ORIGINAL RESEARCH

Edge-connectivity in hypergraphs

Shuang Zhao • Dan Li • Jixiang Meng

Received: 27 March 2019 / Accepted: 10 July 2020 / Published online: 16 July 2021 - The Indian National Science Academy 2021

Abstract The edge-connectivity of a connected hypergraph H is the minimum number of edges (named as edge-cut) whose removal makes H disconnected. It is known that the edge-connectivity of a hypergraph is bounded above by its minimum degree. H is super edge-connected, if every edge-cut consists of edges incident with a vertex of minimum degree. A hypergraph H is linear if any two edges of H share at most one vertex. We call H uniform if all edges of H have the same cardinality. Sufficient conditions for equality of edge-connectivity and minimum degree of graphs and super edge-connected graphs are known. In this paper, we present a generalization of some of these sufficient conditions to linear and/or uniform hypergraphs.

Keywords Edge-connectivity · Hypergraph · Maximally edge-connected · Super edge-connected

1 Introduction

As one of the classical parameters that indicate how reliable a graph G is, the edge-connectivity $\lambda(G)$, defined as the minimum number of edges whose removal renders G disconnected, has attracted much attention in recent years. In 1932, Whitney [[18\]](#page-9-0) established one of the basic foundations of edge-connectivity for graphs: the edge-connectivity $\lambda(G)$ of a connected graph G is bounded above by the minimum degree $\delta(G)$. Thus, in order to study reliability and fault tolerance of graphs, sufficient conditions for graphs satisfying $\lambda(G) = \delta(G)$ (so called maximally edge-connected) are of great interest. For other results the reader is referred to, for example, [\[5\]](#page-9-0) and the survey [\[12](#page-9-0)].

Hypergraphs are a natural generalization of graphs in which ''edges'' may consist of more than 2 vertices. More precisely, a *hypergraph* $H = (V, E)$ consists of a set V and a collection E of non-empty subsets of V. The elements of V are called *vertices* and the elements of E are called *hyperedges*, or simply *edges.* We define the *order* and *size* of H by $n = |V(H)|$ and $m = |E(H)|$, respectively. Unless specified otherwise, we consider only simple hypergraphs, i.e., hypergraphs whose edges are distinct. An r-uniform hypergraph H is a hypergraph such that all edges of H have cardinality r. We use K_n^r to denote the *complete* r-uniform hypergraph of order n, i.e., the hypergraph on n vertices whose edge set consists of all possible r-

Communicated by Sharad S Sane.

The research is supported by NSFC (No. 11531011), XJTCDP (NO. 04231200746) and XJUDP (NO. 62031224601).

S. Zhao $(\boxtimes) \cdot$ D. Li \cdot J. Meng College of Mathematics and System Sciences, Xinjiang University, Urumqi 830046, China E-mail: zshuangm@163.com

J. Meng E-mail: mjxxju@sina.com subsets of the vertex set. A hypergraph is called *linear* if any two edges of the hypergraph share at most one vertex. Obviously, every (simple) graph is a (linear) 2-uniform hypergraph.

For $v, w \in V$, v and w are said to be *adjacent*, if there exists an edge $e \in E$ such that $\{v, w\} \subseteq e$. A vertex v and an edge e are said to be incident if $v \in e$. The degree of a vertex v, denoted by $d_H(v)$, is the number of edges which are incident to v. The minimum degree and maximum degree among the vertices of H are denoted by $\delta(H)$ and $\Delta(H)$, respectively. The *neighborhood* of a vertex v, denoted by $N_H(v)$, is the set of all vertices different from v that are adjacent to v. If H is clear from the contest, we denote $d_H(v)$ and $N_H(v)$ by $d(v)$ and $N(v)$, respectively. For $X \subseteq V$, use $H[X]$ to denote the subgraph of H induced by X.

A walk in a hypergraph H is a finite alternating sequence $W = (v_0, e_1, v_1, e_2, ..., e_k, v_k)$, where $v_i \in V$ for $i \in \{0, 1, ..., k\}$ and $e_j \in E$ such that $\{v_{j-1}, v_j\} \in e_j$ for $j \in \{1, 2, ..., k\}$. A walk W is a path if all the vertices v_i for $i \in \{0, 1, ..., k\}$ and all the edges e_j for $j \in \{1, 2, ..., k\}$ in W are distinct. The length of a path, is the number of edges that it contains. We define the *distance* between two vertices u and v, denoted by $d_H(u, v)$, as the length of a shortest path between u and v . A hypergraph is *connected*, if there is a walk between any pair of its vertices, otherwise it is *disconnected*. The *diameter* $D(H)$ of a connected hypergraph H is defined by $D(H) = max_{u,v \in V(H)} d_H(u,v)$.

We can extend the concept of edge-connectivity from graph theory to hypergraphs in a natural way in which the concept can be generalized. For a subset $S \subseteq E(H)$, we define $H - S$ to be the hypergraph obtained from H by deleting the edges in S without affecting the rest of the hypergraph. When $H - S$ is disconnected, we say that S is an *edge-cut*. The minimum cardinality of an edge-cut in a connected hypergraph H is called its *edge-connectivity*, denoted by $\lambda(H)$.

There has been several papers investigating the connectivity of the hypergraphs. In [[19\]](#page-9-0), Zykov presented a Menger-type theorem for hypergraphs. Edge augmentation of hypergraphs are studied in the literature (see e.g. [[1](#page-9-0), [2,](#page-9-0) [4](#page-9-0)]). Gu and Lai [[10\]](#page-9-0) gave necessary and sufficient conditions for an r-uniform hypergraphic sequence to have a k-edge-connected relazation. Jami et al. [\[13\]](#page-9-0) provided a generalization of a result on edge-connectivity of permutation graphs for hypergraphs. In [\[6\]](#page-9-0), Dankelmann and Meierling observed that $\lambda(H) \leq \delta(H)$ for general hypergraphs, and generalized some well-known sufficient conditions for graphs G satisfying $\lambda(G) = \delta(G)$ to hypergraphs. In [[7](#page-9-0)], the authors investigated vertex-connectivity of hypergraphs. For a subset $X \subset V(H)$, $H - X$ denotes the hypergraph obtained by removing the vertices X from H and removing all the edges that intersect X. The vertex-connectivity $\kappa(H)$, is defined as the minimum cardinality of such X whose removal makes G disconnected. In [\[7](#page-9-0)], they also defined another vertex-connectivity for hypergraphs, and considered the complexity of the two kinds of vertex-connectivity for hypergraphs. The following result in [[7\]](#page-9-0) provided a generalization of a result of Whitney [\[18\]](#page-9-0) on connectivity of graphs to hypergraphs.

Theorem 1.1 ([\[7](#page-9-0)]). Let H be a hypergraph with at least two vertices. Then $\kappa(H) \leq \lambda(H) \leq \delta(H)$.

Thus, we call a hypergraph H satisfying $\lambda(H) = \delta(H)$ (resp. $\kappa(H) = \delta(H)$) maximally edge-connected (resp. maximally vertex-connected). If, furthermore, every minimum edge-cut consists of edges incident with one vertex, then H is said to be *super edge-connected*, or simply, *super-* λ . Our main work is to investigate how some sufficient conditions for graphs to be maximally edge-connected or super- λ can be generalized to uniform and/or linear hypergraphs. In Section 2, we present results that will be useful in our arguments. In Section [3,](#page-2-0) two kinds of degree conditions for equality of edge-connectivity and minimum degree for graphs are generalized to uniform linear hypergraphs. In Section [4,](#page-3-0) we generalize a sufficient condition for maximally edge-connected graphs depending on the order, the maximum degree and the minimum degree as well as on the diameter, to uniform linear hypergraphs. In Section [5,](#page-6-0) we generalize a sufficient condition for maximally edge-connected graphs and super- λ graphs depending on the size, the order, the minimum degree and a parameter (as defined in Section [5\)](#page-6-0) to uniform hypergraphs.

2 Preliminary lemmas

In this section, we will list or prove some lemmas which will be used in our later proofs.

In a connected hypergraph $H = (V, E)$, let $S \subseteq E$ be a minimum edge-cut of H and H_1 be a component of $H - S$. A vertex v of H_1 is internal if v is not incident with any edge of S; otherwise, v will be *external*. In 1981, Goldsmith confirmed a very useful lemma in $[9]$ $[9]$ when he studied the *n*-th order edge-connectivity of graphs. Now we present the special case of his lemma as follows.

Lemma 2.1 ([\[9](#page-9-0)]). Let S be a minimum edge-cut of a graph G. If $\lambda(G) < \delta(G)$, then each component of $G - S$ contains at least two internal vertices.

And we will give a similar result with Lemma 2.1 for uniform linear hypergraphs.

Lemma 2.2 Let H be an r-uniform linear hypergraph and S be a minimum edge-cut of H. If $\lambda(H) < \delta(H)$, then each component of $H - S$ contains at least one internal vertex.

Proof Let H_1 be a component of $H - S$ and x be an external vertex of H_1 . Set $E_1 = \{e \in E \mid x \in e$ and $e \in E(H_1)$, and $E_2 = \{e \in E \mid x \in e \text{ and } e \in S\}$. Obviously, $E_2 \neq \emptyset$. If $E_1 = \emptyset$, then $\delta(H) > \lambda(H) = |S| \ge |E_2| = d(x) \ge \delta(H)$, a contradiction. Thus, $E_1 \ne \emptyset$. It follows that $|E_1|+|E_2| = d(x) \geq \delta(H) > \lambda(H) = |S| = |E_2|+|S - E_2|$, which implies that $|E_1| > |S - E_2|$. Since H is linear and each edge of $S - E_2$ is incident with at most $r - 1$ vertices in $V(H_1)$, we have

$$
|(\bigcup_{e\in S-E_2}e)\cap V(H_1)|\leq (r-1)|S-E_2|<(r-1)|E_1|=|\bigcup_{e\in E_1}(e-\{x\})|,
$$

and $\left(\rightcup$ $e \in E_1$ $(e - \{x\}) \cap (\bigcup$ $e \in E_2$ $(e - \{x\}) = \emptyset$, which implies that there exists at least one vertex $w \in$ $N(x)\cap ($ U

 $\bigcup_{e \in E_1} e$ that is not covered by any edge of S, i.e., w is an internal vertex of H_1 .

Our lemma implies the following two results of [\[6](#page-9-0)] for linear r-uniform hypergraphs to be maximally edgeconnected.

Theorem 2.3 ([\[6](#page-9-0)]). Let H be an r-uniform linear hypergraph with $D(H) \leq 2$. Then $\lambda(H) = \delta(H)$.

Proof Let S be a minimum edge-cut of H. The distance condition implies that there exists at least one component of $H - S$ that contains no internal vertex. Then by Lemma 2.2, we have $\lambda(H) \geq \delta(H)$ and the result holds. \Box

If $\lambda(H) < \delta(H)$, then by Lemma 2.2, each component of $H - S$ contains at least one internal vertex w. It follows that each component of $H - S$ contains at least $1 + (r - 1)\delta(H)$ vertices $(N(w) \cup \{w\} \subseteq V(H_1)$ and thus $|V(H_1)| \geq 1 + (r-1)d(w) \geq 1 + (r-1)\delta(H)$. Hence, $|V(H)| \geq 2 + 2(r-1)\delta(H)$, and we obtain the following condition for linear uniform hypergraphs to be maximally edge-connected.

Theorem 2.4 ([[6\]](#page-9-0)). Let H be an r-uniform linear hypergraph of order n. If $n \leq 1 + 2(r - 1)\delta(H)$, then $\lambda(H) = \delta(H)$.

The special case $r = 2$ is the classical result as the following.

Corollary 2.5 Let G be a connected graph of order n. Then $\lambda(G) = \delta(G)$, if

- (1) $n \leq 2\delta(G) + 1$; Chartrand [[3](#page-9-0)]
- (2) $D(G) \leq 2$; Plesnik [[15\]](#page-9-0).

3 Degree conditions

We now work towards a generalization of some degree conditions for equality of edge-connectivity and minimum degree for graphs to linear uniform hypergraphs. We point out here that we present the same generalizations as that of $[16]$ $[16]$ $[16]$, but use a different method from $[16]$. For the sake of completeness, we also give the complete proof in our paper. In 1974, Lesniak [\[14](#page-9-0)] proved the following strengthening result of Corollary 2.5 (1) for graphs.

Theorem 3.1 ([[14](#page-9-0)]). If G is a graph of order n with $d(u) + d(v) \ge n - 1$ for all distinct non-adjacent vertices u and v, then $\lambda(G) = \delta(G)$.

Below we present a generalization of the above result for r-uniform linear hypergraphs.

Theorem 3.2 Let H be an r-uniform linear hypergraph of order n. If $d(u) + d(v) \geq \lceil \frac{n-1}{r-1} \rceil$ for all distinct non-adjacent vertices u and v, then $\lambda(H) = \delta(H)$.

Proof Let $H = (V, E)$ and let $S \subseteq E$ be a minimum edge-cut of H. Then $H - S$ consists of two parts H_1 and H_2 such that there are no edges between H_1 and H_2 . Denote the vertex set of H_i by V_i for $i = 1, 2$. We claim that there exists no internal vertex in H_1 or H_2 . Suppose, on the contrary, that there exist internal vertices $x_i \in V_i$ for $i = 1, 2$. Then x_1 and x_2 are non-adjacent and $d(x_1)+d(x_2) \leq \lfloor \frac{|V_1|-1}{r-1} \rfloor + \lfloor \frac{|V_2|-1}{r-1} \rfloor \leq \frac{n-2}{r-1}$, contradict to the hypothesis. Thus, by Lemma 2.2, we have that $\lambda(H) = \delta(H)$.

Note that Theorem 3.1 is a special case of Theorem 3.2 when $r = 2$. Fig. 1 shows that Theorem 3.2 is in a sense a best possible result, since $d(u) + d(v) \ge \lceil \frac{n-1}{r-1} \rceil - 1$ for all pairs of non-adjacent vertices of H_1 and H_1 is not maximally edge-connected.

Theorem 3.3 Let H be an r-uniform linear hypergraph of order n. If for each edge e there exist at least $r-1$ vertices incident with e such that each degree is at least $\lceil \frac{|\frac{n}{2}|}{r-1} \rceil$, then $\lambda(H) = \delta(H)$.

Proof Let S be a minimum edge-cut of H and let H_1 be a component of $H - S$ with the minimum cardinality. Then $|V(H_1)| \leq \lfloor \frac{n}{2} \rfloor$. If $|V(H_1)| = 1$, then the result follows. In the following, we assume that $|V(H_1)| \geq 2$. Let $v \in V(H_1)$ such that $d(v) = min\{d(x) | x \in V(H_1)\}$. Set $E_1 = \{e \in E | v \in e$ and $e \in E(H_1)$, and $E_2 = \{e \in E \mid v \in e \text{ and } e \in S\}$. We consider the following two cases.

Case 1: $d(v) \ge \lceil \frac{\lfloor \frac{n}{2} \rfloor}{r-1} \rceil$ It follows that $d(x) \ge \lceil \frac{\lfloor \frac{n}{2} \rfloor}{r-1} \rceil$ for all $x \in V(H_1)$. Since $d_{H_1}(x) \le \lfloor \frac{|V(H_1)|-1}{r-1} \rfloor \le \lfloor \frac{\lfloor \frac{n}{2} \rfloor -1}{r-1} \rfloor$, we see that H_1 contains no internal vertices. And by Lemma 2.2, we have $\lambda(H) = \delta(H)$.
Case 2: $d(v) < \left[\frac{g}{r-1}\right]$ $\frac{\lfloor \frac{n}{2} \rfloor}{r-1}$

If $E_1 = \emptyset$, then $\delta(H) \leq d(v) = |E_2| \leq |S| = \lambda(H)$, and the result follows. Now, we assume that $E_1 \neq \emptyset$. In this condition, by our hypothesis, we have $d(x) \geq \lceil \frac{g}{r-1} \rceil$ for any $x \in X$, where $X = \bigcup_{e \in E_1}$ $(e - \{v\})$, which implies that each vertex x in X is an external vertex. Set $Y = \{e_u \in E \mid u \in e_u \in S \text{ and } u \in X\}$, then $Y \cap E_2 = \emptyset$ since H is linear. It follows that $(r-1)|E_1| = |X| = |(\bigcup_{e \in Y} e) \cap X| \le (r-1)|Y|$ and we have $e) \cap X \leq (r-1)|Y|$ and we have $|E_1| \leq |Y|$. Thus, $\delta(H) \leq d(v) = |E_1| + |E_2| \leq |Y| + |E_2| \leq |S| = \lambda(H) \leq \delta(H)$, and the proof is complete. \Box

It is easy to check that H_1 in Fig. 1 is a regular hypergraph and Fig. 1 can also show that Theorem 3.3 is a best possible result in a sense. Now, we give an irregular hypergraph H_2 H_2 (see Fig. 2), which is not maximally edge-connected, and there exist at least $r - 1$ vertices incident with each edge such that each degree is at least $\lceil \frac{\lfloor \frac{n}{2} \rfloor}{r-1} \rceil - 1$.

When $r = 2$, as a special case of Theorem 3.3, we can get the following degree condition for maximally edge-connected graphs.

Theorem 3.4 ([[11\]](#page-9-0)). Let G be a connected graph. If for each edge e there exists at least one vertex v incident with e such that $d(v) \geq \lfloor \frac{n}{2} \rfloor$, then $\lambda(G) = \delta(G)$.

4 A sufficient condition about order

In this section, we present a generalization of the following result by Esfahanian.

Fig. 1 A 3-uniform linear hypergraph H_1

Fig. 2 A 3-uniform linear hypergraph H_2

Theorem 4.1 ([\[8](#page-9-0)]). Let G be a graph with maximum degree $\Delta \geq 3$, minimum degree δ , diameter D and order n. Then $\lambda(G) = \delta(G)$, when

$$
n \ge (\delta - 1)[\frac{(\Delta - 1)^{D-1} + \Delta(\Delta - 2) - 1}{\Delta - 2}] + 1.
$$

Now, consider an r-uniform linear hypergraph $H = (V, E)$ with maximum degree $\Delta(H) = \Delta$ and let $X_0 \subset V$ with $X_0 = \{x_1, x_2, ..., x_p\}$, where $|X_0| = p$. Denote by $\overline{X_0} = V \setminus X_0$. For each $x_i \in X_0$, let $X_i = N(x_i) \cap \overline{X_0}$, where $i \in \{1, 2, ..., p\}$. For a vertex $x \in \overline{X_0}$, $d(x, X_0)$ denotes $\min\{d(x, u) \mid u \in X_0\}$. Define $k = max\{d(x, X_0) \mid x \in \overline{X_0}\}.$ We claim that n, the order of H, is bounded by:

$$
n \leq |X_0| + |X_1|[1 + (\Delta - 1)(r - 1) + (\Delta - 1)^2(r - 1)^2 + \cdots + (\Delta - 1)^{k-1}(r - 1)^{k-1}]
$$

+ |X_2|[1 + (\Delta - 1)(r - 1) + (\Delta - 1)^2(r - 1)^2 + \cdots + (\Delta - 1)^{k-1}(r - 1)^{k-1}]
+ \cdots + |X_p|[1 + (\Delta - 1)(r - 1) + (\Delta - 1)^2(r - 1)^2 + \cdots + (\Delta - 1)^{k-1}(r - 1)^{k-1}]

which is equivalent to

$$
n \leq |X_0| + \left[\sum_{i=1}^p |X_i|\right] \left[\sum_{i=0}^{k-1} (\Delta - 1)^i (r-1)^i\right].\tag{1}
$$

To see the validity of the above claim, observe that for each vertex $u \in \overline{X_0}$, there exists a vertex $x_i \in X_0$ such that $d(u, x_i) \leq k$. And, in the right-hand side of the inequality (1), for each $x_i \in X_0$, the maximum number of vertices in $\overline{X_0}$, which are at distance less than or equal to k from x_i , is computed.

Using the discussion above we now compute the upper-bound on n , as a function of other hypergraph parameters.

Theorem 4.2 Let n, λ , δ , Δ and D respectively be the order, the edge-connectivity, the minimum degree, the maximun degree and the diameter of an r-uniform linear hypergraph $H = (V, E)$. If $\lambda < \delta$ and $\Delta > 2$, then

$$
n \leq (\delta - 1) \left[\frac{(\Delta - 1)^{D-1}(r - 1)^{D} + (\Delta - 1)^{2}(r - 1)^{2} - r}{(\Delta - 1)(r - 1) - 1} \right].
$$

Proof Let $S \subseteq E$ be a minimum edge-cut of H. We can partition V into two disjoint non-empty sets Y and \overline{Y} such that $H-S$ contains no edges between Y and \overline{Y} . Let Y₀ and \overline{Y}_0 be the sets of external vertices respectively in Y and \overline{Y} . Let $D_Y = max\{d(y, Y_0) | y \in Y\}$, and $D_{\overline{Y}} = max\{d(y', \overline{Y_0}) | y' \in \overline{Y}\}$. Since $\lambda < \delta$, then $D_Y \ge 1$ and $D_{\overline{Y}} \ge 1$ by Lemma 2.2. And it is easy to see that $D_Y + D_{\overline{Y}} + 1 \le D$.

Set $Y_0 = \{x_1, x_2, ..., x_p\}$, and $\overline{Y_0} = \{x'_1, x'_2, ..., x'_q\}$ where $p = |Y_0|$ and $q = |\overline{Y_0}|$. Let $X_i = N(x_i) \cap (Y - Y_0)$ and $X'_i = N(x'_i) \cap (\overline{Y} - \overline{Y_0})$, where $x_i \in Y_0$ and $x'_i \in \overline{Y_0}$. Combining with the above claim of *n*, we have

$$
n = |Y| + |\overline{Y}| \le |Y_0| + \left[\sum_{i=1}^{|Y_0|} |X_i|\right] \left[\sum_{i=0}^{D_Y - 1} (\Delta - 1)^i (r - 1)^i\right] + |\overline{Y_0}| + \left[\sum_{i=1}^{\overline{Y_0}} |X'_i|\right] \left[\sum_{i=0}^{D_Y - 1} (\Delta - 1)^i (r - 1)^i\right].
$$

Without loss of generality, we assume that $D_{\overline{Y}} \le D_Y$. Thus, we have:

$$
n \leq |Y_0| + |\overline{Y_0}| + \left[\sum_{i=1}^{|Y_0|} |X_i|\right] \left[\sum_{i=0}^{D_{\overline{Y}}-1} (\Delta - 1)^i (r - 1)^i + \sum_{i=D_{\overline{Y}}}^{D_{Y}-1} (\Delta - 1)^i (r - 1)^i\right]
$$

+
$$
|\sum_{i=1}^{|\overline{Y_0}|} |X'_i|] \left[\sum_{i=0}^{D_{\overline{Y}}-1} (\Delta - 1)^i (r - 1)^i\right]
$$

=
$$
|Y_0| + |\overline{Y_0}| + (\sum_{i=1}^{|Y_0|} |X_i| + \sum_{i=1}^{|\overline{Y_0}|} |X'_i|) \left[\sum_{i=0}^{D_{\overline{Y}}-1} (\Delta - 1)^i (r - 1)^i\right]
$$

+
$$
[\sum_{i=1}^{|Y_0|} |X_i|] \left[\sum_{i=D_{\overline{Y}}}^{D_{Y}-1} (\Delta - 1)^i (r - 1)^i\right]
$$

Since each edge of S is incident with at most $(r-1)$ vertices of Y_0 , we have $|Y_0| \le (r-1)\lambda$. And it is easy to see that $|Y_0| + |\overline{Y_0}| \leq \lambda r$, $|X_i| \leq (d(x_i) - 1)(r - 1) \leq (\Delta - 1)(r - 1)$ and $|X'_i| \leq (\Delta - 1)(r - 1)$. It follows that

$$
n \leq |Y_0| + |\overline{Y_0}| + (|Y_0| + |\overline{Y_0}|)(\Delta - 1)(r - 1)[\sum_{i=0}^{D_{\overline{Y}}-1} (\Delta - 1)^i(r - 1)^i]
$$

+ |Y_0|(\Delta - 1)(r - 1)[\sum_{i=D_{\overline{Y}}}^{D_{Y}-1} (\Delta - 1)^i(r - 1)^i]

$$
\leq \lambda r + \lambda r (\Delta - 1)(r - 1)[\sum_{i=0}^{D_{\overline{Y}}-1} (\Delta - 1)^i(r - 1)^i] + (r - 1)\lambda (\Delta - 1)(r - 1)[\sum_{i=D_{\overline{Y}}}^{D_{Y}-1} (\Delta - 1)^i(r - 1)^i]
$$

= $\lambda r + (r - 1)\lambda (\Delta - 1)(r - 1)[\sum_{i=0}^{D_{Y}-1} (\Delta - 1)^i(r - 1)^i] + \lambda (\Delta - 1)(r - 1)[\sum_{i=0}^{D_{\overline{Y}}-1} (\Delta - 1)^i(r - 1)^i]$
= $\lambda r + \lambda (\Delta - 1)(r - 1)^2 \frac{1 - (\Delta - 1)^{D_{Y}}(r - 1)^{D_{Y}}}{1 - (\Delta - 1)(r - 1)} + \lambda (\Delta - 1)(r - 1) \frac{1 - (\Delta - 1)^{D_{\overline{Y}}}(r - 1)^{D_{\overline{Y}}}}{1 - (\Delta - 1)(r - 1)}$

Let $a = (\Delta - 1)(r - 1)$, one has

$$
n \leq \lambda r + \lambda (r - 1)a \frac{1 - a^{D_Y}}{1 - a} + \lambda a \frac{1 - a^{D_Y}}{1 - a}
$$

$$
= \lambda \{r + \frac{a}{a - 1} [(r - 1)a^{D_Y} - r + a^{D_Y}\}]
$$

Using the fact that $D_Y \ge 1$, $D_{\overline{Y}} \ge 1$ and $D_Y + D_{\overline{Y}} + 1 \le D$, one can show that

$$
n \le \lambda \{r + \frac{a}{a-1}[(r-1)a^{D-2} + a - r] \}
$$

= $\lambda \frac{(r-1)a^{D-1} + a^2 - r}{a-1}$

We remind that the above relation has been computed with the assumption that $\lambda < \delta$. Thus, we have

$$
n \le (\delta - 1) \frac{(\Delta - 1)^{D-1}(r - 1)^D + (\Delta - 1)^2(r - 1)^2 - r}{(\Delta - 1)(r - 1) - 1}.
$$

This completes the proof. \Box

See Fig. 3, we give an r-uniform linear hypergraph H_3 which is not maximally edge-connected and reaches the upper bound presented in Theorem 4.2. H_3 is constructed by r copies of H_0 and adding a new edge consisting of all the vertices of degree r, where H_0 is also an r-uniform linear hypergraph. Theorem 4.2 yields the following result whose special case $r = 2$ is Theorem 4.1.

Theorem 4.3 Let H be an r-uniform linear hypergraph with maximum degree $\Delta \geq 3$, minimum degree δ and diameter D. Then $\lambda(H) = \delta(H)$ when

$$
|V(H)| \ge (\delta - 1)\left[\frac{(\Delta - 1)^{D-1}(r-1)^D + (\Delta - 1)^2(r-1)^2 - r}{(\Delta - 1)(r-1) - 1}\right] + 1.
$$

5 A sufficient condition about size

In this section, we will work towards a sufficient condition for maximally edge-connected and super- λ runiform hypergraphs. And, we need the following definition. For two integers *n* and *k*, we define $\binom{n}{k}$ $\left(\frac{1}{2} \right)$ \equiv $\frac{n!}{k!(n-k)!}$ when $k \leq n$ and $\binom{n}{k}$ $\sqrt{2}$ $= 0$ when $k > n$.

Definition 5.1 For two integers δ and r with $r \ge 2$, define $t = t(\delta, r)$ to be the largest integer such that $t-1$ $r - 1$ **Definition 5.1** To two integers σ and γ with $\gamma \geq 2$, and $\left(\frac{t-1}{r-1}\right) \leq \delta$. That is, t is the integer satisfying $\left(\frac{t-1}{r-1}\right)$ $\frac{2}{7}$, uch $\leq \delta < \left(\begin{array}{c} t \\ t \end{array} \right)$ $r - 1$ $\bigwedge^{i(\nu, \nu)}$.

Lemma 5.2 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree δ and edgeconnectivity λ . If $\lambda < \delta$, then

$$
m \leq {n-t \choose r} + {t \choose r} + \delta - 1,
$$

where $t = t(\delta, r)$.

Proof Let S be an arbitrary minimum edge-cut and let X denote the vertex set of the component of $H - S$ with minimum number of vertices, and $Y = V(H) - X$. We first show that $|Y| \ge |X| \ge t$. Suppose $|X| \le t - 1$. Then we obtain

Fig. 3 (a) H_0 ; (b) H_3

$$
|X|\delta \le \sum_{x \in X} d(x) \le |X| \binom{|X|-1}{r-1} + (r-1)\lambda
$$

$$
\le |X| \binom{|X|-1}{r-1} + (r-1)(\delta - 1),
$$

and thus,

$$
\binom{t-1}{r-1} \le \delta \le \binom{|X|}{r-1} - \frac{r-1}{|X|-r+1}
$$
\n
$$
\le \binom{t-1}{r-1} - \frac{r-1}{|X|-r+1}.
$$
\n(2)

If $|X| = 1$, then $\lambda = \delta$, contradicting $\lambda < \delta$. So, $|X| \ge r$, by the fact that H[X] is connected, and the inequality (2) is impossible. Therefore, we have $t \leq |X| \leq |Y| \leq n - t$, and

$$
m - |S| \le {n \choose r} - \sum_{i=1}^{r-1} { |X| \choose i} { |Y| \choose r-i}
$$

= ${n \choose r} - [n \choose r} - { |X| \choose r} - { |Y| \choose r}]$
= ${|X| \choose r} + {n-|X| \choose r}.$

This bound leads to

$$
m \leq \binom{|X|}{r} + \binom{n-|X|}{r} + (\delta - 1).
$$

Since $f(x) = \begin{cases} x \\ r \end{cases}$ \angle $+\binom{n-x}{x}$ r $\sqrt{2}$ Since $f(x) = \binom{x}{r} + \binom{n-x}{r}$ is a decreasing function when $1 \le x \le \frac{n}{2}$ and a increasing function when $\frac{n}{2} \le x \le n$, we obtain

$$
m \leq {t \choose r} + {n-t \choose r} + (\delta - 1).
$$

Theorem 5.3 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree δ and edgeconnectivity λ . If

$$
m \ge {n-t \choose r} + {t \choose r} + \delta - 1,
$$

then $\lambda = \delta$, unless that H is a hypergraph obtained from $K_t^r \cup K_{n-t}^r$ by adding $\delta - 1$ edges, where $t = t(\delta, r)$. *Proof* If $m > \left(n - t\right)$ r $\sqrt{2}$ $+\left(\begin{array}{c}t\\ t\end{array}\right)$ r $\binom{t}{r} + \delta - 1$, then by Lemma 5.2, we have $\lambda = \delta$. If $m = \binom{n-t}{r}$ $\left(\begin{array}{cc} 1 & 1 \end{array} \right)$ $\overline{+}$ t r $\left\langle \right\rangle$ $\beta + \delta - 1$, then by the proof of Lemma 5.2, we have that the inequalities in the proof of Lemma 5.2 must by

equalities, which implies that $\lambda = \delta - 1$, $|X| = t$, $|Y| = n - t$, $H[X] \cong K_t^r$ and $H[Y] \cong K_{n-t}^r$. This completes the proof. \Box

 \Box

Corollary 5.4 ([\[17](#page-9-0)]). Let G be a connected graph of order n, size m, minimum degree δ and edgeconnectivity λ . If

$$
m \ge {n-\delta-1 \choose 2} + {\delta+1 \choose 2} + \delta - 1,
$$

then $\lambda = \delta$, unless that G is a graph obtained from $K_{\delta+1} \cup K_{n-\delta-1}$ by adding $\delta - 1$ edges.

Proof When $r = 2$, then $t = \delta + 1$ by the Definition 5.1. Thus, the result follows from Theorem 5.3. \Box

Lemma 5.5 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree δ and edgeconnectivity λ . If H is not super- λ , then

$$
m\leq \binom{n-t+1}{r}+\binom{t-1}{r}+\delta,
$$

where $t = t(\delta, r)$.

Proof Let S be an arbitrary minimum edge-cut such that every component of $H - S$ has at least two vertices. Let X denote the vertex set of the component of $H - S$ with minimum number of vertices, and $Y = V(H) - X$. Clearly, $|Y| \ge |X| \ge 2$. We first show that $|Y| \ge |X| \ge t - 1$. Suppose $|X| \le t - 2$. Then we obtain

$$
|X|\delta \le \sum_{x \in X} d(x) \le |X| \binom{|X|-1}{r-1} + (r-1)\lambda
$$

$$
\le |X| \binom{|X|-1}{r-1} + (r-1)\delta,
$$

and thus,

$$
\binom{t-1}{r-1} \le \delta \le \binom{|X|}{r-1} \le \binom{t-2}{r-1},\tag{3}
$$

a contradiction. Therefore, we have $t - 1 \leq |X| \leq |Y| \leq n - t + 1$, and

$$
m-|S| \leq { |X| \choose r} + {n-|X| \choose r},
$$

and so

$$
m \le {|\mathbf{X}| \choose r} + {n-|\mathbf{X}| \choose r} + \delta
$$

$$
\le {n-t+1 \choose r} + {t-1 \choose r} + \delta.
$$

 \Box

By the same argument as that of Theorem 5.3 and Corollary 5.4, the following results follows.

Theorem 5.6 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree δ and edgeconnectivity λ . If

$$
m \geq {n-t+1 \choose r} + {t-1 \choose r} + \delta,
$$

then H is super- λ , unless $t \geq 3$ and H is a hypergraph obtained from $K_{t-1}^r \cup K_{n-t+1}^r$ by adding δ edges between K_{t-1}^r and K_{n-t+1}^r such that $\delta(H) = \delta$, where $t = t(\delta, r)$.

Corollary 5.7 ([17]). Let G be a connected graph of order n, size m, minimum degree δ and edgeconnectivity λ . If

$$
m \geq \binom{n-\delta}{2} + \binom{\delta}{2} + \delta,
$$

then G is super- λ , unless $\delta \geq 2$ and G is a graph obtained from $K_{\delta} \cup K_{n-\delta}$ by adding δ edges between K_{δ} and $K_{n-\delta}$ such that $\delta(G)=\delta$.

References

- 1. J. Bang-Jensen, B. Jackson, Augmenting hypergraphs by edges of size two, Math. Program. 84 (1999) 467-481.
- 2. A. Bernáth, R. Grappe, Z. Szigeti, Augmenting the edge-connectivity of a hypergraph by adding a multipartite graph, J. Graph Theory 72 (2013) 291-312.
- 3. G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966) 778-781.
- 4. E. Cheng, Edge-augmentation of hypergraphs, Math. Program. 84 (1999) 443-465.
- 5. P. Dankelmann, A. Hellwig, L. Volkmann, Inverse degree and edge-connectvity, Discrete Math. 309 (2009) 2943-2947.
- 6. P. Dankelmann, D. Meierling, Maximally edge-connected hypergraphs, Discrete Math. 339 (2016) 33-38.
- 7. M. Dewar, D. Pike, J. Proos, Connectivity in hypergraphs, Canad. Math. Bull. 61(2018)252-271.
- 8. A.H. Esfahanian, Lower-bounds on the connectivities of a graph, J. Graph Theory 9 (1985) 503-511.
- 9. D.L. Goldsmith, On the n-th order edge-connectivity of a graph, Congr. Numer. 32 (1981) 375-382.
- 10. X.F. Gu, H.J. Lai, Realizing degree sequences with k-edge-connected uniform hypergraphs. Discrete Math. 313 (2013) 1394-1400.
- 11. A. Hellwig, L. Volkmann, Sufficient conditions for graphs to be λ' -optimal, super edge-connected and maximally edgeconnected, J. Graph Theory 48 (2005) 228-246.
- 12. A. Hellwig, L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs a survey, Discrete Math. 308 (2008) 3265-3296.
- 13. N. Jami, Z. Szigeti, Edge-connectivity of permutation hypergraphs, Discrete Math. 312 (2012) 2536-2539.
- 14. L. Lesniak, Results on the edge-connectivity of graphs, Discrete Math. 8 (1974) 351-354.
- 15. J. Plesnı´k, Critical graphs of given diameter, Acta Fac. Rerum. Natur. Univ. Commen. Math. 30 (1975) 71-93.
- 16. L.K. Tong, E.F. Shan, Sufficient conditions for maximally edge-connected hypergraphs, J. Operat. Resear. Soc. of China (DOI: http://doi. org/10.1007/s40305-018-0224-4).
- 17. L. Volkmann, Z.M. Hong, Sufficient conditions for maximally edge-connected and super edge-connected graphs, Commun. Comb. Optim. 2 (2017) 35-41.
- 18. H. Whitney, Congruent graphs and the connectivity of a graph, Amer. J. Math. 54 (1932) 150-168.
- 19. A.A. Zykov, Hypergraphs, Russian Math. Survey 26 (6) (1974) 89-156.