the
following fixed-point iteration to find a fixed point of AðaÞ .
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bkþ1 ¼ f1ðxkÞ
h1ðxkÞ

; � � � ; fpðx
kÞ

hpðxkÞ

� �T

;

ckþ1 ¼ 1

h1ðxkÞ
; � � � ; 1

hpðxkÞ

� �T

;

ð46Þ

where xk ¼ xðakÞ.
Corollary 4. Suppose that the assumptions of Theorem 2 are satisfied. Then the algorithm (46) is just the
Newton method to solve the equation (22) and its local rate of convergence is superlinear or quadratic.

Proof. The Newton method for the equation (22) is as following.

akþ1 ¼ ak � ½w0ðakÞ��1wðakÞ ð47Þ

By (40), (17) and (18), the right-hand side of (47) is equal to AðakÞ, i.e. the right-hand side of (46).

Therefore, (47) means akþ1 ¼ AðakÞ , that is, the fixed-point iteration method to find a fixed point of AðaÞ is
just the Newton method for solving the equation (22). Hence, the algorithm (46) has local superlinear or
quadratic convergence rate. h

Theorem 3. Suppose that the assumptions of Theorem 2 are satisfied and that there exists L[ 0 such that
for every a; a0 2 X

kw0ðaÞ � w0ða0Þk� Lka� a0k; ð48Þ

and that there exists ~M[ 0 such that for every a 2 X

k½w0ðaÞ��1k� ~M: ð49Þ

Let

akþ1 ¼ ak þ kkd
k; dk ¼ �½w0ðakÞ��1wðakÞ; ð50Þ

where kk is the greatest ni satisfying

kwðak

þ nidkÞk� ð1� eniÞkwðakÞk
ð51Þ

and i 2 f0; 1; 2; � � �g; n 2 ð0; 1Þ; e 2 ð0; 1Þ: Then, the modified Newton method defined by (50) and (51)

converges to the unique solution a� of wðaÞ with linear rate for any starting point a0 2 X and the rate in the
neighborhood of the solution is quadratic.

Proof. We have already shown the existence and uniqueness of the solution a 2 X for the equation

wðaÞ ¼ 0. If there is k such that wðakÞ ¼ 0, then ak is a solution. So, it is assumed that wðakÞ 6¼ 0 for every k
. For k 2 ½0; 1� , we have the following by the Newton-Leibniz formula and (48).

kwðak þ kdkÞk ¼ wðakÞ þ k
Z 1

0

w0ðak þ hkdkÞdkdh
����

����

¼ wðakÞ þ k
Z 1

0

w0ðak þ hkdkÞ � w0ðakÞ
	 


dkdh� kwðakÞ
����

����

�ð1� kÞkwðakÞk þ k2Lkdkk2;

ð52Þ

where

kw0ðak þ hkdkÞ � w0ðakÞk� Lhkkdkk

by the Lipschitz condition, and w0ðakÞdk ¼ �wðakÞ by (50) . In view of (49), it follows from (50) and (52)
that
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kwðak þ kdkÞk� 1� kð1� kL ~M
2ÞkwðakÞk

h i
kwðakÞk:

Letting �kk ¼ 1�e
L ~M

2kwðakÞk
, we have

kwðak þ kdkÞk� ð1� ekÞkwðakÞk ð53Þ

for every k 2 ð0;minf1; �kkgÞ . Then, (51), the definition of kk, implies that

kk � minf1; n�kkg: ð54Þ

Since it follows from (53) that

kwðakþ1Þk� ð1� ekkÞkwðakÞk; ð55Þ

fkwðakÞkg is a monotonically decreasing sequence and so f�kkg increases monotonically. From (54), it
follows that

1� ekk � 1� eminf1; n�kkg� 1� eminf1; n�k0g:

Letting q ¼ 1� eminf1; n�k0g , then q\1 and by (55) we have

kwðakÞk� qkkwða0Þk: ð56Þ

Therefore, fkwðakÞkg converges to zero with linear rate, which means that fakg converges to a solution of

wðaÞ ¼ 0 for any starting point a0 2 X. Since kwðakÞk ! 0 as k ! 1, we have �kk ! 1 as k ! 1 and so,
by (54), there exists k0 such that kk ¼ 1 for every k� k0. Thus, in this case, (50) becomes the Newton
method and the rate of convergence in the neighborhood of the solution is quadratic by the Lipschitz
property (48). h

Let us consider sufficient condition under which the assumptions of Theorem 3 are satisfied.

Theorem 4. Suppose that wðaÞ is differentiable and satisfies (40) in X. If hiðxÞ; i ¼ 1; � � � ; p and xðaÞ are
Lipschitz continuous in the feasible set X and X, respectively, then w0ðaÞ is Lipschitz continuous and

½w0ðaÞ��1 is bounded in X.

Proof. By the Lipschitz continuity of hiðxÞ and xðaÞ, there is a Li [ 0 and C[ 0 such that, for all
a; a0 2 X,

jhiðxðaÞÞ � hiðxða0ÞÞj � LijxðaÞ � xða0Þj; ð57Þ

jxðaÞ � xða0Þj �Cja� a0j ð58Þ

Since, by (40), we have

w0ðaÞ � w0ða0Þ ¼
diagðhiðxðaÞÞ � hiðxða0ÞÞÞ 0

0 diagðhiðxðaÞÞ � hiðxða0ÞÞÞ

� �
;

there exists a constant L[ 0 by (57) and (58) such that jw0ðaÞ � w0ða0Þj � Lja� a0j , which means the

Lipschitz continuity of w0ðaÞ .
It is easy to see

½w0ðaÞ��1 ¼
diag 1

hiðxðaÞÞ

� �
0

0 diag 1
hiðxðaÞÞ

� �

2

64

3

75:

Thus, from 1
hiðxðaÞÞ � cui ; i ¼ 1; � � � ; p and Remark 1, it follows that there exists a ~M[ 0 such that for every

a 2 X; j½w0ðaÞ��1j � ~M; that is, (49) is satisfied. h

Under the assumption of Theorem 4, the modified Newton method defined by

akþ1 ¼ ak � kk½w0ðakÞ��1wðakÞ

can be rewritten component-wise as following.
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( bkþ1
i ¼ bki � kk

hiðxkÞ ½b
k
i hiðxkÞ � fiðxkÞ� ¼ ð1� kkÞbki þ kk

fiðxkÞ
hiðxkÞ ; i ¼ 1; � � � ; p

ckþ1
i ¼ cki � kk

hiðxkÞ ½c
k
i hiðxkÞ � 1� ¼ ð1� kkÞcki þ kk 1

hiðxkÞ ; i ¼ 1; � � � ; p
ð59Þ

On the basis of the above consideration, we construct an algorithm to find global solution of the problem (1)
under the assumptions of Theorem 4 as following.

[Algorithm MN] Step 0. Choose n 2 ð0; 1Þ; e 2 ð0; 1Þ and y0 2 X. Let

b0i ¼
fiðy0Þ
hiðy0Þ

; c0i ¼
1

hiðy0Þ
; i ¼ 1; � � � ; p; k ¼ 0;

bk ¼ ðbk1; � � � ;bkpÞ; ck ¼ ðck1; � � � ; ckpÞ; ak ¼ ðbk; ckÞ:

Step 1. Find a solution xk ¼ xðakÞ of the problem (3) for a ¼ ak:
Step 2. If wðakÞ ¼ 0 , then xk is a global solution and so stop the algorithm. Otherwise, let ik denote the

smallest integer among i 2 f0; 1; 2; � � �g satisfying

jwðak þ nidkÞj � ð1� eniÞjwðakÞj

and let kk ¼ nik , where

dk ¼ ðdk1; � � � ; dkp; dkpþ1; � � � ; dk2pÞ; dki ¼ �wiðakÞ
hiðxkÞ

;

dkpþi ¼ �
wpþiðakÞ
hiðxkÞ

; i ¼ 1; � � � ; p:

Compute akþ1 ¼ ak þ kkdk which is equal to (59).
Step 3. Let k ¼ k þ 1 and go to step 1. h

Remark 5. Under the assumptions of Theorem 4, the step 2 of Algorithm MN is just the modified Newton
method (50), (51). If the stepsize kk ¼ nik in the step 2 is replaced by kk ¼ 1, the step 2 is just the Newton
method (47) or (46), and so we denote Algorithm MN as Algorithm N in this case. As shown in Theorem 3,
Algorithm MN has global linear and local quadratic rate of convergence.

Remark 6. If the assumption (H1) is satisfied, we can construct a Newton-like algorithm similar to
Algorithm MN without the assumption (H2). In this case, the Newton direction in the step 2 is determined by

dk ¼ �ðw0ðakÞÞ�1wðakÞÞ using the formula (26), (27) and (37).

Even without differentiability of wðaÞ, we obtain the following result.

Theorem 5. Suppose that kk � 1 (or kk � �k[ 0) for every k. Then any accumulation point a� of fakg
generated by The algorithm N, i.e. (46) (or The algorithm MN, i.e. (59)) is the solution of the equation (22).
Moreover, if the equation (22) has a unique solution, the xða�Þ is the solution of the problem (1).

Proof. As shown in Remark 1, the parameter set X is bounded. Therefore, the sequence fakg is bounded
and it has a convergent subsequence by Bolzano-Weierstrass theorem. Then any accumulation point a� of
the subsequence is the solution of the equation (22) by (46) or (59). The Corollary 2 completes the proof. h

Table 1 Computation result for Example 1

method iter optimal point optimal value time

N 6 (1.0000000, 1.7435214) 4.0608191 0.0156
MN 6 (1.0000000, 1.7435180) 4.0608191 0.0158
[5] 27 (1.0200000, 1.7100000) 4.0319159
[18] 18 (1.0000000, 1.7500000) 4.0608042

123

982 Y. Kim et al.



4 Numerical experiments

Our algorithms N and MN were coded in MATLAB and numerical experiments had been carried out on a
Pentium (R) 4 CPU 2 GHz RAM 0.97 GB personal computer using the optimization toolbox of MATLAB
R2009a. We set kwðakÞk\1e� 6 as the stopping criterion in numerical experiments. In the tables below, ‘‘
iter’’ is the total number of the convex programming problems solved during the algorithm’s work, and the
row ‘‘N’’ and ‘‘MN’’ show the average performance of 100 runs with random initial points in our algorithm
N and MN.

Example 1 ([5, 18]).

max
�x21 þ 3x1 � x22 þ 3x2 þ 3:5

x1 þ 1

þ x2
x21 � 2x1 þ x22 � 8x2 þ 20

;

s.t. 2x1 þ x2 � 6; 3x1 þ x2 � 8;

x1 � x2 � 1; x1 � 1; x2 � 1

Table 1 shows the computation result, which demonstrates the advantage of our algorithm over the previous
algorithms based on the branch-and-bound method.

Example 2 ([11, 19, 27]).

max
�x21 þ 3x1 � x22 þ 3x2 þ 3:5

x1 þ 1

þ x2
x21 � 2x1 þ x22 � 8x2 þ 20

;

s.t. 2x1 þ x2 � 6; 3x1 þ x2 � 8;

x1 � x2 � 1; x1 � 1; x2 � 2:

The optimal solution and optimal value is (1, 2) and 4.0357143 , respectively. The results of our methods
and previous methods [11, 19, 27] are shown in Table 2. This shows that our methods are much better than
the previous methods.

Example 3 ([10, 14, 21]).

Table 2 Computation result for Example 2

method iter e time

N 3 1e-12 0.0084
MN 3 1e-12 0.0083
[11] 1205 1e-03
[19] 1615 1e-03
[27] 1016 1e-02

Table 3 Computation result for Example 3

method iter optimal point optimal value time

N 2 (0.00000000, 3.33333333, 0.00000000) 3.002923976608 0.0244
MN 3 (0.00000000, 3.33333333, 0.00000000) 3.002923976608 0.0347
[14] 21 (0.000, 0.000, 1.25) 2.9312
[10] 119 (0, 3.33333, 0) 3.002923972
[21] 25 (0, 3.33333, 0) 3.00292
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max
3x1 þ 5x2 þ 3x3 þ 50

3x1 þ 4x2 þ 5x3 þ 50

þ 3x1 þ 4x2 þ 50

4x1 þ 3x2 þ 2x3 þ 50

þ 4x1 þ 2x2 þ 4x3 þ 50

5x1 þ 4x2 þ 3x3 þ 50
;

s.t. 6x1 þ 3x2 þ 3x3 � 10;

10x1 þ 3x2 þ 8x3 � 10; x1; x2; x3 � 0:

The test results are shown in the following table.

Example 4 ([14, 21, 22]).

max
4x1 þ 3x2 þ 3x3 þ 50

3x2 þ 3x3 þ 50

þ 3x1 þ 4x3 þ 50

4x1 þ 4x2 þ 5x3 þ 50

þ x1 þ 2x2 þ 5x3 þ 50

x1 þ 5x2 þ 5x3 þ 50

þ x1 þ 2x2 þ 4x3 þ 50

5x2 þ 4x3 þ 50
;

s.t. 2x1 þ x2 þ 5x3 � 10;

x1 þ 6x2 þ 3x3 � 10;

5x1 þ 9x2 þ 2x3 � 10;

9x1 þ 7x2 þ 3x3 � 10; x1; x2; x3 � 0:

The results of numerical experiments are given in Table 4, which shows the advantage of our methods over
the previous methods.

Example 5 ([9, 16, 25]).

Table 4 Computation results for Example 4

method iter optimal point optimal value time

N 2 (1.11111111, 0.00000000, 0.00000000) 4.0907029478 0.0963
MN 3 (1.11111111, 0.00000000, 0.00000000) 4.0907029478 0.1059
[14] 31 (0.000, 1.111, 0.000) 3.7984
[21] 3 (1.11111, 0, -3.33067e-016) 4.0907
[22] 38 (1, 0,0) 4.081481

Table 5 Computation result for Example 5

method iter optimal point optimal value time

MN 4 (1.00000000, 1.23129885 , 1.00000000) 0.81856565 0.0412
[25] 10 (1.0000, 1.0000, 1.0000) 0.8333
[9] 108 (1.62988, 1.64453, 1.0025) 0.8929
[16] 84 (1.32547, 1.42900, 1.20109) 0.9020

123

984 Y. Kim et al.



min
x21 þ x22 þ 2x1x3

x23 þ 5x1x2

þ x1 þ 1

x21 � 2x1 þ x22 � 8x2 þ 20
;

s.t. x21 þ x22 þ x3 � 5; ðx1 � 2Þ2 þ x22 þ x23 � 5;

1� x1 � 3;

1� x2 � 3; 1� x3 � 2:

The numerical experiment results are shown in Table 5. It shows that the method MN is much better than
previous methods. The algorithm N failed to find any global solution.

Example 6 ([25]).

min
�x21 þ 3x1 � x22 þ 3x2 þ 3:5

x1 þ 1

þ x2
x21 þ 2x1 þ x22 � 8x2 þ 20

;

s.t. 2x1 þ x2 � 6; 3x1 þ x2 � 8;

x1 � x2 � 1; 0:1� x1; x2 � 3

The numerical experiment results are shown in Table 6, which shows the advantage of our algorithms over
the previous methods.

Example 7 ([4, 26]).

min
x21 � 4x1 þ 2x22 � 8x2 þ 3x23 � 12x3 � 56

x21 � 2x1 þ x22 � 2x2 þ x3 þ 20

þ 2x21 � 16x1 þ x22 � 8x2 � 2

2x1 þ 4x2 þ 6x3
;

s.t. x1 þ x2 þ x3 � 10; �x1 � x2 þ x3 � 4;

1� x1; x2; x3

The numerical experiment result is shown in Table 7.

Example 8 ([9, 16]).

Table 6 Computation result for Example 6

method iter optimal point optimal value time(s)

N 3 (2.2500000, 1.2500000) 2.3284023 0.0376
MN 4 (2.2500000, 1.2500000) 2.3284023 0.0483
[25] 19 (0.1000, 0.1000) 3.7142402

Table 7 Computation result for Example 7

method iter optimal point optimal value time(s)

N 4 (1.82160941, 1, 1) - 6.11983418 0.0189
MN 5 (1.82160941, 1, 1) - 6.11983418 0.0295
[4] 24 (1.81, 1.00, 1.00) - 6.1197786
[26] (1.8216, 1, 1) - 6.1198
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min
x2

x21 � 2x1 þ x22 � 8x2 þ 20

� x21 þ 2x22 � 3x1 � 3x2 � 10

x1 þ 1
;

s.t. 2x1 þ x22 � 6x2 � 0;

3x1 þ x2 � 8; x21 � x2 � x1 � 0;

1� x1 � 3; 1� x2 � 3:

The numerical experiment results are shown in Table 8. Our results are better than those of previous
methods.

Example 9 ([11, 18, 23]).

min a1
�x21 þ 3x1 þ 2x22 þ 3x2 þ 3:5

x1 þ 1

þ a2
x2

x21 � 2x1 þ x22 � 8x2 þ 20
;

s.t. 3x1 þ x2 � 8; x1 � x�1
1 x2 � 1;

2x1x
�1
2 þ x2 � 6; 1� x1; x2 � 3;

where a1 ¼ 0:25 and a2 ¼ �1:75: The numerical experiment results are shown in Table 9.

Example 10 ([11, 20]).

Table 8 Computation result for Example 8

method iter optimal point optimal value time(s)

N 1 (1.6666666, 3.0000000) 1.8833333 0.0213
MN 4 (1.6666666, 3.0000000) 1.8833333 0.0431
[16] 142 (1.66598, 2.99899) 1.8867
[9] 114 (1.66649, 2.99998) 1.8835281

Table 9 Computation result for Example 9

method iter optimal point optimal value time(s)

N 2 (1.61803398708, 1.00000000000) 0.88386868337 0.0266
MN 4 (1.61803398708, 1.00000000000) 0.88386868337 0.0432
[23] 420 (1.6180339, 1.0000000) 0.883868686
[18] 5802 (1.6180339885, 1.0000000046) 0.8838686849
[11] 129 (1.617547466,1.000000000) 0.8840633217

Table 10 Computation result for Example 10

method iter optimal point optimal value time(s)

N 1 (1.000000000, 1.41421967047) 0.48560364402 0.0833
MN 5 (1.000000000, 1.41421967047) 0.48560364402 0.1693
[20] 90 (1.0000,1.4142) 0.4856
[11] 140 (1.000000000,1.414213525) 0.48560317968
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min
2x1 þ x2
x1 þ 10

þ 2

x2 þ 10
; s.t.

� x21 � x22 þ 3� 0; �x21 � x22 þ 8x2 � 14� 0;

3x1 þ x2 � 8; 2x1 þ x2 � 6; x1 � x2 � 1;

1� x1 � 3; 1� x2 � 4;

The numerical experiment results are shown in Table 10.

Remark 7. Example 5,6,8 and 9 do not satisfy the assumption of the problem (1), which is, that
numerators are convex and denominators are concave in all ratios.In addition, Example 5,8 and 10 have
nonconvex constraints. The solutions in [11] and [20] are nonfeasible. For those problems,the algorithm MN
obtained much more improved optimal solutions than the existing methods based on branch-and-bound
algorithm. Our algorithm MN always found global solution for any starting point in all the examples 1-10
and the algorithm N also gave the same good results for all the examples but for the example 5 which does
not satisfy the assumption about objective and constraint functions. This shows that our algorithms can find
more accurate global solutions for more general nonlinear sum of ratios problems.

Example 11. We carried out numerical experiments for randomly generated minimization problems as
following. The numerator and denominator of each term in objective function is

fiðxÞ ¼
1

2
xTA0ixþ qT0ix and

hiðxÞ ¼ cTi x; i ¼ 1; � � � ; p;

respectively, where

A0i ¼ UiD0iU
T
i ; D0i ¼ diagðdÞ;

Ui ¼ Q1Q2Q3; d ¼ i� i � randðn; 1Þ;

Qj ¼ I � 2
wjw

T
j

kwjk2
;

j ¼ 1; 2; 3; w1 ¼ �iþ randðn; 1Þ;
w2 ¼ �2iþ 2randðn; 1Þ;
w3 ¼ �3iþ 3randðn; 1Þ; ci ¼ i� i � randðn; 1Þ;
q0i ¼ iþ i � randðn; 1Þ; i ¼ 1; � � � ; p:

The feasible set is given by

X ¼ fx 2 RnjAx� b; 1� xi � 5; i ¼ 1; � � � ; ng;

where

A ¼ �1þ 2 � randð5; nÞ; b ¼ 2þ 3 � randð5; 1Þ:

Starting with randomly generated point in ½1; 5�n, we carried out 50 runs of Algorithm N and Algorithm MN
for fixed n and p. Both of algorithms N and MN were successful for all the problems. It is shown in Table 11
and Table 12.

As shown in the above tables, the number of iteration of Algorithm N and Algorithm MN was inde-
pendent of the number of variables and fractional functions, and the run-time was proportional to the
number of variables.

Remark 8. It is worth mentioning that both of kwðaÞk and the objective function decreased monotonically
at each iteration of our algorithms N and MN in all numerical experiments for Examples 1-11.
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5 Discussions

In this paper, we presented a parametric optimization algorithm for the sum-of-ratios problem, which is a
non-convex fractional programming problem that occurs in many fields, including computer graphics and
management. Our approach is based on transforming the sum-of-ratios problem into parametric convex
programming problem and it applied Newton-like algorithm to update parameters. The algorithm has global
linear and local superlinear/quadratic rate of convergence. Through numerical experiments, we demon-
strated that our method always finds the global optimum with a fast convergence rate. In fact, the experi-
ments showed that the optimal point is usually obtained within the first few iterations and it also showed that
the algorithm can find global solution for larger class of sum-of-ratios problem than those considered in this
paper. Although there is no theoretical guarantee that our method can always find a global optimal solution,
we expect that our approach will solve successfully several linear and nonlinear sum-of-ratios problems in
practice.

Acknowledgements The authors are grateful to the anonymous referees for their helpful comments and suggestions, which
have greatly improved the earlier version of this paper.
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