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Abstract The edge-connectivity of a connected hypergraph H is the minimum number of edges (named as
edge-cut) whose removal makes H disconnected. It is known that the edge-connectivity of a hypergraph is
bounded above by its minimum degree. H is super edge-connected, if every edge-cut consists of edges
incident with a vertex of minimum degree. A hypergraph H is linear if any two edges of H share at most one
vertex. We call H uniform if all edges of H have the same cardinality. Sufficient conditions for equality of
edge-connectivity and minimum degree of graphs and super edge-connected graphs are known. In this
paper, we present a generalization of some of these sufficient conditions to linear and/or uniform
hypergraphs.
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1 Introduction

As one of the classical parameters that indicate how reliable a graph G is, the edge-connectivity A(G),
defined as the minimum number of edges whose removal renders G disconnected, has attracted much
attention in recent years. In 1932, Whitney [18] established one of the basic foundations of edge-connec-
tivity for graphs: the edge-connectivity 4(G) of a connected graph G is bounded above by the minimum
degree 6(G). Thus, in order to study reliability and fault tolerance of graphs, sufficient conditions for graphs
satisfying A(G) = 6(G) (so called maximally edge-connected) are of great interest. For other results the
reader is referred to, for example, [5] and the survey [12].

Hypergraphs are a natural generalization of graphs in which “edges” may consist of more than 2
vertices. More precisely, a hypergraph H = (V,E) consists of a set V and a collection E of non-empty
subsets of V. The elements of V are called vertices and the elements of E are called hyperedges, or simply
edges. We define the order and size of H by n = |V(H)| and m = |E(H)|, respectively. Unless specified
otherwise, we consider only simple hypergraphs, i.e., hypergraphs whose edges are distinct. An r-uniform
hypergraph H is a hypergraph such that all edges of H have cardinality ». We use K] to denote the complete
r-uniform hypergraph of order n, i.e., the hypergraph on n vertices whose edge set consists of all possible r-
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subsets of the vertex set. A hypergraph is called linear if any two edges of the hypergraph share at most one
vertex. Obviously, every (simple) graph is a (linear) 2-uniform hypergraph.

For v,w € V, v and w are said to be adjacent, if there exists an edge e € E such that {v,w} C e. A vertex
v and an edge e are said to be incident if v € e. The degree of a vertex v, denoted by dy(v), is the number of
edges which are incident to v. The minimum degree and maximum degree among the vertices of H are
denoted by 6(H) and A(H), respectively. The neighborhood of a vertex v, denoted by Ny (v), is the set of all
vertices different from v that are adjacent to v. If H is clear from the contest, we denote dy (v) and Ny (v) by
d(v) and N(v), respectively. For X C V, use H[X] to denote the subgraph of H induced by X.

A walk in a hypergraph H is a finite alternating sequence W = (vg, e, vy, €2, ..., €, Vi), where v; € V for
i€{0,1,...,k} and ¢; € E such that {v;_,v;} € ¢j forj € {1,2,...,k}. A walk Wis a path if all the vertices
v; for i € {0,1,...,k} and all the edges ¢; for j € {1,2,...,k} in W are distinct. The length of a path, is the
number of edges that it contains. We define the distance between two vertices u and v, denoted by dp (u, v),
as the length of a shortest path between u and v. A hypergraph is connected, if there is a walk between any
pair of its vertices, otherwise it is disconnected. The diameter D(H) of a connected hypergraph H is defined
by D(H) = maxu,vEV(H)dH(ua V)'

We can extend the concept of edge-connectivity from graph theory to hypergraphs in a natural way in
which the concept can be generalized. For a subset S C E(H), we define H— S to be the hypergraph
obtained from H by deleting the edges in S without affecting the rest of the hypergraph. When H — S is
disconnected, we say that S is an edge-cut. The minimum cardinality of an edge-cut in a connected
hypergraph H is called its edge-connectivity, denoted by A(H).

There has been several papers investigating the connectivity of the hypergraphs. In [19], Zykov pre-
sented a Menger-type theorem for hypergraphs. Edge augmentation of hypergraphs are studied in the
literature (see e.g. [1, 2, 4]). Gu and Lai [10] gave necessary and sufficient conditions for an r-uniform
hypergraphic sequence to have a k-edge-connected relazation. Jami et al. [13] provided a generalization of a
result on edge-connectivity of permutation graphs for hypergraphs. In [6], Dankelmann and Meierling
observed that A(H) < 6(H) for general hypergraphs, and generalized some well-known sufficient conditions
for graphs G satisfying A(G) = 6(G) to hypergraphs. In [7], the authors investigated vertex-connectivity of
hypergraphs. For a subset X C V(H), H — X denotes the hypergraph obtained by removing the vertices X
from H and removing all the edges that intersect X. The vertex-connectivity x(H), is defined as the
minimum cardinality of such X whose removal makes G disconnected. In [7], they also defined another
vertex-connectivity for hypergraphs, and considered the complexity of the two kinds of vertex-connectivity
for hypergraphs. The following result in [7] provided a generalization of a result of Whitney [18] on
connectivity of graphs to hypergraphs.

Theorem 1.1 ([7]). Let H be a hypergraph with at least two vertices. Then k(H) < A(H) < J(H).

Thus, we call a hypergraph H satisfying A(H) = 6(H) (resp. x(H) = 6(H)) maximally edge-connected
(resp. maximally vertex-connected). If, furthermore, every minimum edge-cut consists of edges incident
with one vertex, then H is said to be super edge-connected, or simply, super- A. Our main work is to
investigate how some sufficient conditions for graphs to be maximally edge-connected or super-A can be
generalized to uniform and/or linear hypergraphs. In Section 2, we present results that will be useful in our
arguments. In Section 3, two kinds of degree conditions for equality of edge-connectivity and minimum
degree for graphs are generalized to uniform linear hypergraphs. In Section 4, we generalize a sufficient
condition for maximally edge-connected graphs depending on the order, the maximum degree and the
minimum degree as well as on the diameter, to uniform linear hypergraphs. In Section 5, we generalize a
sufficient condition for maximally edge-connected graphs and super-4 graphs depending on the size, the
order, the minimum degree and a parameter (as defined in Section 5) to uniform hypergraphs.

2 Preliminary lemmas

In this section, we will list or prove some lemmas which will be used in our later proofs.

In a connected hypergraph H = (V,E), let S C E be a minimum edge-cut of H and H, be a component of
H — S. A vertex v of H| is internal if v is not incident with any edge of S; otherwise, v will be external. In
1981, Goldsmith confirmed a very useful lemma in [9] when he studied the n-th order edge-connectivity of
graphs. Now we present the special case of his lemma as follows.
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Lemma 2.1 ([9]). Let S be a minimum edge-cut of a graph G. If A(G) <d(G), then each component of
G — S contains at least two internal vertices.

And we will give a similar result with Lemma 2.1 for uniform linear hypergraphs.

Lemma 2.2 Let H be an r-uniform linear hypergraph and S be a minimum edge-cut of H. If A(H) <d(H),
then each component of H — S contains at least one internal vertex.

Proof Let H; be a component of H — S and x be an external vertex of H;. Set E; = {e € E | x € ¢ and
ecEH)}, and E;={ecE|xce and ecS}. Obviously, E,# . If E; =, then
O0(H) > AM(H) = |S| > |E;] =d(x)>06(H), a contradiction. Thus, E;# . It follows that
|Ei| + |E2| = d(x) > d(H) > A(H) = |S| = |E2| + |S — E»|, which implies that |Ej| > |S — E,|. Since H is
linear and each edge of S — E; is incident with at most r — 1 vertices in V(H,), we have

(U onVvE) < =1)IS=El<(r=DIE| = | |J (e = {x})],

cES—E, e€E)
and (J (e—{x}))N(U (e—{x})) = &, which implies that there exists at least one vertex w €
eckE; eckE,

N(x) N (U e) that is not covered by any edge of S, i.e., w is an internal vertex of H;. O
ecE;

Our lemma implies the following two results of [6] for linear 7-uniform hypergraphs to be maximally edge-
connected.

Theorem 2.3 ([6]). Let H be an r-uniform linear hypergraph with D(H) <2. Then A(H) = 6(H).

Proof Let S be a minimum edge-cut of H. The distance condition implies that there exists at least one
component of H — S that contains no internal vertex. Then by Lemma 2.2, we have A(H) > 6(H) and the
result holds. O

If A(H)<J(H), then by Lemma 2.2, each component of H — S contains at least one internal vertex w. It
follows that each component of H — S contains at least 1 + (» — 1)5(H) vertices (N(w) U {w} C V(H;) and
thus |V(Hy)| > 14 (r — 1)d(w) > 1+ (r — 1)6(H)). Hence, |V(H)|>2+2(r — 1)0(H), and we obtain the
following condition for linear uniform hypergraphs to be maximally edge-connected.

Theorem 2.4 ([6]). Let H be an r-uniform linear hypergraph of order n. If n <1+ 2(r — 1)0(H), then
A(H) = 6(H).

The special case r = 2 is the classical result as the following.

Corollary 2.5 Let G be a connected graph of order n. Then 2(G) = 6(G), if

(1) n<26(G) + 1; Chartrand [3]
(2) D(G) <2; Plesnik [15].

3 Degree conditions

We now work towards a generalization of some degree conditions for equality of edge-connectivity and
minimum degree for graphs to linear uniform hypergraphs. We point out here that we present the same
generalizations as that of [16], but use a different method from [16]. For the sake of completeness, we also
give the complete proof in our paper. In 1974, Lesniak [14] proved the following strengthening result of
Corollary 2.5 (1) for graphs.

Theorem 3.1 ([14]). If G is a graph of order n with d(u) + d(v) >n — 1 for all distinct non-adjacent
vertices u and v, then 1(G) = 6(G).

Below we present a generalization of the above result for r-uniform linear hypergraphs.

Theorem 3.2 Let H be an r-uniform linear hypergraph of order n. If d(u) + d(v) > [*=1] for all distinct
non-adjacent vertices u and v, then A(H) = 6(H).
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Proof Let H= (V,E) and let S C E be a minimum edge-cut of H. Then H — S consists of two parts H,
and H, such that there are no edges between H; and H,. Denote the vertex set of H; by V; fori = 1,2. We
claim that there exists no internal vertex in H; or H,. Suppose, on the contrary, that there exist internal

vertices x; €V; for i=1,2. Then X1 and X are non-adjacent and
d(x)) +d(x) < L%J + L%J < =2 <12l contradict to the hypothesis. Thus, by Lemma 2.2, we have
that A(H) = 6(H). O

Note that Theorem 3.1 is a special case of Theorem 3.2 when r = 2. Fig. 1 shows that Theorem 3.2 is in
a sense a best possible result, since d(u) + d(v) > [2=1] — 1 for all pairs of non-adjacent vertices of H; and
H, is not maximally edge-connected.

Theorem 3.3 Let H be an r-uniform linear hypergraph of order n. If for each edge e there exist at least
r — 1 vertices incident with e such that each degree is at least [%L then A(H) = 6(H).

Proof Let S be a minimum edge-cut of H and let H; be a component of H — S with the minimum
cardinality. Then |V(H)| < [5]. If [V(H)| = 1, then the result follows. In the following, we assume that
|V(H1)| >2. Let ve V(H;) such that d(v) =min{d(x) |x€ V(H))}. Set Ey={e€E|vEe and
ec E(H,)},and E; ={e € E|v € e and e € S}. We consider the following two cases.

see that H, contains no internal vertices. And by Lemma 2.2, we have A(H) = é(H).
Case 2: ()< ([LJI]

If £, = &, then 6(H) <d(v) = |E2| <|S| = A(H), and the result follows. Now, we assume that E; # (.

In this condition, by our hypothesis, we have d(x) > [%1 for any x € X, where X = |J (e — {v}), which
ecE;
implies that each vertex x in X is an external vertex. Set ¥ = {e, € E |u € e, € S and u € X}, then
YNE, = since H is linear. It follows that (r — 1)|E,| = |X| = |(J e) N X| < (r — 1)|Y| and we have
ecY

|E1| <|Y|. Thus, 6(H) <d(v) = |E1| + |E2| <|Y| + |E2| <|S| = A(H) < 6(H), and the proof is complete. [

Case 1: () > [%] It follows that d(x) > [%] for all x € V(H). Since dy, (x) < L%J < L%J, we

It is easy to check that H; in Fig. 1 is a regular hypergraph and Fig. 1 can also show that Theorem 3.3 is
a best possible result in a sense. Now, we give an irregular hypergraph H; (see Fig. 2), which is not
maximally edge-connected, and there exist at least » — 1 vertices incident with each edge such that each

degree is at least f%] — 1.
When r = 2, as a special case of Theorem 3.3, we can get the following degree condition for maximally
edge-connected graphs.

Theorem 3.4 ([11]). Let G be a connected graph. If for each edge e there exists at least one vertex v
incident with e such that d(v) > |5], then 2(G) = 6(G).

4 A sufficient condition about order

In this section, we present a generalization of the following result by Esfahanian.

Vi

(VO O)

o\

& O ~

Fig. 1 A 3-uniform linear hypergraph H,
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Fig. 2 A 3-uniform linear hypergraph H,

Theorem 4.1 ([8]). Let G be a graph with maximum degree A >3, minimum degree 0, diameter D and
order n. Then A(G) = 6(G), when

A-1DP"+AA-2)—1
A-2

Now, consider an r-uniform linear hypergraph H = (V, E) with maximum degree A(H) = A and let X, C V

with Xo = {x1,x2,...,x,}, where |Xo| = p. Denote by Xy = V\X,. For each x; € Xo, let X; = N(x;) N X,

where i€ {1,2,...,p}. For a vertex x€Xy, d(x,Xo) denotes min{d(x,u)|u € Xo}. Define

k = max{d(x,Xo) | x € Xo}. We claim that n, the order of H, is bounded by:

n>(6—1)[ ]+ 1.

n<|Xo| + Xi[1+A=Dr—=1)+A-D*r—1724-+A-D""r—1)"
+ % +A-Dr-D)+A-1)*r-1)72+- +A-D""r -1
o XA =D =D+ A== 1)+ (A= D = 1)

which is equivalent to

>~
—_

P

n< [Xol + [D_IXAD (A - 1)'(r = 1)]. (1)

i=1 i

Il
=

To see the validity of the above claim, observe that for each vertex u € X, there exists a vertex x; € Xo such
that d(u, x;) <k. And, in the right-hand side of the inequality (1), for each x; € Xj, the maximum number of
vertices in Xp, which are at distance less than or equal to k from x;, is computed.

Using the discussion above we now compute the upper-bound on #n, as a function of other hypergraph
parameters.

Theorem 4.2 Let n, A, 6, A and D respectively be the order, the edge-connectivity, the minimum degree,
the maximun degree and the diameter of an r-uniform linear hypergraph H = (V,E). If A< and A > 2,
then

A= r=1DP+A-1>*r—1)7=r

ns(@- 1l A-Dr—1) -1 I

Proof LetS C E be a minimum edge-cut of H. We can partition V into two disjoint non-empty sets ¥ and Y
such that H — S contains no edges between Y and Y. Let Y, and Y, be the sets of external vertices
respectively in Y and Y. Let Dy = max{d(y,Yo) | y € Y}, and Dy = max{d(y,Yo) | y € Y}. Since 1<3,
then Dy >1 and Dy > 1 by Lemma 2.2. And it is easy to see that Dy + Dy + 1<D.

Set Yo = {x1,x2,...,x,}, and Yo = {x},x,, ...,x; where p = |Yy| and g = |Yp|. Let X; = N(x;) N (Y — Yp)
and X; = N(x;) N (Y — Yp), where x; € ¥, and x; € Y,. Combining with the above claim of 1, we have
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| Yol Dy—1 ‘ -
n =Y+ Y| < Yol + D XD (A= 1'(r—1)]
=1 =0
7ol Dy—1 |
+ [Yo| + Z|X| Z - 1'(r =17

i=0

Without loss of generality, we assume that Dy < Dy. Thus, we have:

n <[Yo| + Yol + ﬁ:IXI ,Z;]( —l)i(r—l)i+ll§:1)_l(A—l)i(r—l)i]
+ [i:l IXZI][Dii_;(A ~1)'(r=1)]
=|Yo| + Yol + ( %\XH%IX\ 10] 1)(r—1)]
+ [i:l IXiIHIZ_I(A —'(r=1)]

Since each edge of S is incident with at most (r — 1) vertices of Yy, we have |Yy| < (r — 1)A. And it is easy to
see that |Yo| + |Yo| < 4r, |Xi| < (d(x;) — 1)(r — 1)< (A —1)(r — 1) and |X;| < (A — 1)(r — 1). It follows
that

néYo|+|70|+(|Yo|+l70|)(A—1)(r—1)[121@—1)"0—1)7

+ [Yo[(A = 1)(r — 1)[?2:_1@ —1)'(r=1)]

< Jr+ ar( )(r—1)[21(A—1)i(r—1)]+(r—1) (A—1)(r—1)[i)j;_l(A—1)’(r—l)‘]
= Jr+ (r—1)i(A 1)(r—1)[21(A—1)(r—1)]+/u(A 1)(r—1)[Dj_Ol(A—1)’(r—1)']

21— (A1 (r -1

AT A=) — 1))

=Ar+A(A-1)(r—1)

Let a = (A —1)(r — 1), one has

1—a®  1—dP

n<ir+ A(r—1a l—aa + la 1_aav

:i{r—}— al[(r—l)aDy—r—l—aDT/]}
a—

Using the fact that Dy > 1, Dy > 1 and Dy + Dy + 1 <D, one can show that
1 [(r— l)aD72+a— r]}

(r—1)a ' +a*—r
a—1

a
ng;u{r—‘-a_

=1

We remind that the above relation has been computed with the assumption that 4 <¢. Thus, we have

@ Springer



Edge-connectivity in hypergraphs 843

A-D'r=1D)P+A-1)>*(r—1)7—r

ns(0-1) A-Dr-1) -1

This completes the proof. O

See Fig. 3, we give an r-uniform linear hypergraph H; which is not maximally edge-connected and reaches
the upper bound presented in Theorem 4.2. H; is constructed by r copies of Hy and adding a new edge
consisting of all the vertices of degree r, where Hy is also an r-uniform linear hypergraph. Theorem 4.2
yields the following result whose special case r = 2 is Theorem 4.1.

Theorem 4.3 Let H be an r-uniform linear hypergraph with maximum degree A >3, minimum degree 6
and diameter D. Then A(H) = 6(H) when
A==+ A-1)r—-1)7—r

|V(H)|Z(5_1)[ (A—l)(r—l)—l

|+ 1.

5 A sufficient condition about size

In this section, we will work towards a sufficient condition for maximally edge-connected and super-/4 r-
uniform hypergraphs. And, we need the following definition. For two integers n and k, we define <Z> =

n

n!
mwhen k<n and <k

):Owhenk>n.

Definition 5.1 For two integers ¢ and r with r >2, define t = #(J, r) to be the largest integer such that
(t— 1 ) <. That is, t is the integer satisfying (;: 11> <5< < ! )

r—1 r—1

Lemma 5.2 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree 6 and edge-

connectivity L. If 2<9, then
n—t t
m< < ) + < ) +0-—1,
r r

Proof Let S be an arbitrary minimum edge-cut and let X denote the vertex set of the component of H — §
with minimum number of vertices, and Y = V(H) — X. We first show that |Y| > |X| > t. Suppose |X| <t — 1.
Then we obtain

where t = t(0,r).

X4 Xr
o Aok
Clastel &) Chfrel &) ChAfel & D
(Ze o N CLofexx [0 \&\ ) Lo o[ \o\»
(Te e ; ..J) @O :/ b) ®O i o\))

(a) (b)
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and thus,
X r—1
r—1 |X|—r—|—l
r—1 r—1
r—1 |X’_V‘|'1

If |X| = 1, then A = §, contradicting A< J. So, |X| > r, by the fact that H[X] is connected, and the inequality
(2) is impossible. Therefore, we have ¢ < |X| <|Y|<n —t¢, and

()50
)-0)-()-(7)
(0)-(7)

() )
m< + +(6-1).

. n—x\ . . . . . .
Since f(x) = + - is a decreasing function when 1<x< 7 and a increasing function when

t n—t
()

5 <x<n, we obtdin
Theorem 5.3 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree § and edge-

connectivity A. If
n—t t
m> ( ) + < ) +4—1,
r r

then A = 0, unless that H is a hypergraph obtained from K] U K!_, by adding 6 — 1 edges, where t = t(0,r).

(2)

IA

This bound leads to

O

Proof If m> <n ; t> + (;) + 96— 1, then by Lemma 5.2, we have A=96. If m= (n ; t>+
< i ) + 0 — 1, then by the proof of Lemma 5.2, we have that the inequalities in the proof of Lemma 5.2 must by

equalities, which implies that A = 6 — 1, |X| = ¢, |Y| =n — 1, H[X] = K] and H[Y] = K| _,. This completes the
proof. O
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Corollary 5.4 ([17]). Let G be a connected graph of order n, size m, minimum degree 0 and edge-

connectivity A. If
n—o—1 o+1
> o—1
’"—( 2 )+< 2 )+ |

then A = 0, unless that G is a graph obtained from K5, 1 UK, _5_1 by adding 6 — 1 edges.
Proof When r =2, then t = § + 1 by the Definition 5.1. Thus, the result follows from Theorem 5.3. [J

Lemma 5.5 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree 6 and edge-
connectivity A. If H is not super- A, then

<n—t+1) (t—l)
m< + +9,
r r

Proof Let S be an arbitrary minimum edge-cut such that every component of H — S has at least two
vertices. Let X denote the vertex set of the component of H — S with minimum number of vertices, and
Y = V(H) — X. Clearly, |Y|> |X|>2. We first show that |Y|>|X|>t— 1. Suppose |X| <t — 2. Then we
obtain

where t = 1(0,r).

X|o< > dx) < X|<'X _11> +(r—1)2

xeX r—

|X| —1
§X|< o >+<r—1>a,
o)== (500
<6< < : (3)
r—1 r—1 r—1

a contradiction. Therefore, we have r — 1 <|X|<|Y|<n —1t+ 1, and
|| n—|X|
m—|S| < + ,
r r
|X| n—|X|
m< + +0
r r
n—t+1 t—1
< + + 0.
r r

By the same argument as that of Theorem 5.3 and Corollary 5.4, the following results follows.

and thus,

and so

Theorem 5.6 Let H be a connected r-uniform hypergraph of order n, size m, minimum degree 6 and edge-

connectivity A. If
<n—t+ 1) <t— 1)
m> + +9,
r r

then H is super- A, unless t >3 and H is a hypergraph obtained from K| | UK]_, ., by adding o edges
between K| | and K _, ., such that 6(H) = 6, where t = t(0,r).
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Corollary 5.7 ([17]). Let G be a connected graph of order n, size m, minimum degree 0 and edge-

connectivity A. If
=(")+(5)+
"=\ 2 2) T

then G is super- 1, unless 6 >2 and G is a graph obtained from Ks U K,,_5 by adding J edges between Kj
and K,_s such that 6(G) = 9.
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