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Abstract The edge-connectivity of a connected hypergraph H is the minimum number of edges (named as
edge-cut) whose removal makes H disconnected. It is known that the edge-connectivity of a hypergraph is
bounded above by its minimum degree. H is super edge-connected, if every edge-cut consists of edges
incident with a vertex of minimum degree. A hypergraph H is linear if any two edges of H share at most one
vertex. We call H uniform if all edges of H have the same cardinality. Sufficient conditions for equality of
edge-connectivity and minimum degree of graphs and super edge-connected graphs are known. In this
paper, we present a generalization of some of these sufficient conditions to linear and/or uniform
hypergraphs.
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1 Introduction

As one of the classical parameters that indicate how reliable a graph G is, the edge-connectivity kðGÞ,
defined as the minimum number of edges whose removal renders G disconnected, has attracted much
attention in recent years. In 1932, Whitney [18] established one of the basic foundations of edge-connec-
tivity for graphs: the edge-connectivity kðGÞ of a connected graph G is bounded above by the minimum
degree dðGÞ. Thus, in order to study reliability and fault tolerance of graphs, sufficient conditions for graphs
satisfying kðGÞ ¼ dðGÞ (so called maximally edge-connected) are of great interest. For other results the
reader is referred to, for example, [5] and the survey [12].

Hypergraphs are a natural generalization of graphs in which ‘‘edges’’ may consist of more than 2
vertices. More precisely, a hypergraph H ¼ ðV;EÞ consists of a set V and a collection E of non-empty
subsets of V. The elements of V are called vertices and the elements of E are called hyperedges, or simply
edges. We define the order and size of H by n ¼ jVðHÞj and m ¼ jEðHÞj, respectively. Unless specified
otherwise, we consider only simple hypergraphs, i.e., hypergraphs whose edges are distinct. An r-uniform
hypergraph H is a hypergraph such that all edges of H have cardinality r. We use Kr

n to denote the complete
r-uniform hypergraph of order n, i.e., the hypergraph on n vertices whose edge set consists of all possible r-
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subsets of the vertex set. A hypergraph is called linear if any two edges of the hypergraph share at most one
vertex. Obviously, every (simple) graph is a (linear) 2-uniform hypergraph.

For v;w 2 V , v and w are said to be adjacent, if there exists an edge e 2 E such that fv;wg � e. A vertex
v and an edge e are said to be incident if v 2 e. The degree of a vertex v, denoted by dHðvÞ, is the number of
edges which are incident to v. The minimum degree and maximum degree among the vertices of H are
denoted by dðHÞ and DðHÞ, respectively. The neighborhood of a vertex v, denoted by NHðvÞ, is the set of all
vertices different from v that are adjacent to v. If H is clear from the contest, we denote dHðvÞ and NHðvÞ by
d(v) and N(v), respectively. For X � V , use H[X] to denote the subgraph of H induced by X.

A walk in a hypergraph H is a finite alternating sequence W ¼ ðv0; e1; v1; e2; :::; ek; vkÞ, where vi 2 V for
i 2 f0; 1; :::; kg and ej 2 E such that fvj�1; vjg 2 ej for j 2 f1; 2; :::; kg. A walk W is a path if all the vertices
vi for i 2 f0; 1; :::; kg and all the edges ej for j 2 f1; 2; :::; kg in W are distinct. The length of a path, is the
number of edges that it contains. We define the distance between two vertices u and v, denoted by dHðu; vÞ,
as the length of a shortest path between u and v. A hypergraph is connected, if there is a walk between any
pair of its vertices, otherwise it is disconnected. The diameter D(H) of a connected hypergraph H is defined
by DðHÞ ¼ maxu;v2VðHÞdHðu; vÞ.

We can extend the concept of edge-connectivity from graph theory to hypergraphs in a natural way in
which the concept can be generalized. For a subset S � EðHÞ, we define H � S to be the hypergraph
obtained from H by deleting the edges in S without affecting the rest of the hypergraph. When H � S is
disconnected, we say that S is an edge-cut. The minimum cardinality of an edge-cut in a connected
hypergraph H is called its edge-connectivity, denoted by kðHÞ:

There has been several papers investigating the connectivity of the hypergraphs. In [19], Zykov pre-
sented a Menger-type theorem for hypergraphs. Edge augmentation of hypergraphs are studied in the
literature (see e.g. [1, 2, 4]). Gu and Lai [10] gave necessary and sufficient conditions for an r-uniform
hypergraphic sequence to have a k-edge-connected relazation. Jami et al. [13] provided a generalization of a
result on edge-connectivity of permutation graphs for hypergraphs. In [6], Dankelmann and Meierling
observed that kðHÞ� dðHÞ for general hypergraphs, and generalized some well-known sufficient conditions
for graphs G satisfying kðGÞ ¼ dðGÞ to hypergraphs. In [7], the authors investigated vertex-connectivity of
hypergraphs. For a subset X � VðHÞ, H � X denotes the hypergraph obtained by removing the vertices X
from H and removing all the edges that intersect X. The vertex-connectivity jðHÞ, is defined as the
minimum cardinality of such X whose removal makes G disconnected. In [7], they also defined another
vertex-connectivity for hypergraphs, and considered the complexity of the two kinds of vertex-connectivity
for hypergraphs. The following result in [7] provided a generalization of a result of Whitney [18] on
connectivity of graphs to hypergraphs.

Theorem 1.1 ([7]). Let H be a hypergraph with at least two vertices. Then jðHÞ� kðHÞ� dðHÞ.
Thus, we call a hypergraph H satisfying kðHÞ ¼ dðHÞ (resp. jðHÞ ¼ dðHÞ) maximally edge-connected
(resp. maximally vertex-connected). If, furthermore, every minimum edge-cut consists of edges incident
with one vertex, then H is said to be super edge-connected, or simply, super- k. Our main work is to
investigate how some sufficient conditions for graphs to be maximally edge-connected or super-k can be
generalized to uniform and/or linear hypergraphs. In Section 2, we present results that will be useful in our
arguments. In Section 3, two kinds of degree conditions for equality of edge-connectivity and minimum
degree for graphs are generalized to uniform linear hypergraphs. In Section 4, we generalize a sufficient
condition for maximally edge-connected graphs depending on the order, the maximum degree and the
minimum degree as well as on the diameter, to uniform linear hypergraphs. In Section 5, we generalize a
sufficient condition for maximally edge-connected graphs and super-k graphs depending on the size, the
order, the minimum degree and a parameter (as defined in Section 5) to uniform hypergraphs.

2 Preliminary lemmas

In this section, we will list or prove some lemmas which will be used in our later proofs.
In a connected hypergraph H ¼ ðV ;EÞ, let S � E be a minimum edge-cut of H and H1 be a component of

H � S. A vertex v of H1 is internal if v is not incident with any edge of S; otherwise, v will be external. In
1981, Goldsmith confirmed a very useful lemma in [9] when he studied the n-th order edge-connectivity of
graphs. Now we present the special case of his lemma as follows.
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Lemma 2.1 ([9]). Let S be a minimum edge-cut of a graph G. If kðGÞ\dðGÞ, then each component of
G� S contains at least two internal vertices.

And we will give a similar result with Lemma 2.1 for uniform linear hypergraphs.

Lemma 2.2 Let H be an r-uniform linear hypergraph and S be a minimum edge-cut of H. If kðHÞ\dðHÞ,
then each component of H � S contains at least one internal vertex.

Proof Let H1 be a component of H � S and x be an external vertex of H1. Set E1 ¼ fe 2 E j x 2 e and
e 2 EðH1Þg, and E2 ¼ fe 2 E j x 2 e and e 2 Sg. Obviously, E2 6¼ £. If E1 ¼ £, then
dðHÞ[ kðHÞ ¼ jSj � jE2j ¼ dðxÞ� dðHÞ, a contradiction. Thus, E1 6¼ £. It follows that
jE1j þ jE2j ¼ dðxÞ� dðHÞ[ kðHÞ ¼ jSj ¼ jE2j þ jS� E2j, which implies that jE1j[ jS� E2j. Since H is
linear and each edge of S� E2 is incident with at most r � 1 vertices in VðH1Þ, we have

jð
[

e2S�E2

eÞ \ VðH1Þj � ðr � 1ÞjS� E2j\ðr � 1ÞjE1j ¼ j
[

e2E1

ðe� fxgÞj;

and ð
S
e2E1

ðe� fxgÞÞ \ ð
S
e2E2

ðe� fxgÞÞ ¼ £, which implies that there exists at least one vertex w 2

NðxÞ \ ð
S
e2E1

eÞ that is not covered by any edge of S, i.e., w is an internal vertex of H1. h

Our lemma implies the following two results of [6] for linear r-uniform hypergraphs to be maximally edge-
connected.

Theorem 2.3 ([6]). Let H be an r-uniform linear hypergraph with DðHÞ� 2. Then kðHÞ ¼ dðHÞ.
Proof Let S be a minimum edge-cut of H. The distance condition implies that there exists at least one
component of H � S that contains no internal vertex. Then by Lemma 2.2, we have kðHÞ� dðHÞ and the
result holds. h

If kðHÞ\dðHÞ, then by Lemma 2.2, each component of H � S contains at least one internal vertex w. It
follows that each component of H � S contains at least 1þ ðr � 1ÞdðHÞ vertices (NðwÞ [ fwg � VðH1Þ and
thus jVðH1Þj � 1þ ðr � 1ÞdðwÞ� 1þ ðr � 1ÞdðHÞ). Hence, jVðHÞj � 2þ 2ðr � 1ÞdðHÞ, and we obtain the
following condition for linear uniform hypergraphs to be maximally edge-connected.

Theorem 2.4 ([6]). Let H be an r-uniform linear hypergraph of order n. If n� 1þ 2ðr � 1ÞdðHÞ, then
kðHÞ ¼ dðHÞ.
The special case r ¼ 2 is the classical result as the following.

Corollary 2.5 Let G be a connected graph of order n. Then kðGÞ ¼ dðGÞ, if
(1) n� 2dðGÞ þ 1; Chartrand [3]
(2) DðGÞ� 2; Plesnı́k [15].

3 Degree conditions

We now work towards a generalization of some degree conditions for equality of edge-connectivity and
minimum degree for graphs to linear uniform hypergraphs. We point out here that we present the same
generalizations as that of [16], but use a different method from [16]. For the sake of completeness, we also
give the complete proof in our paper. In 1974, Lesniak [14] proved the following strengthening result of
Corollary 2.5 (1) for graphs.

Theorem 3.1 ([14]). If G is a graph of order n with dðuÞ þ dðvÞ� n� 1 for all distinct non-adjacent
vertices u and v, then kðGÞ ¼ dðGÞ.
Below we present a generalization of the above result for r-uniform linear hypergraphs.

Theorem 3.2 Let H be an r-uniform linear hypergraph of order n. If dðuÞ þ dðvÞ� dn�1
r�1

e for all distinct
non-adjacent vertices u and v, then kðHÞ ¼ dðHÞ.
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Proof Let H ¼ ðV ;EÞ and let S � E be a minimum edge-cut of H. Then H � S consists of two parts H1

and H2 such that there are no edges between H1 and H2. Denote the vertex set of Hi by Vi for i ¼ 1; 2. We
claim that there exists no internal vertex in H1 or H2. Suppose, on the contrary, that there exist internal
vertices xi 2 Vi for i ¼ 1; 2. Then x1 and x2 are non-adjacent and

dðx1Þ þ dðx2Þ� bjV1j�1

r�1
c þ bjV2j�1

r�1
c� n�2

r�1
\ n�1

r�1
, contradict to the hypothesis. Thus, by Lemma 2.2, we have

that kðHÞ ¼ dðHÞ. h

Note that Theorem 3.1 is a special case of Theorem 3.2 when r ¼ 2. Fig. 1 shows that Theorem 3.2 is in

a sense a best possible result, since dðuÞ þ dðvÞ� dn�1
r�1

e � 1 for all pairs of non-adjacent vertices of H1 and

H1 is not maximally edge-connected.

Theorem 3.3 Let H be an r-uniform linear hypergraph of order n. If for each edge e there exist at least

r � 1 vertices incident with e such that each degree is at least d bn
2
c

r�1
e, then kðHÞ ¼ dðHÞ.

Proof Let S be a minimum edge-cut of H and let H1 be a component of H � S with the minimum
cardinality. Then jVðH1Þj � bn

2
c. If jVðH1Þj ¼ 1, then the result follows. In the following, we assume that

jVðH1Þj � 2. Let v 2 VðH1Þ such that dðvÞ ¼ minfdðxÞ j x 2 VðH1Þg. Set E1 ¼ fe 2 E j v 2 e and
e 2 EðH1Þg, and E2 ¼ fe 2 E j v 2 e and e 2 Sg. We consider the following two cases.

Case 1: dðvÞ� d bn
2
c

r�1
e It follows that dðxÞ� d bn

2
c

r�1
e for all x 2 VðH1Þ. Since dH1

ðxÞ� bjVðH1Þj�1

r�1
c� bb

n
2
c�1

r�1
c, we

see that H1 contains no internal vertices. And by Lemma 2.2, we have kðHÞ ¼ dðHÞ.
Case 2: dðvÞ\d bn

2
c

r�1
e

If E1 ¼ £, then dðHÞ� dðvÞ ¼ jE2j � jSj ¼ kðHÞ, and the result follows. Now, we assume that E1 6¼ £.

In this condition, by our hypothesis, we have dðxÞ� d bn
2
c

r�1
e for any x 2 X, where X ¼

S
e2E1

ðe� fvgÞ, which

implies that each vertex x in X is an external vertex. Set Y ¼ feu 2 E j u 2 eu 2 S and u 2 Xg, then
Y \ E2 ¼ £ since H is linear. It follows that ðr � 1ÞjE1j ¼ jXj ¼ jð

S
e2Y

eÞ \ Xj � ðr � 1ÞjYj and we have

jE1j � jY j. Thus, dðHÞ� dðvÞ ¼ jE1j þ jE2j � jY j þ jE2j � jSj ¼ kðHÞ� dðHÞ, and the proof is complete. h

It is easy to check that H1 in Fig. 1 is a regular hypergraph and Fig. 1 can also show that Theorem 3.3 is
a best possible result in a sense. Now, we give an irregular hypergraph H2 (see Fig. 2), which is not
maximally edge-connected, and there exist at least r � 1 vertices incident with each edge such that each

degree is at least d bn
2
c

r�1
e � 1.

When r ¼ 2, as a special case of Theorem 3.3, we can get the following degree condition for maximally
edge-connected graphs.

Theorem 3.4 ([11]). Let G be a connected graph. If for each edge e there exists at least one vertex v
incident with e such that dðvÞ� bn

2
c, then kðGÞ ¼ dðGÞ.

4 A sufficient condition about order

In this section, we present a generalization of the following result by Esfahanian.

Fig. 1 A 3-uniform linear hypergraph H1
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Theorem 4.1 ([8]). Let G be a graph with maximum degree D� 3, minimum degree d, diameter D and
order n. Then kðGÞ ¼ dðGÞ, when

n�ðd� 1Þ½ðD� 1ÞD�1 þ DðD� 2Þ � 1

D� 2
� þ 1:

Now, consider an r-uniform linear hypergraph H ¼ ðV ;EÞ with maximum degree DðHÞ ¼ D and let X0 � V
with X0 ¼ fx1; x2; :::; xpg, where jX0j ¼ p. Denote by X0 ¼ VnX0. For each xi 2 X0, let Xi ¼ NðxiÞ \ X0,

where i 2 f1; 2; :::; pg. For a vertex x 2 X0, dðx;X0Þ denotes minfdðx; uÞ j u 2 X0g. Define

k ¼ maxfdðx;X0Þ j x 2 X0g. We claim that n, the order of H, is bounded by:

n� jX0j þ jX1j½1þ ðD� 1Þðr � 1Þ þ ðD� 1Þ2ðr � 1Þ2 þ � � � þ ðD� 1Þk�1ðr � 1Þk�1�
þ jX2j½1þ ðD� 1Þðr � 1Þ þ ðD� 1Þ2ðr � 1Þ2 þ � � � þ ðD� 1Þk�1ðr � 1Þk�1�
þ � � � þ jXpj½1þ ðD� 1Þðr � 1Þ þ ðD� 1Þ2ðr � 1Þ2 þ � � � þ ðD� 1Þk�1ðr � 1Þk�1�

which is equivalent to

n� jX0j þ ½
Xp

i¼1

jXij�½
Xk�1

i¼0

ðD� 1Þiðr � 1Þi�: ð1Þ

To see the validity of the above claim, observe that for each vertex u 2 X0, there exists a vertex xj 2 X0 such
that dðu; xjÞ� k. And, in the right-hand side of the inequality (1), for each xi 2 X0, the maximum number of

vertices in X0, which are at distance less than or equal to k from xi, is computed.
Using the discussion above we now compute the upper-bound on n, as a function of other hypergraph

parameters.

Theorem 4.2 Let n, k, d, D and D respectively be the order, the edge-connectivity, the minimum degree,
the maximun degree and the diameter of an r-uniform linear hypergraph H ¼ ðV ;EÞ. If k\d and D[ 2,
then

n�ðd� 1Þ½ðD� 1ÞD�1ðr � 1ÞD þ ðD� 1Þ2ðr � 1Þ2 � r

ðD� 1Þðr � 1Þ � 1
�:

Proof Let S � E be a minimum edge-cut of H. We can partition V into two disjoint non-empty sets Y and Y
such that H � S contains no edges between Y and Y . Let Y0 and Y0 be the sets of external vertices

respectively in Y and Y . Let DY ¼ maxfdðy;Y0Þ j y 2 Yg, and DY ¼ maxfdðy0
;Y0Þ j y

0 2 Yg. Since k\d,
then DY � 1 and DY � 1 by Lemma 2.2. And it is easy to see that DY þ DY þ 1�D.

Set Y0 ¼ fx1; x2; :::; xpg, and Y0 ¼ fx0

1; x
0

2; :::; x
0

qg where p ¼ jY0j and q ¼ jY0j. Let Xi ¼ NðxiÞ \ ðY � Y0Þ
and X

0
i ¼ Nðx0

iÞ \ ðY � Y0Þ, where xi 2 Y0 and x
0
i 2 Y0. Combining with the above claim of n, we have

Fig. 2 A 3-uniform linear hypergraph H2
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n ¼jY j þ jY j � jY0j þ ½
XjY0j

i¼1

jXij�½
XDY�1

i¼0

ðD� 1Þiðr � 1Þi�

þ jY0j þ ½
XjY0j

i¼1

jX0

ij�½
XDY

�1

i¼0

ðD� 1Þiðr � 1Þi�:

Without loss of generality, we assume that DY �DY . Thus, we have:

n� jY0j þ jY0j þ ½
XjY0j

i¼1

jXij�½
XDY

�1

i¼0

ðD� 1Þiðr � 1Þi þ
XDY�1

i¼D
Y

ðD� 1Þiðr � 1Þi�

þ ½
XjY0j

i¼1

jX0

ij�½
XDY

�1

i¼0

ðD� 1Þiðr � 1Þi�

¼jY0j þ jY0j þ ð
XjY0j

i¼1

jXij þ
XjY0j

i¼1

jX0

ijÞ½
XDY

�1

i¼0

ðD� 1Þiðr � 1Þi�

þ ½
XjY0j

i¼1

jXij�½
XDY�1

i¼D
Y

ðD� 1Þiðr � 1Þi�

Since each edge of S is incident with at most ðr � 1Þ vertices of Y0, we have jY0j � ðr � 1Þk. And it is easy to
see that jY0j þ jY0j � kr, jXij � ðdðxiÞ � 1Þðr � 1Þ� ðD� 1Þðr � 1Þ and jX0

ij � ðD� 1Þðr � 1Þ. It follows
that

n� jY0j þ jY0j þ ðjY0j þ jY0jÞðD� 1Þðr � 1Þ½
XDY

�1

i¼0

ðD� 1Þiðr � 1Þi�

þ jY0jðD� 1Þðr � 1Þ½
XDY�1

i¼D
Y

ðD� 1Þiðr � 1Þi�

� kr þ krðD� 1Þðr � 1Þ½
XDY

�1

i¼0

ðD� 1Þiðr � 1Þi� þ ðr � 1ÞkðD� 1Þðr � 1Þ½
XDY�1

i¼D
Y

ðD� 1Þiðr � 1Þi�

¼ kr þ ðr � 1ÞkðD� 1Þðr � 1Þ½
XDY�1

i¼0

ðD� 1Þiðr � 1Þi� þ kðD� 1Þðr � 1Þ½
XDY

�1

i¼0

ðD� 1Þiðr � 1Þi�

¼ kr þ kðD� 1Þðr � 1Þ2 1� ðD� 1ÞDY ðr � 1ÞDY

1� ðD� 1Þðr � 1Þ þ kðD� 1Þðr � 1Þ 1� ðD� 1ÞDY ðr � 1ÞDY

1� ðD� 1Þðr � 1Þ

Let a ¼ ðD� 1Þðr � 1Þ, one has

n� kr þ kðr � 1Þa 1� aDY

1� a
þ ka

1� aDY

1� a

¼k
�
r þ a

a� 1
½ðr � 1ÞaDY � r þ aDY �

�

Using the fact that DY � 1, DY � 1 and DY þ DY þ 1�D, one can show that

n� k
�
r þ a

a� 1
½ðr � 1ÞaD�2 þ a� r�

�

¼k
ðr � 1ÞaD�1 þ a2 � r

a� 1

We remind that the above relation has been computed with the assumption that k\d. Thus, we have
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n�ðd� 1Þ ðD� 1ÞD�1ðr � 1ÞD þ ðD� 1Þ2ðr � 1Þ2 � r

ðD� 1Þðr � 1Þ � 1
:

This completes the proof. h

See Fig. 3, we give an r-uniform linear hypergraph H3 which is not maximally edge-connected and reaches
the upper bound presented in Theorem 4.2. H3 is constructed by r copies of H0 and adding a new edge
consisting of all the vertices of degree r, where H0 is also an r-uniform linear hypergraph. Theorem 4.2
yields the following result whose special case r ¼ 2 is Theorem 4.1.

Theorem 4.3 Let H be an r-uniform linear hypergraph with maximum degree D� 3, minimum degree d
and diameter D. Then kðHÞ ¼ dðHÞ when

jVðHÞj � ðd� 1Þ½ðD� 1ÞD�1ðr � 1ÞD þ ðD� 1Þ2ðr � 1Þ2 � r

ðD� 1Þðr � 1Þ � 1
� þ 1:

5 A sufficient condition about size

In this section, we will work towards a sufficient condition for maximally edge-connected and super-k r-

uniform hypergraphs. And, we need the following definition. For two integers n and k, we define
n
k

� �
¼

n!
k!ðn�kÞ! when k� n and

n
k

� �
¼ 0 when k[ n.

Definition 5.1 For two integers d and r with r� 2, define t ¼ tðd; rÞ to be the largest integer such that

t � 1

r � 1

� �
� d. That is, t is the integer satisfying

t � 1

r � 1

� �
� d\ t

r � 1

� �
.

Lemma 5.2 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree d and edge-
connectivity k. If k\d, then

m�
n� t

r

� �
þ

t

r

� �
þ d� 1;

where t ¼ tðd; rÞ.
Proof Let S be an arbitrary minimum edge-cut and let X denote the vertex set of the component of H � S
with minimum number of vertices, and Y ¼ VðHÞ � X. We first show that jY j � jXj � t. Suppose jXj � t � 1.
Then we obtain

1 rxx

(a) (b)

Fig. 3 (a) H0; (b) H3
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jXjd�
X

x2X
dðxÞ� jXj

jXj � 1

r � 1

 !
þ ðr � 1Þk

� jXj
jXj � 1

r � 1

 !
þ ðr � 1Þðd� 1Þ;

and thus,

t � 1

r � 1

 !
� d�

jXj

r � 1

 !
� r � 1

jXj � r þ 1

�
t � 1

r � 1

 !
� r � 1

jXj � r þ 1
:

ð2Þ

If jXj ¼ 1, then k ¼ d, contradicting k\d. So, jXj � r, by the fact that H[X] is connected, and the inequality
(2) is impossible. Therefore, we have t� jXj � jY j � n� t, and

m� jSj �
n

r

 !
�
Xr�1

i¼1

jXj

i

 !
jY j

r � i

 !

¼
n

r

 !
�
� n

r

 !
�

jXj

r

 !
�

jY j

r

 !
�

¼
jXj

r

 !
þ

n� jXj

r

 !
:

This bound leads to

m�
jXj

r

 !
þ

n� jXj

r

 !
þ ðd� 1Þ:

Since f ðxÞ ¼ x
r

� �
þ n� x

r

� �
is a decreasing function when 1� x� n

2
and a increasing function when

n
2
� x� n, we obtain

m�
t

r

 !
þ

n� t

r

 !
þ ðd� 1Þ:

h

Theorem 5.3 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree d and edge-
connectivity k. If

m�
n� t

r

� �
þ

t

r

� �
þ d� 1;

then k ¼ d, unless that H is a hypergraph obtained from Kr
t [ Kr

n�t by adding d� 1 edges, where t ¼ tðd; rÞ.

Proof If m[ n� t
r

� �
þ t

r

� �
þ d� 1, then by Lemma 5.2, we have k ¼ d. If m ¼ n� t

r

� �
þ

t
r

� �
þ d� 1, then by the proof of Lemma 5.2, we have that the inequalities in the proof of Lemma 5.2 must by

equalities, which implies that k ¼ d� 1, jXj ¼ t, jY j ¼ n� t,H½X� ffi Kr
t andH½Y � ffi Kr

n�t. This completes the
proof. h
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Corollary 5.4 ([17]). Let G be a connected graph of order n, size m, minimum degree d and edge-
connectivity k. If

m�
n� d� 1

2

� �
þ

dþ 1

2

� �
þ d� 1;

then k ¼ d, unless that G is a graph obtained from Kdþ1 [ Kn�d�1 by adding d� 1 edges.

Proof When r ¼ 2, then t ¼ dþ 1 by the Definition 5.1. Thus, the result follows from Theorem 5.3. h

Lemma 5.5 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree d and edge-
connectivity k. If H is not super- k, then

m�
n� t þ 1

r

� �
þ

t � 1

r

� �
þ d;

where t ¼ tðd; rÞ.
Proof Let S be an arbitrary minimum edge-cut such that every component of H � S has at least two
vertices. Let X denote the vertex set of the component of H � S with minimum number of vertices, and
Y ¼ VðHÞ � X. Clearly, jY j � jXj � 2. We first show that jY j � jXj � t � 1. Suppose jXj � t � 2. Then we
obtain

jXjd�
X

x2X
dðxÞ� jXj

jXj � 1

r � 1

 !
þ ðr � 1Þk

� jXj
jXj � 1

r � 1

 !
þ ðr � 1Þd;

and thus,

t � 1

r � 1

 !
� d�

jXj

r � 1

 !
�

t � 2

r � 1

 !
; ð3Þ

a contradiction. Therefore, we have t � 1� jXj � jYj � n� t þ 1, and

m� jSj �
jXj

r

 !
þ

n� jXj

r

 !
;

and so

m�
jXj

r

 !
þ

n� jXj

r

 !
þ d

�
n� t þ 1

r

 !
þ

t � 1

r

 !
þ d:

h

By the same argument as that of Theorem 5.3 and Corollary 5.4, the following results follows.

Theorem 5.6 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree d and edge-
connectivity k. If

m�
n� t þ 1

r

� �
þ

t � 1

r

� �
þ d;

then H is super- k, unless t� 3 and H is a hypergraph obtained from Kr
t�1 [ Kr

n�tþ1 by adding d edges
between Kr

t�1 and Kr
n�tþ1 such that dðHÞ ¼ d, where t ¼ tðd; rÞ.

123

Edge-connectivity in hypergraphs 845



Corollary 5.7 ([17]). Let G be a connected graph of order n, size m, minimum degree d and edge-
connectivity k. If

m�
n� d

2

� �
þ

d

2

� �
þ d;

then G is super- k, unless d� 2 and G is a graph obtained from Kd [ Kn�d by adding d edges between Kd
and Kn�d such that dðGÞ ¼ d.
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