ORIGINAL RESEARCH

On the number of transitive relations on a set

Firdous Ahmad Mala

Received: 6 December 2020/Accepted: 12 March 2021/Published online: 14 June 2021 $\ensuremath{\mathbb{C}}$ The Indian National Science Academy 2021

Abstract There is no known formula that counts the number of transitive relations on a set with n elements. In this paper, it is shown that no polynomial in n with integer coefficients can represent a formula for the number of transitive relations on a set with n elements. Several inequalities giving various useful recursions and lower bounds on the number of transitive relations on a set are also proved.

Keywords Combinatorics · Enumeration · Transitive relations

1 Introduction

Let *S* be a non-empty set. Any subset of $S \times S$ is a relation on *S*. A relation on *S* is transitive if and only if $\forall x, y, z \in S$, $(x, y) \in S \land (y, z) \in S \Rightarrow (x, z) \in S$.

OEIS [1] enlists the number of transitive relations on sets with less than 19 elements. An explicit formula, if any, for the number of transitive relations on a set with n elements is still undiscovered.

Let t(n) denote the number of transitive relations on a set with *n* elements. OEIS [1] enumerates $t(n), \forall n < 19$. The number of transitive relations on a set, t(n), with n < 19 is tabulated as follows:

n	No. of transitive relations, $t(n)$
0	1
1	2
2	13
3	171
4	3994
5	154303
6	9415189
7	878222530
8	122207703623
9	24890747921947
10	7307450299510288
11	3053521546333103057
12	1797003559223770324237
13	1476062693867019126073312
14	1679239558149570229156802997

Communicated by Sharad S Sane, PhD.

F. A. Mala (🖂)

Govt. Degree College Sopore, Sopore, India E-mail: firdousmala@gmail.com

n	No. of transitive relations, $t(n)$		
15	2628225174143857306623695576671		
16	5626175867513779058707006016592954		
17	16388270713364863943791979866838296851		
18	64662720846908542794678859718227127212465		

2 Main Discussion

We prove that a formula, if any, for the number of transitive relations on a set cannot be a polynomial.

Theorem 1 $\exists p(n) = \sum_{r=0}^{m} a_r n^r, a_i \in \mathbb{Z} \text{ such that, } p(n) = t(n), \forall n \in \mathbb{N}.$ *Proof* Let $p(n) = \sum_{r=0}^{m} a_r n^r$ be a polynomial in n. If possible, let $p(n) = t(n), \forall n \in \mathbb{N}.$ Since t(0) = 1, t(3) = 171, we have $t(0) = p(0) = \sum_{r=0}^{m} a_r 0^r = 1 \Rightarrow a_0 = 1$ r = 0 $a_0 = 1$ $t(3) = p(3) = \sum_{r=0}^{m} a_r 3^r = 171 \Rightarrow a_0 + 3a_1 + 3^2a_2 + 3^3a_3 + ... + 3^m a_m = 171 \Rightarrow 3a_1 + 3^2a_2 + 3^3a_3 + ...$

$$+3^{m}a_{m} = 170 \text{ (from (1))} \qquad a_{1} + 3a_{2} + 3^{2}a_{3} + \dots + 3^{m-1}a_{m} = \frac{170}{3}$$
(2)

The proof is a direct consequence of (2). Since the sum of a finite number of integer terms cannot be a fraction, we conclude that at least one of $a_i, i \in \{1, 2, 3, ..., m\}$ is not an integer.

Thus,
$$\not\exists p(n) = \sum_{r=0}^{m} a_r n^r$$
, $a_i \in \mathbb{Z}$ such that, $p(n) = t(n), \forall n \in \mathbb{N}$.

We now state and prove a simple, but powerful inequality regarding t(n), the number of transitive relations on a set.

Theorem 2 Let $n, n_1, n_2 \in \mathbb{N}$.

$$n = n_1 + n_2 \Rightarrow t(n) > t(n_1)t(n_2). \tag{3}$$

Proof Consider the set $A = \{a_1, a_2, a_3, ..., a_n\}$. We partition A into two sets A_1 and A_2 , not necessarily nonempty, such that $A = A_1 \cup A_2$ and $A_1 \cap A_2 = \phi$. Let $|A_1| = n_1$ and $|A|_2 = n_2$. Since A_1 contains n_1 elements, there are $t(n_1)$ transitive relations on A_1 . Similarly, there are $t(n_2)$ transitive relations on A_2 . Now, if T_1 and T_2 are transitive relations on A_1 and A_2 respectively, then $T_1 \cup T_2$ is a transitive relation on A. Since there are $t(n_1)$ transitive relations on A_1 and $t(n_2)$ transitive relations on A_2 , using the multiplication principle of counting, there are $t(n_1)t(n_2)$ possibilities for $T_1 \cup T_2$. Consequently, there are at least $t(n_1)t(n_2)$ transitive relations on A.

2.1 Corollary 1

$$t(n) > 2 \times t(n-1), \forall n \mathbb{N}$$

Proof In (3), put $n_1 = 1$ so that $n_2 = n - 1$. We get

$$t(n) > t(1)t(n-1)$$

 $t(n) > 2 \times t(n-1)$ (:: $t(1) = 2$)

2.2 Example:

$$t(4) = t(2+2) > t(2)t(2) = 13 \times 13 = 169$$

$$t(4) = t(1+3) > t(1)t(3) = 2 \times 171 = 342$$

The following theorem provides a larger lower bound for t(n).

Theorem 3 Let $n, n_1, n_2 \in \mathbb{N}$ such that $n = n_1 + n_2$. The following inequality holds:

$$t(n) > t(n_1)t(n_2) + (2^{n_1} - 1)t(n_2) + (2^{n_2} - 1)t(n_1)$$
(4)

Proof Consider the set $A = \{a_1, a_2, a_3, ..., a_n\}$. As before, we partition A into two sets $A_1 = \{b_1, b_2, b_3, ..., b_{n_1}\}$ and $A_2 = \{c_1, c_2, c_3, ..., c_{n_2}\}$, not necessarily non-empty, such that $A = A_1 \cup A_2$ and $A_1 \cap A_2 = \phi$. From theorem 1, we get $t(n) > t(n_1)t(n_2)$.

Now, for each $b_{\lambda} \in A_1$, consider $B_{\lambda} = \{(b_{\lambda}, c_i), \forall i = 1, 2, 3, ..., n_2\}$. If T_2 is any transitive relation on A_2 , then $B_{\lambda} \cup T_2$ is a transitive relation on A. Similarly, for each $c_{\mu} \in A_2$, consider $C_{\mu} = \{(b_i, c_{\mu}), \forall i = 1, 2, 3, ..., n_1\}$. If T_1 is any transitive relation on A_1 , then $C_{\mu} \cup T_1$ is a transitive relation on A. Interestingly, if $b_{\lambda_1}, b_{\lambda_2} \in A_1$ and $B_{\lambda_1}, B_{\lambda_2}$ are constructed the same way as that of B_{λ} , we observe that if T_2 is a transitive relation on A_2 , then $B_{\lambda_1} \cup B_{\lambda_2} \cup T_2$ is a transitive relation on A. Similarly, if $c_{\mu_1}, c_{\mu_2} \in A_2$ and $C_{\mu_1}, C_{\mu_2} \cup T_1$ is a transitive relation on A. The same argument can be successfully continued to any number of elements $b_{\lambda_1}, b_{\lambda_2}, ..., b_{\lambda_r} \in A_1, r \leq n_1$ and $c_{\mu_1}, c_{\mu_2}, ..., c_{\mu_s} \in A_2, s \leq n_2$.

Consequently,

$$\begin{aligned} t(n) > t(n_1)t(n_2) + \binom{n_1}{1}t(n_2) + \binom{n_1}{2}t(n_2) + \dots + \binom{n_1}{n_1}t(n_2) \\ &+ \binom{n_2}{1}t(n_1) + \binom{n_2}{2}t(n_1) + \dots + \binom{n_2}{n_2}t(n_1) \\ \Rightarrow t(n) > t(n_1)t(n_2) + \binom{n_1}{1} + \binom{n_1}{2} + \dots + \binom{n_1}{n_1}t(n_2) \\ &+ \binom{n_2}{1} + \binom{n_2}{2} + \dots + \binom{n_2}{n_2}t(n_1) \\ \end{aligned}$$
Using the fact that $\binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n - 1$, we conclude that $t(n) > t(n_1)t(n_2) + (2^{n_1} - 1)t(n_2) + (2^{n_2} - 1)t(n_1) \end{aligned}$

The following corollary gives a useful recursive relation for t(n).

2.3 Corollary 2

The following holds:

$$t(n) > 3 \times t(n-1) + 2^n - 2, \forall n \mathbb{N}$$

Proof In (4), choose $n_1 = 1$ so that $n_2 = n - 1$. We get $t(n) > t(1)t(n-1) + (2^1 - 1)t(n-1) + (2^{n-1} - 1)t(n_1)$ $t(n) > 2 \times t(n-1) + t(n-1) + (2^{n-1} - 1)2$ $t(n) > 3 \times t(n-1) + 2^n - 2$

An even larger lower bound for t(n) is obtained in (5) using the following result.

Theorem 4 Let $n, n_1, n_2 \in \mathbb{N}$ such that $n = n_1 + n_2$. The following inequality holds:

$$t(n) > t(n_1)t(n_2) + t(n_2) \left[\sum_{r=1}^{n_1} \binom{n_1}{r} t(n_1 - r)\right] + t(n_1) \left[\sum_{r=1}^{n_2} \binom{n_2}{r} t(n_2 - r)\right]$$
(5)

Proof Consider the set $A = \{a_1, a_2, a_3, ..., a_n\}$. As before, we partition A into two sets $A_1 = \{b_1, b_2, b_3, ..., b_{n_1}\}$ and $A_2 = \{c_1, c_2, c_3, ..., c_{n_2}\}$, not necessarily non-empty, such that $A = A_1 \cup A_2$ and $A_1 \cap A_2 = \phi$. From theorem 1, we get $t(n) > t(n_1)t(n_2)$. Now, for each $b_{\lambda} \in A_1$, consider $B_{\lambda} = \{(b_{\lambda}, c_i), \forall i = 1, 2, 3, ..., n_2\}$. If T_2 is any transitive relation on A_2 and T is any transitive relation on $A_1 - B_{\lambda}$, then $B_{\lambda} \cup T_2 \cup T$ is a transitive relation on A. Similarly, for each $c_{\mu} \in A_2$, consider $C_{\mu} = \{(b_i, c_{\mu}), \forall i = 1, 2, 3, ..., n_1\}$. If T_1 is any transitive relation on A_1 and S is a transitive relation on $A_2 = (c_1, c_2, c_3, ..., n_1)$. If T_1 is any transitive relation on A_1 and S is a transitive relation on $A_2 - C_{\lambda}$, then $C_{\mu} \cup T_1 \cup S$ is a transitive relation on A. Interestingly, if $b_{\lambda_1}, b_{\lambda_2} \in A_1$ and $B_{\lambda_1}, B_{\lambda_2}$ are constructed the same way as that of B_{λ} , we observe that if T_2 is a transitive relation on A_2 and T is a transitive relation on $A_1 - \{B_{\lambda_1}, B_{\lambda_2}\}$, then $B_{\lambda_1} \cup B_{\lambda_2} \cup T_2 \cup T$ is a transitive relation on A_2 and T_1 is a transitive relation on $A_1 - \{B_{\lambda_1}, B_{\lambda_2}\}$, then $B_{\lambda_1} \cup B_{\lambda_2} \cup T_2 \cup T$ is a transitive relation on A_2 and T_1 is a transitive relation on $A_1 - \{B_{\lambda_1}, B_{\lambda_2}\}$, then $B_{\lambda_1} \cup B_{\lambda_2} \cup T_2 \cup T$ is a transitive relation on A_1 . Similarly, if $c_{\mu_1}, c_{\mu_2} \in A_2$ and C_{μ_1}, C_{μ_2} are constructed the same way as that of C_{μ_1}, C_{μ_2} , then $C_{\mu_1} \cup C_{\mu_2} \cup T_1 \cup S$ is a transitive relation on $A_2 - \{C_{\mu_1}, C_{\mu_2}\}$, then $C_{\mu_1} \cup C_{\mu_2} \cup T_1 \cup S$ is a transitive relation on A_1 and S is a transitive relation on $A_2 - \{C_{\mu_1}, C_{\mu_2}\}$, then $C_{\mu_1} \cup C_{\mu_2} \cup T_1 \cup S$ is a transitive relation on A_1 and $S_{\mu_1}, C_{\mu_2}, ..., C_{\mu_n} \in A_2$, $S \leq n_2$.

Consequently,

$$t(n) > t(n_1)t(n_2) + {\binom{n_1}{1}}t(n_2)t(n_1-1) + {\binom{n_1}{2}}t(n_2)t(n_1-2) + \dots + {\binom{n_1}{n_1}}t(n_2)t(0) + {\binom{n_2}{1}}t(n_1)t(n_2-1) + {\binom{n_2}{2}}t(n_1)t(n_2-2) + \dots + {\binom{n_2}{n_2}}t(n_1)t(0)$$

This gives

$$t(n) > t(n_1)t(n_2) + \left[\binom{n_1}{1}t(n_1-1) + \binom{n_1}{2}t(n_1-2) + \dots + \binom{n_1}{n_1}t(0)\right]t(n_2) + \left[\binom{n_2}{1}t(n_2-1) + \binom{n_2}{2}t(n_2-2) + \dots + \binom{n_2}{n_2}t(0)\right]t(n_1)$$

This simplifies to

$$t(n) > t(n_1)t(n_2) + t(n_2) \left[\sum_{r=1}^{n_1} \binom{n_1}{r} t(n_1 - r) \right] + t(n_1) \left[\sum_{r=1}^{n_2} \binom{n_2}{r} t(n_2 - r) \right]$$

2.4 Corollary 3

The following holds:

$$t(n) > 3 \times t(n-1) + 2\left[\sum_{r=1}^{n-1} \binom{n-1}{r} t(n-1-r)\right]$$

Proof In (5), choose $n_1 = 1$ so that $n_2 = n - 1$. We get

231

$$\begin{split} t(n) &> t(1)t(n-1) + t(n-1) \left[\sum_{r=1}^{1} \binom{1}{r} t(1-r) \right] + t(1) \left[\sum_{r=1}^{n-1} \binom{n-1}{r} t(n-1-r) \right] \\ t(n) &> t(1)t(n-1) + t(n-1)t(0) + t(1) \left[\sum_{r=1}^{n-1} \binom{n-1}{r} t(n-1-r) \right] \\ t(n) &> 2 \times t(n-1) + t(n-1) + 2 \left[\sum_{r=1}^{n-1} \binom{n-1}{r} t(n-1-r) \right] \\ t(n) &> 3 \times t(n-1) + 2 \left[\sum_{r=1}^{n-1} \binom{n-1}{r} t(n-1-r) \right] \end{split}$$

2.4.1 Example:

$$\begin{split} t(4) &> 3 \times t(3) + 2 \left[\sum_{r=1}^{3} \binom{3}{r} t(3-r) \right] \\ \Rightarrow t(4) &> 3 \times t(3) + 2 \left[\binom{3}{1} t(3-1) + \binom{3}{2} t(3-2) + \binom{3}{3} t(3-3) \right] \\ \Rightarrow t(4) &> 3 \times t(3) + 2 \left[\binom{3}{1} t(2) + \binom{3}{2} t(1) + \binom{3}{3} t(0) \right] \\ \Rightarrow t(4) &> 3 \times 171 + 2 \left[3 \times 13 + 3 \times 2 + 1 \times 1 \right] \\ \Rightarrow t(4) &> 605 \end{split}$$

Reference

1. OEIS, Sloane, Neil J. A. and The OEIS Foundation Inc., The on-line encyclopedia of integer sequences, 2020

