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Abstract In this paper we investigate the property (HLUR), a generalisation of (LUR) property of a Banach
space. A Banach space having the property (HLUR) is called an HLUR space. We characterise (HLUR)
property with the help of known geometric properties and study various properties of HLUR spaces. We
show that for any finite dimensional Banach space, the property (HLUR) coincides with anti-Daugavet
property of the space. We also show some applications of HLUR spaces in connection with farthest points of
sets.
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1 Introduction

Let X be a real Banach space and X� its dual. For a sequence ðxnÞ � X and for x 2 X, the norm and weak

convergence of ðxnÞ to x are denoted by xn ! x and xn�!
w
x respectively. BX and SX denote the closed unit

ball and unit sphere in X respectively. For 0� d\1; x 2 SX and x� 2 SX� , let SðX; x�; dÞ ¼ fx 2 BX :
x�ðxÞ� 1� dg and SðX�; x; dÞ ¼ fx� 2 BX� : x

�ðxÞ� 1� dg be the slices of BX and BX� determined by x�; d
and x; d respectively. For x 2 SX; x

� 2 SX� , let JðxÞ ¼ fy� 2 SX� : y
�ðxÞ ¼ 1g and

A0ðxÞ ¼
S
fSðX; x�; 0Þ : x� 2 JðxÞg. For x 2 SX and 0� d� 1, let

D½x; d� ¼ fy 2 BX : k xþ y

2
k� 1� dg and C½x; d� ¼ D½x; d� \ SX

[17]. It is clear that C½x; 0� ¼ D½x; 0� ¼ A0ðxÞ ¼ fy 2 SX : kxþ yk ¼ 2g.
Definition 1.1 X is said to be locally uniformly rotund (LUR) [13] if for all x 2 SX; xn 2 SXðn 2 NÞ with
kxn þ xk ! 2, we have xn ! x.

Local uniform rotundity plays an important role in the study of geometry of Banach spaces. Since its
introduction, Banach spaces with that property have been thoroughly studied over the years from various
perspectives. Several generalisations of locally uniformly rotund spaces have been suggested by many
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mathematicians and their properties have also been extensively studied. One such natural generalisation is
the property (HLUR), introduced in [5].

Definition 1.2 X is said to have the property (HLUR) if for every x; xn 2 SXðn 2 NÞ with kxn þ xk ! 2
and for every x� 2 JðxÞ, we have dðxn; SðX; x�; 0ÞÞ ! 0.

It is easy to verify that if X satisfies the property (HLUR), then dðxn; SðX; x�; 0ÞÞ ! 0 whenever x 2 SX ,
xn 2 BX for every n 2 N and x� 2 JðxÞ.

We call a space satisfying the property (HLUR), an HLUR space. Every LUR space is HLUR and the
converse is true for rotund spaces [5].

Although in recent times numerous generalisations of LUR spaces have been studied by many authors
across the globe, as for instance see [3, 4, 7, 8, 15], it seems that the notion (HLUR) remained unnoticed.
Motivated by this, in this present study, we explore various aspects of HLUR spaces including its geometric
properties and certain applications in connection with farthest distance and bounded linear operators sat-
isfying the Daugavet equation.

2 Preliminaries

In this section we enlist some important definitions which will be used in subsequent sections.

Definition 2.1

(i) X is said to satisfy the property (HS) [5] if for every x� 2 SX� with SðX; x�; 0Þ 6¼ ; and for every
sequence ðxnÞ in BX with x�ðxnÞ ! 1, we have dðxn; SðX; x�; 0ÞÞ ! 0.

(ii) X is said to be compactly locally uniformly rotund (CLUR) [18], if for every x 2 SX and xn 2
SXðn 2 NÞ with kxn þ xk ! 2, ðxnÞ has a convergent subsequence.

(iii) X is said to be weakly compactly locally uniformly rotund (weakly CLUR) [7], if for every x 2 SX
and xn 2 SXðn 2 NÞ with kxn þ xk ! 2, ðxnÞ has a subsequence that converges weakly to some point
in A0ðxÞ.

(iv) X is said to be rotund if the cardinality of SðX; x�; 0Þ is at most one for all x� 2 SX� .
(v) X is called smooth if for each x 2 SX , J(x) is a singleton.
(vi) X is said to satisfy the Kadets–Klee property (KK) [14] if the norm and weak convergence in SX

coincide. Equivalently, X is said to satisfy (KK) if xn ! x whenever ðxnÞ is a sequence in X and

x 2 X such that xn�!
w
x and kxnk ! kxk.

(vii) X is said to be strongly rotund [14] if it is reflexive, rotund and it satisfies the property (KK).
(xi) X is said to be alternatively convex or smooth (ACS) [11] if for all x; y 2 SX and for all x� 2 SX� ,

x�ðyÞ ¼ 1 whenever kxþ yk ¼ 2 and x�ðxÞ ¼ 1.
(x) X is said to have property (I) [2] if every closed and bounded convex set in X can be expressed as the

intersection of a family of closed balls.

We know that X is called a U-convex space [12] if for every �[ 0 there exists d[ 0 such that for all

x; y 2 SX with k xþy
2
k� 1� d implies x�ðyÞ[ 1� e for all x� 2 JðxÞ. In [8], two localisations of U-convexity

were suggested.

Definition 2.2 X is called

(i) locally U-convex [7] if for each x; xnðn 2 NÞ 2 SX with kxn þ xk ! 2, there exists x� 2 JðxÞ such that
x�ðxnÞ ! 1.

(ii) strongly locally U-convex if for each x; xnðn 2 NÞ 2 SX with kxn þ xk ! 2 and for each x� 2 JðxÞ,
x�ðxnÞ ! 1.

Definition 2.3 Let K be a closed convex subset of X.

(i) A subset C of K is said to be an exposed face of K if there exists x� 2 X� such that
C ¼ fx 2 K : x�ðxÞ ¼ sup x�ðKÞg.

(ii) A subset C of K is said to be a strongly exposed face of K if there exists x� 2 X� satisfying
C ¼ fx 2 K : x�ðxÞ ¼ sup x�ðKÞg and for every open subset U of K containing C, there exists d[ 0
such that fx 2 K : x�ðxÞ� sup x�ðKÞ � dg is contained in U.
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(iii) A point x 2 K is said to be an exposed (res. strongly exposed) point of K if fxg is an exposed (res.
strongly exposed) face of K.

Definition 2.4 [16] A sequence of sets ðCnÞ in X is said to converge to C0 � X in upper Hausdorff sense,

denoted by Cn�!
Hþ

C0, if for every e[ 0, Cn � C0 þ eBX eventually, and in lower Hausdorff sense denoted

by Cn�!
H�

C0, if for every e[ 0, C0 � Cn þ eBX eventually. A sequence ðCnÞ converges to C0 in Hausdorff

sense denoted by Cn�!
H

C0, if Cn�!
Hþ

C0 and Cn�!
H�

C0.

For a nested sequence of subsets ðCnÞ of X, i.e. for a sequence of subsets ðCnÞ of X with Cnþ1 � Cn for all

n 2 N, Cn�!
H

C0 if and only if Cn �!
Hþ

C0.

Definition 2.5 X is said to be anti-Daugavet [11] if for every continuous linear operator T : X ! X
satisfying the Daugavet equation

kI þ Tk ¼ 1þ kTk;

where I : X ! X is the identity operator, kTk is an approximate point spectrum of T.

Definition 2.6 A Banach space X is said to be asymptotically isometric to ‘1 [6] if it has a normalised
Schauder basis ðxnÞ such that for a sequence ðknÞ in (0, 1) increasing to 1, we have that

X1

n¼1
knjtnj � k

X1

n¼1
tnxnk

for all ðtnÞ 2 ‘1.
If ðxnÞ is a normalised sequence in X satisfying the above inequality, then the closed linear span of ðxnÞ is

an asymptotically isometric copy of ‘1.

3 Banach spaces with the property (HS)

Theorem 3.1 X satisfies the property (HS) if and only if every exposed face of BX is strongly exposed.

Proof Let X have the property (HS) and let C be an exposed face of BX . Therefore there exists x� 2 SX�
such that C ¼ SðX; x�; 0Þ. If possible, let SðX; x�; 0Þ be not a strongly exposed face of BX . Then there exists
an open subset U of BX containing SðX; x�; 0Þ such that for every d[ 0, SðX; x�; dÞ 6� U. It follows that for

each n 2 N, there exists xn 2 SðX; x�; 1nÞ n U. Therefore x�ðxnÞ ! 1 but dðxn; SðX; x�; 0ÞÞ 6! 0. This is

contrary to the fact that X satisfies the property (HS). Hence C must be a strongly exposed face of BX .
Conversely, let every exposed face of BX be strongly exposed. To show that X satisfies the property (HS),

suppose x� 2 SX� such that SðX; x�; 0Þ 6¼ ; and let ðxnÞ be a sequence in BX such that x�ðxnÞ ! 1. Thus
SðX; x�; 0Þ is an exposed face of BX and so by hypothesis, is a strongly exposed face. Let U be any open
subset of BX containing SðX; x�; 0Þ. Therefore, there exits d[ 0 such that SðX; x�; dÞ � U. Now x�ðxnÞ ! 1
implies that xn 2 SðX; x�; dÞ eventually, and so xn 2 U eventually. Hence dðxn; SðX; x�; 0ÞÞ ! 0, entailing X
to satisfy the property (HS). h

Corollary 3.2 Let X satisfy the property (HS). Then every exposed point of BX is strongly exposed.

Definition 3.3 [4] X is said to be nearly strictly convex (NSC) if for every x� 2 SX� , SðX; x�; 0Þ is compact.

The following result is not new and can be proved with the help of [16, Theorem 19]. However, we provide
a straightforward proof for the sake of completeness.

Theorem 3.4 Let X be a reflexive space. Then the following statements are equivalent .

(a) X satisfies the property (KK).
(b) X is NSC and has the property (HS).
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Proof (a))(b): Since BX is weakly compact, therefore for every x� 2 SX� , SðX; x�; 0Þ is weakly compact
and so is compact by the property (KK) satisfied by X, entailing X to be NSC. Again, let ðxnÞ � BX and
x� 2 SX� be such that x�ðxnÞ ! 1. Let ðxnkÞ be a subsequence of ðxnÞ and let ðxnkj Þ be a subsequence of ðxnkÞ
converging weakly to x in BX . Since

x�ðxnkj Þ ! x�ðxÞ;

x�ðxÞ ¼ 1. Therefore kxk ¼ 1 and by weak lower semicontinuity of the norm, kxnkjk ! 1. Since X has the
property (KK), xnkj ! x. Thus

dðxnkj ; SðX; x
�; 0ÞÞ ! 0:

Hence X satisfies the property (HS).
(b))(a): Let ðxnÞ � SX be such that xn�!

w
x in SX . Suppose x� 2 JðxÞ. Then for every subsequence ðxnkÞ

of ðxnÞ, x�ðxnkÞ ! 1 and so

dðxnk ; SðX; x�; 0ÞÞ ! 0:

It follows that there is a sequence ðynkÞ in SðX; x�; 0Þ such that kxnk � ynkk ! 0. But SðX; x�; 0Þ being
compact, there exists a subsequence ðynkj Þ of ðynkÞ that converges to some y in SðX; x�; 0Þ. Clearly xnkj ! y.

Therefore, ðxnÞ converges to y. Since x is the weak limit of ðxnÞ, we have y ¼ x. Hence X has the property
(KK). h

The following is an easy consequence of the above result.

Corollary 3.5 Every strongly rotund space satisfies the property (HS).

4 Characterisations and properties of HLUR spaces

Theorem 4.1 Let X be an HLUR space. Then for every x 2 SX; SðX; x�; 0Þ and SðX; y�; 0Þ coincide for all
x�; y� 2 JðxÞ.
Proof Let x 2 SX and x� 2 JðxÞ. Suppose that y 2 A0ðxÞ. Then kxþ yk ¼ 2 and so dðy; SðX; x�; 0ÞÞ ¼ 0.
Since SðX; x�; 0Þ is closed in X, we have y 2 SðX; x�; 0Þ. Hence the result. h

Remark 4.2 From the above result, it is clear that in an HLUR space, every x 2 SX is contained in exactly
one exposed face of BX .

Theorem 4.3 Let X be a Banach space. Then the following are equivalent.

(a) X is an HLUR space.
(b) For each x 2 SX; D x; 1n

� �
�!H A0ðxÞ and SðX; x�; 0Þ is same for all x� 2 JðxÞ.

(c) For each x 2 SX; C x; 1n
� �

�!H A0ðxÞ and SðX; x�; 0Þ is same for all x� 2 JðxÞ.
(d) X is strongly locally U-convex and satisfies the property (HS).
(e) X is locally U-convex, X satisfies the property (HS) and SðX; x�; 0Þ is same for all x� 2 JðxÞ; for all

x 2 SX .

Proof (a))(b): Suppose x 2 SX and xn 2 D x; 1n
� �

for all n 2 N. Then

kxn þ xk ! 2:

By (HLUR) property of X, for every x� 2 JðxÞ,
dðxn; SðX; x�; 0ÞÞ ! 0:

Since SðX; x�; 0Þ � A0ðxÞ for all x� 2 JðxÞ, therefore
dðxn;A0ðxÞÞ ! 0:

Thus for every e[ 0, xn 2 A0ðxÞ þ eBX eventually. This follows that D x; 1n
� �

� A0ðxÞ þ eBX eventually.

Hence D x; 1n
� �

�!H
A

0ðxÞ. Also by Theorem 4.1, SðX; x�; 0Þ is same for all x� 2 JðxÞ.

123

442 U. S. Chakraborty



(b))(c): It is clear from the fact that C x; 1n
� �

� D x; 1n
� �

for all x 2 SX and for all n 2 N.
(c))(d): Let x; xnðn 2 NÞ 2 SX be such that

kxn þ xk ! 2:

Thus xn 2 C x; 1N
� �

for every N 2 N eventually. Since C x; 1n
� �

�!H
A

0ðxÞ, thus for every e[ 0, C x; 1n
� �

�
A0ðxÞ þ eBX eventually, entailing dðxn;A0Þ ! 0. Suppose x� 2 JðxÞ. Since SðX; x�; 0Þ is same for all
x� 2 JðxÞ, A0ðxÞ ¼ SðX; x�; 0Þ, and consequently

dðxn; SðX; x�; 0ÞÞ ! 0:

Thus X is HLUR and so, satisfies the property (HS). Again there is a sequence ðynÞ in SðX; x�; 0Þ such that
kxn � ynk ! 0. Therefore

jx�ðxnÞ � 1j � kxn � ynk ! 0:

It follows that x�ðxnÞ ! 1 and hence X is strongly locally U-convex.
(d))(a): To show that X is HLUR, let us consider x; xn 2 SXðn 2 NÞ such that

kxn þ xk ! 2:

If x� 2 JðxÞ, then by the strong local U-convexity of X, x�ðxnÞ ! 1. Since X has the property (HS), therefore

dðxn; SðX; x�; 0ÞÞ ! 0:

Hence X is an HLUR space.
(a))(e): It is enough to show that X is locally U-convex. Consider x; xnðn 2 NÞ 2 SX such that

kxn þ xk ! 2:

Since X is HLUR, for every x� 2 JðxÞ,
dðxn; SðX; x�; 0ÞÞ ! 0:

Thus there exists a sequence ðynÞ in SðX; x�; 0Þ such that kxn � ynk ! 0. It follows that

jx�ðxnÞ � 1j ¼ jx�ðxn � ynÞj � kxn � ynk ! 0;

entailing x�ðxnÞ ! 1. Hence the claim.
(e))(a): Let x; xn 2 SXðn 2 NÞ be such that

kxn þ xk ! 2:

Suppose x� 2 JðxÞ. By local U-convexity of X, there exists y� 2 JðxÞ such that y�ðxnÞ ! 1. Also x�; y� 2
JðxÞ implies SðX; x�; 0Þ ¼ SðX; y�; 0Þ. Since X satisfies the property (HS), therefore

dðxn; SðX; x�; 0ÞÞ ! 0:

Hence X is an HLUR space. h

The next result is an immediate consequence of Theorem 4.3.

Corollary 4.4 The following statements are equivalent.

(a) X is LUR.
(b) For every x 2 SX; D x; 1n

� �
�!H A0ðxÞ:

(c) For every x 2 SX; C x; 1n
� �

�!H A0ðxÞ:
(d) X is rotund, Strongly locally U-convex and satisfies the property (HS).
(e) X is rotund, locally U-convex and has the property (HS).

Remark 4.5 It is easy to see that for a Banach space X with dimension less than or equal to 2, X is HLUR
implies that X is rotund or smooth. In fact, the converse is also true. Thus we have the following result.

Theorem 4.6 Let dimX� 2: Then X is HLUR if and only if X is rotund or smooth.

Kadets [11] proved that in the class of finite dimensional Banach spaces the class of ACS spaces coincides
with the class of anti-Daugavet properties. We prove that finite dimensional HLUR spaces also do the same.
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Theorem 4.7 Let X be a finite dimensional space. Then X is HLUR if and only if X is an ACS space.

Proof Let X be HLUR. Suppose x; y 2 SX and x� 2 JðxÞ be such that kxþ yk ¼ 2. Then

dðy; SðX; x�; 0ÞÞ ¼ 0:

Since SðX; x�; 0Þ is a closed subset of X, therefore y 2 SðX; x�; 0Þ, entailing x�ðyÞ ¼ 1. Hence X is an ACS
space.

Conversely, let X be an ACS space. Let x; xnðn 2 NÞ 2 SX be such that kxn þ xk ! 2. Suppose x� 2 JðxÞ.
Let ðxnkÞ be any subsequence of ðxnÞ. By compactness of SX , we get a subsequence ðxnkj Þ of ðxnkÞ such that

xnkj ! x0. It follows that kx0 þ xk ¼ 2 and so x�ðx0Þ ¼ 1. It follows that

dðxnkj ; SðX; x
�; 0ÞÞ ! 0:

Hence X is HLUR. h

Corollary 4.8 Let X be a finite dimensional space. Then X is HLUR if and only if X is anti-Daugavet.

For any nonempty bounded subset K of X, and for any x 2 X, the farthest distance of x from K is given by

supfkx� kk : k 2 Kg

and the set of all such points of K where farthest distance of x is attained, is given by

FkðxÞ ¼ fk 2 K : kx� kk ¼ supfkx� kk : k 2 Kgg:

The collection of all points in K where the farthest distance of some point of X is attained, denoted by FarK,
is given by

FarK ¼
[

x2X
FkðxÞ:

The first known work in the field of farthest points of sets are due to Asplund [1] and Edelstein [2]. Asplund
[1] proved that if X is a reflexive, LUR space, then the set of points which admit farthest points in a closed
and bounded subset of X is dense in X. Eldestein [2] got the similar conclusion for a uniformly rotund space.
It is farther proved [2] that in a uniformly rotund space X satisfying the property (I), the closed convex hull
of any closed and bounded subset K of X equals the closed convex hull of FarK. We prove similar results for
a reflexive, HLUR space below.

Theorem 4.9 Let K be a bounded, weakly sequentially closed subset of a reflexive HLUR space X. Then

(a) A ¼ fx 2 X : FkðxÞ 6¼ ;g is dense in X and X n A is of first category in X.
(b) coðKÞ ¼ coðFarKÞ if X satisfies the property (I).

Proof

(a) Following the technique as employed by Asplund [1] (with minor modifications), the result can be
proved.

(b) Repeating the same set of arguments as mentioned in [2, Theorem 2], the result can be proved by using
Theorem 4.9 (a).

h

5 Relationships among various spaces

Theorem 5.1 Let X be a reflexive space such that both X and X� are smooth and satisfy the property (HS).
Then both the spaces X and X� are HLUR spaces.

Proof It is enough to show that X is HLUR. Let x; xnðn 2 NÞ 2 SX be such that kxn þ xk ! 2 and let
x� 2 JðxÞ. We choose a sequence ðx�nÞ in SX� such that x�nðxn þ xÞ ¼ kxn þ xk for all n 2 N. Thus x�nðxnÞ ! 1
and x�nðxÞ ! 1. It follows that QðxÞðx�nÞ ! 1, where Q is the natural embedding of X onto X��. By reflexivity
of X�, SðX�;QðxÞ; 0Þ 6¼ ;. Since X� satisfies the property (HS), therefore dðx�n; SðX�;QðxÞ; 0ÞÞ ! 0. But due
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to smoothness of X, SðX�;QðxÞ; 0Þ ¼ JðxÞ is a singleton, say fx�g. Thus x�n ! x�, entailing x�ðxnÞ ! 1.
Therefore, by (HS) property of the space X, we have dðxn; SðX; x�; 0ÞÞ ! 0. Hence X is an HLUR space. h

Corollary 5.2 Let X and X� be strongly rotund spaces. Then X and X� both are LUR spaces.

Proof Here X is reflexive. Thus both the spaces X and X� are smooth. Also by Corollary 3.4, X and X�

satisfy the property (HS). Since X;X� are rotund, the result is attained by using Theorem 5.1. h

It is known that if X�� is LUR for an equivalent norm, then X is reflexive. Dutta and Lin [8, Proposition 2.10]
proved that LUR property can also be replaced by strong local U-convexity of X�� under an equivalent
norm. Since every HLUR space is strongly locally U-convex, as shown in Theorem 4.3, we have the
following result.

Theorem 5.3 Let X�� be HLUR under an equivalent norm. Then X is reflexive.

The following are sufficient conditions for a space to satisfy the property (HLUR).

Theorem 5.4 Consider the following statements.

(a) X is smooth and CLUR.
(b) X is ACS and CLUR.
(c) X is HLUR.

Then (a))(c) and (b))(c).

Proof (a))(c): Let x; xn 2 SXðn 2 NÞ, such that kxn þ xk ! 2 and let x� 2 JðxÞ. Let ðxnkÞ be any sub-
sequence of ðxnÞ. Then kxnk þ xk ! 2. Since X is a CLUR space, there exists a subsequence ðxnkj Þ of ðxnkÞ
such that xnkj ! x0 2 A0ðxÞ. But as JðxÞ ¼ fx�g, so A0ðxÞ ¼ SðX; x�; 0Þ. Therefore

dðxnkj ; SðX; x
�; 0ÞÞ ¼ kxnkj � x0k ! 0:

Consequently, dðxn; SðX; x�; 0ÞÞ ¼ kxn � x0k ! 0. Hence X is HLUR.
(b))(c): Let x; xn 2 SXðn 2 NÞ, such that kxn þ xk ! 2 and let x� 2 JðxÞ. Let ðxnkÞ be any subsequence

of ðxnÞ. Then kxnk þ xk ! 2. Since X is a CLUR space, there exists a subsequence ðxnkj Þ of ðxnkÞ such that

xnkj ! x0 2 A0ðxÞ. Observe that x�ðx0Þ ¼ 1 as X is ACS and so dðxnkj ; SðX; x
�; 0ÞÞ ! 0. Hence the result

follows. h

However, the condition smoothness or ACS can not dropped from Theorem 5.4 as shown by the following
example.

Example 5.5 Consider the space ðR2; k:k1Þ, where kðx; yÞk1 ¼ maxfjxj; jyjg. Because of finite dimen-

sionality, the space ðR2; k:k1Þ is CLUR. But it is not HLUR. In fact take x ¼ ð1; 1Þ; x� ¼ 1
2
; 1
2

� �
and

xn ¼ ð0; 1Þ for all n 2 N. Then kxn þ xk1 ¼ 2 for all n 2 N and x�ðxÞ ¼ 1. But
dðxn; SðX; x�; 0ÞÞ ¼ 1 for each n 2 N.

Quotient space of an HLUR space need not be HLUR, as shown by the following example.

Example 5.6 Define a norm on ‘1 by

kxk ¼ ðkxk21 þ kxk
2
2Þ

1
2;

where k:kp denotes the canonical norm on ‘p. Then k:k is equivalent to k:k1 as

kxk1�kxk�
ffiffiffi
2
p
kxk1

for all x 2 ‘1 and with this norm k:k, ‘1 is an LUR space [9, Lemma 13.26]. Consequently X ¼ ð‘1; k:kÞ is an
HLUR space. Consider the basic sequence ðenÞ in X, where

en ¼ ð0; . . .; 1|{z}
nth place

; 0; . . .Þ for all n 2 N;

and the block basic sequence ðynÞ of ðenÞ, where
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yn ¼
X

1
2
nðnþ1Þ

k¼1
2
nðn�1Þþ1

ek for all n 2 N:

Then it is not difficult to see that

X1

n¼1
knjtnj � k

X1

n¼1
tn

yn
kynk

k;

where kn ¼ 1ffiffiffiffiffiffi
1þ1

n

p ! 1. Thus C, the closed linear span of ðynÞ is an asymptotically isometric copy of ‘1. It
follows that ðC; k:kÞ is linearly isometric to ð‘1; k:k0Þ, where k:k0 is an asymptotically isometrically
equivalent norm determined by the sequence ðknÞ. Let fxn : n 2 Ng be a dense subset of the closed unit ball

of ð‘1; k:k1Þ. Define T : ð‘1; k:k0Þ ! ð‘1; k:k1Þ by

TððtnÞÞ ¼
X1

n¼1
kntnxn for all ðtnÞ 2 ‘1:

Following arguments in [10, Theorem 5.9], we can show that the quotient space of ð‘1; k:k0Þ by ker T is

linearly isometric to ð‘1; k:k1Þ. Since the unit vector basis ðenÞ is symmetric in X, C being a closed linear
span of a block basic sequence of ðenÞ, is norm-1 complemented in X. If P : X ! C is the corresponding

projection, then X= kerP is linearly isometric to C. Hence ð‘1; k:k1Þ is linearly isometric to a quotient of X.
But ð‘1; k:k1Þ is not an HLUR space. Consider enðn[ 1Þ; e1 2 S‘1 such that ke1 þ enk ¼ 2. Choose e�1 2 ‘1

such that e�1ðe1Þ ¼ 1. But ken � e1k ¼ 2 for all n[ 1.

Definition 5.7 A nonempty subset K of X is said to be proximinal if for every x 2 X, the set

PKðxÞ ¼ fy 2 K : kx� yk ¼ dðx;KÞg

is nonempty.

We know that a subspace Y of X is proximinal if and only if QðBXÞ ¼ BX=Y , where Q is the canonical
quotient map from X onto X/Y. The following is a sufficient condition for (HLUR) property of a quotient
space.

Theorem 5.8 Let X be an HLUR space and let Y be a proximinal subspace of X. Then X/Y is HLUR.

Proof Let xþ Y ; xn þ Y 2 SX=Y for all n 2 N be such that

kðxn þ xÞ þ Yk ! 2:

Since Y is proximinal, therefore QðBXÞ ¼ BX=Y . Thus xþ Y ; xn þ Y 2 QðBXÞ and so x; xn 2 BX . Again
kxþ Yk� kxk; kxn þ Yk�kxnk. It follows that x; xn 2 SX . Also

2 kðxn þ xÞ þ Yk� kxn þ xk�kxk þ kxnk� 2:

Therefore kxn þ xk ! 2. Suppose x� 2 Jðxþ YÞ. Since ðX=YÞ� is isometrically isomorphic to

Y? ¼ fy� 2 X� : y�ðyÞ ¼ 0 for all y 2 Yg, therefore x� 2 JðxÞ. By HLUR property of X,

dðxn; SðX; x�; 0ÞÞ ! 0:

It follows that there exists a sequence ðx0nÞ in SðX; x�; 0Þ such that

kxn � x0nk ! 0:

Clearly, x0n þ Y 2 SðX=Y ; x�;YÞ for all n 2 N and

kðxn þ YÞ � ðx0n þ YÞk� kxn � x0nk ! 0:

It follows that

dðxn þ Y ; SðX=Y ; x�; YÞÞ ! 0:

Hence X/Y is an HLUR space. h
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As it is mentioned in [5, p.77], HLUR spaces are not comparable with CLUR spaces, it becomes worthwhile
to ask under what condition an HLUR space becomes CLUR. We provide such a condition below.

Theorem 5.9 If X is an HLUR space which is also NSC, then X is CLUR.

Proof Suppose x; xn 2 SXðn 2 NÞ such that kxn þ xk ! 2. Then for all x� 2 JðxÞ, dðxn; SðX; x�; 0ÞÞ ! 0.
Thus there exists a sequence ðynÞ in SðX; x�; 0Þ such that kxn � ynk ! 0. Since X is an NSC space,
SðX; x�; 0Þ is compact. Therefore there is a subsequence ðynkÞ of ðynÞ such that ðynkÞ converges to some y in
SðX; x�; 0Þ. Thus

kxnk � yk�kxnk � ynkk þ kynk � yk ! 0:

It follows that xnk ! y and so X is CLUR. h

Definition 5.10 [4] X is said to be weakly nearly strictly convex (WNSC) if for every x� 2 SX� , SðX; x�; 0Þ
is weakly compact.

Clearly, every reflexive space is necessarily a WNSC space.

Theorem 5.11 Every HLUR space which is also WNSC is weakly CLUR.

Proof Let X be a WNSC, HLUR space. Suppose x; xnðn 2 NÞ 2 Sx such that kxn þ xk ! 2 and suppose
x� 2 JðxÞ. Then by HLUR property of X, dðxn; SðX; x�; 0ÞÞ ! 0. Thus there exists a sequence ðynÞ in
SðX; x�; 0Þ such that kxn � ynk ! 0. Since X is a WNSC space, SðX; x�; 0Þ is weakly compact and so there
exists a subsequence ðynkÞ of ðynÞ converges weakly to some y in SðX; x�; 0Þ � A0ðxÞ. Now for any y� 2 X�,

jy�ðxnkÞ � y�ðyÞj
� jy�ðxnkÞ � y�ðynkÞj þ jy�ðynkÞ � y�ðyÞj
� ky�kkxnk � ynkk þ jy�ðynkÞ � y�ðyÞj ! 0:

Hence X is weakly CLUR. h

Chakrabarty [5] proved that every CLUR space satisfies the property (HS). We present the proof here for
completeness.

Proposition 5.12 ([5, Proposition 4.3.1]) Every CLUR space satisfies the (HS) property.

Proof Let X be a CLUR space. Let x� 2 SX� be such that SðX; x�; 0Þ 6¼ ;. Let ðxnÞ be a sequence in BX such
that x�ðxnÞ ! 1. If x 2 SðX; x�; 0Þ, then for any subsequence ðxnkÞ of ðxnÞ, we have

2�kxnk þ xk� x�ðxnk þ xÞ ¼ x�ðxnkÞ þ x�ðxÞ ! 2;

which implies that kxnk þ xk ! 2. Since X is CLUR, ðxnkÞ has a subsequence ðxnkj Þ converging to some
point x0 2 X. Clearly x0 2 SðX; x�; 0Þ, and so dðxnkj ; SðX; x

�; 0ÞÞ ! 0. Consequently dðxn; SðX; x�; 0ÞÞ ! 0.

Hence X has the property (HS). h

The following result characterises the property (CLUR) in terms of nearly strict convexity, local U-con-
vexity and the property (HS).

Theorem 5.13 The following statements are equivalent.

(a) X is CLUR.
(b) X is weakly CLUR, NSC and X satisfies the property (HS).
(c) X is locally U-convex, NSC and X satisfies the property (HS).

Proof (a))(b): By Proposition 5.12, X satisfies the property (HS). Also by [7, Corollary 3.5], X is weakly
CLUR. Since X is CLUR, therefore A0ðxÞ is compact. Thus for each x� 2 SX� , SðX; x�; 0Þ being a closed set
is compact. Thus X is NSC.

(b))(c): It follows from the fact that every weakly CLUR space is locally U-convex.
(c))(a): To show that X is CLUR, let x; xnðn 2 NÞ 2 SX be such that kxn þ xk ! 2. Since X is locally U-

convex, therefore there exists x� 2 JðxÞ such that x�ðxnÞ ! 1. Thus by the property (HS) of X, we have

dðxn; SðX; x�; 0ÞÞ ! 0:
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It follows that there exists a sequence ðynÞ in SðX; x�; 0Þ such that kxn � ynk ! 0. But SðX; x�; 0Þ is compact
and so there exists a subsequence ðynkÞ of ðynÞ that converges to some y0 2 SðX; x�; 0Þ. It follows that ðxnkÞ
converges to y0. Hence X is CLUR. h
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