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Abstract Let D be a weighted oriented graph with the underlying graph G and I(D), I(G) be the edge ideals
corresponding to D and G respectively. We show that the regularity of edge ideal of a certain class of
weighted oriented graph remains same even after adding certain kind of new edges to it. We also establish
the relationship between the regularity of edge ideal of weighted oriented path and cycle with the regularity
of edge ideal of their underlying graph when vertices of V* are sinks.
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1 Introuduction

A weighted oriented graph is a triplet D = (V(D), E(D),w), where V(D) is the vertex set, E(D) is the edge
set and w is a weight function w: V(D) — N¥, where N* = {1,2,...}. Specifically E(D) consists of
ordered pairs of the form (x;,x;) which represents a directed edge from the vertex x; to the vertex x;. The
weight of a vertex x; € V(D) is w(x;), denoted by w; or w,.. We set V(D) := {x € V(D)|w(x) >2} and it is
denoted by V. The underlying graph of D is the simple graph G whose vertex set is same as the vertex set
of D and whose edge set is {{x,y}|(x,y) € E(D)}. If V(D) = {x1,...,x,} we can regard each vertex x; as a
variable and consider the polynomial ring R = k[xy, ..., x,] over a field k. The edge ideal of D is defined as

I(D) = (xix}"|(xi,33) € E(D)).

If a vertex x; of D is a source, we shall always assume w; = 1 because in this case the definition of /(D) does not
depend on the weight of x;. If w(x) = 1 for all x € V, then I(D) recovers the usual edge ideal of the underlying
graph G, which has been extensively studied in the literature in [1-3, 5, 14, 15]. The interest in edge ideals of
weighted digraphs comes from coding theory, in the study of Reed-Muller types codes. The edge ideal of
weighted digraph appears as initial ideals of vanishing ideals of projective spaces over finite fields [17].
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Algebraic invariants like Cohen-Macaulayness and unmixedness of edge ideals of weighted oriented
graphs have been studied in [9, 11, 18]. In [18], Pitones et al. have characterised the minimal strong property
of D when vertices of V* are sinks. Recently, the invariants like Castelnuvo-Mumford regularity and
projective dimension of weighted oriented graphs have drawn the attention of many researchers. In [20],
Zhu et al. have expressed the projective dimension and regularity of edge ideals of some class of weighted
oriented forests or cycles and in [4], Beyarslan et al. gave the formula for projective dimension and
regularity of edge ideals of weighted oriented graphs having the property P defined as follows:

A weighted oriented graph D is said to have property P if there is at most one edge oriented into each
vertex and suppose that for all non-leaf, non-source vertices, x;, either w; > 2 or the unique edge (x;, x;) into
the vertex x; has the property that x; is a leaf.

In general it is a difficult problem to give a general formula for the regularity of edge ideal of an arbitrary
weighted oriented graph even if the regularity of edge ideal of its underlying graph is known as the edge
ideal changes according to the orientation of its edges and its weight function. In this paper we study the
regularity of weighted oriented graphs arising by adding new edges to the weighted oriented graphs having
property P. By studying the regularity of edge ideal of weighted oriented graphs we partially answer one
question asked by H.T. Ha in [12]. Also we establish the relation between the regularity of edge ideal of
weighted oriented graph D and its underlying graph G when D is a weighted oriented path or cycle with
vertices of V' are sinks.

This paper is structured as follows. In section 2, we recall all the definitions and results that will be
required for the rest of the paper. In section 3, we prove that the regularity of edge ideal of one or more
weighted oriented graphs with property P remains unchanged even after adding new edges among the
connected and disconnected components (Theorem 3.3). As some applications of Theorem 3.3, we compute
the regularity of edge ideals of some weighted oriented graphs whose underlying graphs are dumbbell graph,
complete graph, join of two cycles and complete m—partite graph. In Theorem 3.10, we prove that the
regularity of edge ideal of a weighted oriented graph with property P remains same even after adding certain
type of oriented edges from new vertices towards a single vertex of it. By using Proposition 3.11, we able to
give the combinatorial conditions for one question asked by H.T. Ha in [12]. In section 4, we compute the
regularity of edge ideal of a weighted oriented path or cycle in terms of regularity of edge ideal of their
underlying graph when vertices of V' are sinks.

2 Preliminaries

In this section we present some of the definitions and results that will be needed throughout the paper. Let
D = (V(D), E(D),w) be aweighted oriented graph with underlying graph G = (V(G), E(G)). Foravertex uina
graph G, let Ng(u) = {v € V(G)|{u,v} € E(G)} be the set of neighbours of u and set Ng[u] := Ng(u) U {u}.
Forasubset W C V(G) ofthe verticesin G, define G \ W to be the subgraph of G with the vertices in W (and their
incident edges) deleted. Let x be a vertex of the weighted oriented graph D, then the sets N} (x) = {y : (x,y) €
E(D)} and Nj(x) ={y: (y,x) € E(D)} are called the out-neighbourhood and the in-neighbourhood of x
respectively. Further, Np(x) = N (x) U Ny (x) is the set of neighbourhoods of x and set Np[u] := Np(u) U {u}.
For T C V, we define the induced subgraph D = (V(D), E(D), w) of D to be the weighted oriented graph such
that V(D) = T and forany u,v € V(D), (u,v) € E(D) ifand only if (u,v) € E(D).Here D = (V(D), E(D),w)
is a weighted oriented graph with the same orientation as in D and for any u € V(D), ifuis not a source in D, then
its weight equals to the weight of u in D, otherwise, its weightin Dis 1. For a subset W C V(D) of the vertices in
D, define D \ W to be the induced subgraph of D with the vertices in W (and their incident edges) deleted. For
Y C E(D), we define D \ Y to be a subgraph of D with all edges in Y deleted (but its vertices remained). If
Y = {e} for some e € E(D), we write D \ e in place of D \ {e}. Define degj,(x) = |[Np(x)| for x € V(D). A
vertex x € V(D) is called a leaf vertex if deg,,(x) = 1. A vertex x € V(D) is called a source vertex if Np(x) =
Nj (x). A vertex x € V(D) is called a sink vertex if Np(x) = Np (x).

Now we give some algebraic definitions and results. Let k be a field and R = k[xy,...,x,] be the
polynomial ring in n variables over k. Suppose that M is a non zero graded R-module with minimal free
resolution

0— - — PR(—)MM — PR(—j)Pi™ — M — 0
J J
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where f;;(M) denote the (i, j)-th graded Betti number of M, is an invariant of M that equals the number of
minimal generators of degree j in the i—th syzygy module of M. The invariant which measures the
complexity of the module is Castelnuvo-Mumford regularity denoted by reg(M) and defined as

reg(M) := max{j — i | f;;(I) # 0}.

Let I C R be a monomial ideal. Then G(7) denotes the set of minimal generators of /. In general, it is difficult
to find the regularity even for monomial ideals. With the help of Betti splitting we can compute this type of
invariant for certain class of ideals. The Betti splitting is defined as follows:

Definition 2.1 Let / be a monomial ideal and suppose that there exist monomial ideals J and K such that
G(I) is the disjoint union of G(J) and G(K). Then I = J + K is a Betti splitting if

Bi;j(I) = B;;(J) + Bi;(K) + Bi—y ;(J NK)
for all i,j >0, where f;_;;(JNK)=0if i =0.

This formula was first obtained for the total Betti numbers by Eliahou and Kervaire [6] and extended to the
graded case by Fatabbi [7]. In [8], the authors describe the following sufficient conditions for an ideal I to
have a Betti splitting.

Theorem 2.2 [8, Corollary 2.7] Suppose that I =J + K where G(J) contains all the generators of I
divisible by some variable x; and G(K) is a nonempty set containing the remaining generators of I. If J has a
linear resolution, then I = J + K is a Betti splitting.

When [ is having a Betti splitting, Definition 2.1 implies the following result:
Corollary 2.3 IfI =J + K is a Betti splitting, then
reg(I) = max{reg(J),reg(K),reg(JNK) — 1}.
Let u € R be a monomial, we set Supp(u) = {x; : x;|u}. Let I be a monomial ideal, G(I) = {uy,...,un}

m

denote the unique minimal set of monomial generators of I and we set Supp() := USupp(ui). The
=1

following lemmas are well known.

Lemma 2.4 [19, Lemma 3.4] Let Ry = k[x1, ..., Xn] and Ry = k[Xy11, - . ., X4] be two polynomial rings, I C
Ry and J C R, be two nonzero homogeneous ideals. Then

reg(l +J) =reg(l) +reg(J) — 1.
Lemma 2.5 [10, Lemma 2.3] Let I, J be two monomial ideals such that Supp(I) N Supp(J) = ¢. Then
reg(IJ) = reg(I) + reg(J).

Lemma 2.6 [10, Lemma 1.2] Let 0 - A — B — C — 0 be short exact sequence of finitely generated
graded R-modules. Then
reg(B) < max{reg(A),reg(C)} and the equality holds if reg(A) —1 # reg(C).

Lemma 2.7 [12, Lemma 3.1] Let G = (V, E) be a simple graph. If G' is an induced subgraph of G, then
reg(1(G')) < reg([(G)).

The following two corollaries are based on the regularity of edge ideal in path and cycle.
Corollary 2.8 [3, Theorem 4.7] Let G be a path of length n denoted as P,. Then

@ res(P) = "2 41,

(b) reg(I(Pn)) =reg(I(P,—3)) + 1 for n>4.

Corollary 2.9 [3, Theorem 4.7, Theorem 5.2] Let G be a cycle of length n denoted as C,. Then

(@ if n=0,1( mod 3), then reg(I(G)) =reg(I(G\ {x})) =reg({(G\ N[x])) + 1 except n=3,4 and
reg(1(G)) =reg(I(G \ {x})) = 2 for n = 3,4.

(b) if n=2(mod 3), then reg(I(G)) = reg(I(G \ {x})) + 1 =reg(I(G\ N[x])) + 1.
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In order to deal with non square-free monomial ideals, polarization is proved to be a powerful process to
obtain a square-free monomial ideal from a given monomial ideal.

Definition 2.10 Suppose that u = x;*' - -- x,* is a monomial in R. Then we define the polarization of u to
be the square-free monomial

P(u) = X11X12 -+ X1, X21X22 * = * X2ay = X1 X2 * * * Xna,

in the polynomial ring R” =k[x; | 1<i<n,1<j<q] . If ICR is a monomial ideal with G(I) =
{uy,...,u,}, the polarization of I, denoted by 17 is defined as:

17 = (P(uy),...,P(un))
which is a square-free monomial ideal in the polynomial ring R” .
The following lemma shows that the regularity is preserved under polarization.

Lemma 2.11 [13, Corollary 1.6.3] Let I C R be a monomial ideal and I” C R” its polarization. Then

@ By(I) = ;") for all i and j,
() reg(l) = reg(”).

Next we see the connection of square-free monomial ideals with hypergraphs and labeled hypergraphs.
2.1 Hypergraph

A hypergraph H over X = {xy,...,x,} is a pair H = (X, &) where X is the set of elements called vertices
and & is a set of non-empty subsets of X called hyperedges or edges. A hypergraph H is simple if there is no
nontrivial containment between any pair of its edges.

The following construction gives a one-to-one correspondence between square-free monomial ideals in
R = kl[xy,...,x,] and simple hypergraphs over X.

Definition 2.12 Let H be a simple hypergraph on X. For a subset E C X, let x* denote the monomial
H x;. Then the edge ideal of H is defined as

x;€E
I(H) = (x*|E C X is an edge in H) C R.
2.2 Labeled Hypergraph

The labeled hypergraph associated to a given square-free monomial ideal [ introduced in [16]. In the
definition of labeled hypergraph, generators of the ideal correspond to vertices of the hypergraph and the
edges of the hypergraph correspond to variables which are obtained by the divisibility relations between the
minimal generators of the ideal.

Definition 2.13 [16] Let I/ C R = k[xy,...,x,| be a square-free monomial ideal with minimal monomial
generating set {fi, ...,f,}. The labeled hypergraph of [ is the tuple H(I) = (V,X,E,£). The set V = [u] is
called the vertex set of H. The set &£ is called the edge set of H(/) and is the image of the function
E:{xi,...,x,} — 2(V) defined by E(x;) = {j : x; divides f;} where 2(V) represents the power set of V.
Here the set X = {x; : E(x;) # 0}.

The label of an edge F C & is defined as the collection of variables x; € {x,...,x,} such that E(x;) = F.
The number IXI counts the number of labels appearing in H(I) while |£| counts the number of distinct edges.
A vertex v € V is closed if {v} € &, otherwise, v is open. An edge F € £ of H(I) is called simple if |F| >2
and F has no proper subedges other than (). If every open vertex is contained in exactly one simple edge,
then we say that H(/) has isolated simple edges.

Example 2.14 Let [ = (x1x3X5, X1X2X3, X3X4X5, XaX5X6) C k[X1,...,X6]. Let fi = x1x3x5,/2 = X1x0x3, f3 =
x3x4xs and f; = x4xsxg. Then V = {1,2,3,4}, X = {x1,x2,x3,x4,%s5,%6}, and & = {{1,2},{2},{1,2,3},
{3,4},{1,3,4},{4}}. See Figure 1.
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T6
4 T4 3

Figure 1 The labeled hypergraph of I = (xjx3xs, x| X2X3, X3X4X5, X4X5X6 )

3 Some results of regularity in weighted Oriented graphs

In this section, we compute the regularity of R/I(D) for certain class of weighted oriented graph D by
connecting their polarized edge ideal with the labeled hypergraph and using the technique of Betti splitting.
In this section we have considered a particular type of weighted oriented graph having property P as defined
in the introuducion.

The regularity of edge ideal of weighted oriented graph having property P was first studied by Beyarslan
et al. in the following result.

Proposition 3.1 [4, Corollary 3.1] Let D be a weighted oriented graph having property P with weight
function w on the vertices xy, .. .,x,. Then

reg(R/1(D)) = 3" wi ~ [E(D)]

Beyarslan et al. have proved the above result using the concept of labeled hypergraph described in [16]. We
noticed that the following result of Lin and McCullough using the concept of isolated simple edges of
labeled hypergraphs will be useful for calculating the regularity of some new class of weighted oriented
graphs.

Proposition 3.2 [16, Theorem 4.12] Let I C R be a square-free monomial ideal and suppose that H(I) =
(V,X,E,&) has isolated simple edges. Then

reg(R/I) = [X| = |V|+ > (FI—-1).
Fef&
Fsimple

The following theorem shows that the regularity of edge ideal of one or more weighted oriented graphs with
property P remains unchanged even after adding new edges among the connected and disconnected
components.

Theorem 3.3 Let Dy,D», ..., D, for s> 1 are the weighted oriented graphs having property P with weight
function w on vertex sets {xi,,...,Xn, } X1, s Xmy }y oo {X1,, - . ., X, } respectively. Let D be a weighted
oriented graph obtained by adding k new oriented edges among D1, D,, ..., Ds where every edge is of the
form (x4, xp,) for some x,, € V(D;), xp, € V(D;) (i may equal with j) with wa,,wy, >2 and no vertex of
Ny, (xp,) is a leaf vertex in D;. Then

reg(R/1(D)) = reg(R/I(D1)) + - - - + reg(R/1(Dy)).

Proof Here V(D) =V(Dy)U---UV(Dy) ={X1,, 0, Xny 5o X1 o ooy X, Let |E(Dy)| =
er,...,|[E(Dy)| = ey, then |[E(D)| =e; + -+ e, + k. Let I(Dy),...,1(Dy),I(D) be the edge ideals of the
weighted oriented graphs D, ..., Dy, D respectively. Let my, ..., m, +...+o +1 be the minimal generators of

the polarized ideal 1 (D)P. Suppose ki, ..., ks number of new edges are oriented towards Dy, ..., Dy where
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ki + -+ ks = k. Let the k; new edges are oriented towards r; vertices of D; where for any vertex x;,
among those r; verices wj, > 2 and no vertex of N, (x;,) is a leaf vertex in D;. Now we consider the labeled
hypergraph of I(D)” i.e. HI(D)") = (V,X,E,£) where V = [e; + - - - + e, + k]. Without loss of generality
let x,, is one of those r; vertices and /;, number of new edges are oriented towards x,,. Since D; has
property P, [Np, (x4,)] = 1 and so [N (x,,)| =11, + 1. Let the generators corresponding to those /;, + 1
edges numbered as d,,di,dp,...,d;, ~ where each d;€ le1 +---+e +k]l. Here E(xg;)=
{d,,dy,dy, .. .,d,]]} for 2<i<w,,. Let Fy, = E,,. Then F;, C & with label {x4,i,2 <i<wy, }. Since no
vertex of N, (x,,) is a leaf vertex in Dy, then no vertex of N, (x,, ) is a leaf vertex in D. Thus there does not

exist any element of X which lies in the generators of / (D)P corresponding to some proper subset of F,
which implies Fy, is a simple edge. Let us assume /5, ..,/ number of new edges are oriented towards
remaining r; — 1 vertices of Dy, then similarly we get F»,, ..., F,, are the simple edges with cardinality
L, +1,...,1,, + 1 respectively. Thus |F},| =1; +1 for 1 <j<r; where [}, +---+1,, =k;. Let k; new
edges are oriented towards r; vertices of D; for 2 <i<s by the definition of new edges. If we assume
li,, ..., 1, number of new edges are oriented towards r; vertices of D;, then similarly we get Fy,,..., F,, are
the simple edges with cardinality /;, + 1,...,[,, + 1 respectively for 2 <i<si.e. |F;| =1, + 1 for 1 <j<r,
2<i<s where [}, +---+1, =k; for each i. Let F=F U---UF, , U---UF U---UF, and C=
V\ F. Let V; C V be the set of vertices corresponding to the minimal generators of / (Di)P for 1 <i<sin
H(I(D)"). Wy

For c € CNVy, let m, = x;3 ijl, i.e. a minimal generator of / (D)73 corresponding to some edge

=1

(xi,,xj,) of Dy. If x;, is a leaf in both D; and D, then m, is the only minimal generator of 1(D)” which is
divisible by x;,; and therefore {c} € £ with label {x;,,, 1 <7<wj }. In case of x;, is a leaf in D, but not in D,
atleast one new edge is oriented away from x;,, then by definition of new edges w;, >2 and m, is the only
minimal generator of I(D)” which is divisible by xj,2. Therefore {c} € £ with label {x;,;,2 <t <wj }. If x;,
is not a leaf in D, then by assumption since x;, is not a source, either w;, >2 or x;, is a leaf in Dy. If x;, is a
leaf in D, then w;, = 1. Thus none of the new edges are connected with x;, and x;, is a leaf in D, then m, is
the only minimal generator of I(D)” which is divisible by x; | and {c} € £ with label {x;,}. If x;, is not a
leaf in D¢ then w;, >2 in Dy and so is in D. By the property P of D, at most one edge is oriented into the
vertex x;, in Dy and so is in D because no new edge is oriented towards x;,. Then m, is divisible by x;,, and
none of any other generator of I(D)” is divisible by xj,. Thus {c} € & with label {x;,,2<t<w;}.
Therefore for every ¢ € CNVy, {c} € £. By the similar arguement for every c € CNV;, {c} € & where
2<i<s.Soevery c € Cis closed. Here each of the remaining edges of £ is some image E(x,,;) where x,, is
one of the non-leaf vertex of D; for some i € [s], p € [n;] and it contains either one Fj, for some j € [r;] or
atleast one {c} for some ¢ € C N V; as a proper subset. Thus they are not simple. Therefore Fj,’s are the only

simple edges in the labeled hypergraph H (I (D)P) and by the definition of Fj,’s no two Fj,’s have a common

element which implies every open vertex is contained in exactly one simple edge i.e. H(I (D)p) has isolated
simple edges. Hence by Lemma 2.11, Proposition 3.2 and Proposition 3.1, we have

X| = VI S (R = 1)+ SR = 1)
i=1 i=1
= Z wv)+ -+ Z wv) —(e1 + - +e +k)

veV(Dy) veV(Dy)
+(lll+"'+lr“)+"'+(lls+"'+lrn)
= D w) At D w) (e e k) kit ks

reg(R/1(D))

veV(Dy) veV(Dy)
= Z wv)—e +---+ w(v) — e
veV(Dy) veV(Dy)

=reg(R/I(Dy)) + - - + reg(R/I(Dy)).
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Corollary 3.4 Let D be a weighted oriented graph having property P with weight function w on the
vertices X1, . . ., X,. Let D' be a weighted oriented graph obtained by adding k new oriented edges where each
edge is of the form (x;, x;) for some x;,x; € V(D) with w;, w; > 2 and no vertex of N}, (x;) is a leaf vertex in D.
Then

reg(R/I(D')) = reg(R/I(D)).
Proof The proof directly follows from Theorem 3.3 for s = 1. U

In the next two corollaries we give application of Corollary 3.4 into some particular kind of weighted
oriented graphs.

A graph G is called a dumbbell graph if G contains two cycles C,, and C,, of length n and m respectively
joined by a path P, of length » and we denote it by C, - P, - Cp,.

A path or cycle is said to be naturally oriented if all of its edges oriented in same direction. In a naturally
oriented unicyclic graph, the cycle is naturally oriented and each edge of the tree connected with the cycle
oriented away from the cycle. A naturally oriented dumbbell graph is the union of two naturally oriented
cycles and a naturally oriented path joining them.

Corollary 3.5 Let D' = (V(D'),E(D'),w) be a weighted naturally oriented dumbbell graph whose
underlying graph is G = C,, - Py - C,, where C, = xy...x,x1, P1 = x1y1 and C,, = y1...ymy1 with w(x)>2
for any vertex x. Then

reg(R/I(D)= Y w(x) - [E(D)| + 1.

xeV(D')

Proof Here V(D') = {x1,...,%u, Y1, - -, ym}. Without loss of generality we give orientation to D' as shown
in Figure 2. Let D = D’ \ e where ¢ = (y,,,¥1). Since D is a weighted naturally oriented unicyclic graph, it

has property P. Thus by Proposition 3.1, we have reg(R/I(D)) = Z w(x) — |[E(D)| = Z w(x) —

xeV(D) xev(D)
(JE(D')] —1). By adding the oriented edge e to D we get D'. Hence by Corollary 3.4,
reg(R/I(D')) = reg(R/I(D)= 3 w(x) — [E(D)| + 1. O
xeV(D')
xTs T9 Y2 Y3
L4 Y4
T Y1
Cy, Cm
Py
Tn-2 _
T Tn Ym Ym-1 Ym-2

Figure 2 Weighted naturally oriented Dumbbell graph(G = C,, - P - C,,)
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Remark 3.6 Similarly we can find the regularity of edge ideal of weighted naturally oriented dumbbell
graph when the two naturally oriented cycles are joined by a naturally oriented path of length r for r > 2.

Corollary 3.7 Let D be a weighted naturally oriented cycle whose underlying graph is C, = x1.. .x,x1
with w(x) > 2 for any vertex x. Let Dy be a weighted oriented graph we get after addition of k diagonals in

any direction to D for 1 <k < (;) — nand here D ( n) is a weighted oriented complete graph. Then for
2 —n

each k,
reg(R/I(Dy)) = reg(R/I(D ZW,—n

Proof Here V(Dy) = V(D) = {xy,...,x,} for each k. Since D is a weighted naturally oriented cycle, it has
property P. Thus by Proposition 3.1, reg(R/I(D Z w; — n. Here Dy is obtained by adding k diagonals

i=1

with any direction to D, for 1<k< (2> —n. Hence by Corollary 3.4, we have reg(R/I(Dy)) =

reg(R/I(D Z w; — n for each k. O

i=1

As some application of Theorem 3.3, we derive the formulas for regularity of edge ideals of some weighted
oriented graphs whose underlying graphs are the join of two cycles and complete m-partite graph.

The join of two simple graphs G and G,, denoted by G * G is a graph on the vertex set V(G;) U V(G)
and edge set E(G) U E(G;) together with all the edges joining V(G;) and V(G;).

A graph G is m—partite graph if V(G) =V, U---UV, where V;’s are independent set and this
m—partite graph is complete m—partite graph if {x,y} € E(G) if and only if x € V;, y € Viyy for 1 <i<m
where V.1 = V.

Corollary 3.8 Let Dy and D, be two weighted naturally oriented cycles whose underlying graphs are
Cp=x1...x,x1 and Cy = y1...ymy1 respectively with w(v) >2 for any vertex v. Let D;( be a weighted
oriented graph we get after addition of k oriented edges joining V(G) and V(G,) in any direction between
Dy and D, for 1 <k <mn and here D, is a weighted oriented graph whose underlying graph is C, * Cy,.
Then for each k,

reg(R/1(D})) = reg(R/I1(Dy)) + reg(R/1(D5)) Z Wy, + Z wy, — (n+m)

Proof Here V(D;)=V(D;)UV(Dy) ={x1,.... %0, ¥1,..,ym} for 1 <k<mn. Since D; and D, are

weighted naturally oriented cycle, they have property P. Thus by Proposition 3.1, reg(R/I(D;)) =

n
Z wy, —n and reg(R/1(Dy)) Z wy, —m. Here D is obtained by adding k new oriented edges joining

i—1
V(C,) to V(C,,) in any direction between D, and D, for 1<k< mn. Hence by Theorem 3.3 for s = 2, we

have reg(R/I(D,)) = reg(R/I(Dy)) + reg(R/1(D,)) ZWX‘ + ZWV ) for each k. O

In the following corollary, we give a short proof of [21, Theorem 5.1] using Theorem 3.3.

Corollary 3.9 Let D= (V(D),E(D), w) isa weighted oriented complete m-partite graph for m >3 with

vertex set V(D |_| Vi and edge set E(D |_|E ) where D; is a weighted oriented complete bipartite
i=1

graph on V; UV, and every edge of E(D;) is of the form (u, v) with u € V;, v € Viy1 for 1 <i<m by

setting Vi1 = Vi. If w(x) >2 for all x € V(D), then
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reg(R/I(D) = 3 wx) - V(D).

xeV(D)

Proof Let V; = {x1;,X2;,...,Xn,;} for 1 <i<m. For 1 <i<m, let D} be the oriented graph over vertex set

V(D;))=ViUViyr and the edge set E(D;) = {(x15%1:41), (%25, %2i41)s o (K Xy )} U
{Gei Xn1i0) (s Xg2ig)s - o0 K1y X))} if mi<miyy or the  edge set  E(D)) =
{0eni X1ia1)s (025 %2051) -+ o5 Ky o Xy g )} A 0 > 100

Let D' = (V(D),E(D ) w) be the weighted oriented m—partite graph over the vertex set V(D') |_| Vi

and the edge set E(D') = |_| E(D)) with the same weight function as in D. Observe that in each D, there is
i=1
exactly one edge oriented into each vertex of V;; which implies in D', exactly one edge oriented into each

vertex of V(D'). Thus each component of D' is with property P. Hence by Proposition 3.1, reg(R/I(D')) =

Z w(x) — |E(D)| = Z w(x) — |V(D)| = Z w(x) — |[V(D)|. Here D is obtained by adding all the
xeV(D') xeV(D') xeV (D)
edges of the set E(D) \ E(D') to D'. If there is s components in D’ for some s > 1, then by Theorem 3.3, we
have

reg(R/1(D)) = reg(R/I(D')) = ) w(x) — |[V(D)|.

xeV(D)
U

In the following theorem, we show that the regularity of edge ideal of a weighted oriented graph D with
property P remains same even after adding certain type of edges from new vertices oriented towards a single
vertex of it.

Theorem 3.10 Let D be a weighted oriented graph having property P with weight function w on the
vertices X1, ..., X,. Let D} be a weighted oriented graph after adding k new oriented edges to D at x,, with
w, >2 for a fixed p € [n] where each edge is of the form (x,4;,x,) for some i € [k| and each x,; is a new
vertex. Then

reg(I(D;)) = reg(l ZW’ D)|+1.

Proof Here V(D) = {xi,...,x,}. Without loss of generality let x, =x,. We prove this theorem by
applying induction on the number of new oriented edges added to D at x,,.

Base case: If kK = 0, then the proof follows trivially.

For k>1, let D, be a weighted oriented graph after adding the k new oriented edges
(X415 %n)s (Xnt2:Xn), - - o (XntksXn) from new vertices to x, in D where w, >2. Here I(D,) = I(D,_,) +

Wn
XX where D, = D), \ {x,1x}. Then I(D})” = I(D|,_ )" + xu111 Hx”f' Note that in D)_,, there are

J=1
Wn

k — 1 new oriented edges added to D at x,. Let J = x4 Hx”f and K =1 (D;(_I)P. Since J has linear
=1

resolution, [ (D;{)P = J + K is a Betti splitting. Here reg(J) = w,, + 1. By Lemma 2.11, Proposition 3.1 and

induction hypothesis, we have reg(K) = reg(I(D;_,)) =reg(I(D)) = Z w(x) —|E(D)| 4+ 1. Now we

xeV(D)
want to compute reg(J N K) — 1 (Fig. 3).

Let N, ( n) = {xn 1y Xnt1y Xns2y - -y Xnik } Where x,—1 € V(D) and Xpi1,%p12, .-, Xnsk are the new
vertices in Dk Let N} (x,) = {xnmx,,z, w3 Xn s Xn,.y, - - - Xn, } among which w,, =1 for 1 <i<rand w,, >2
forr +1<i<sinD.Let N (x,—1) = {xy—2} and Nj (xn—1) = {2, Xne 1,5 Xn— 1 - - o Xn— 1 Xn—lpeys - - o> Xn1, }
such that x,_1,,X,—1,, - - - Xp—1, are leaf vertices and Xn—1pi15Xn—1,55 - - s Xn—1, QL€ non-leaf vertices in D. Here
the r vertices x;,, Xp,, . . ., X,, are leaf vertices and the t — p vertices x,—1,,,,Xn—1,,,,- - -, Xn—1, are of weight

>2 in D by the property P.
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Ln+k
Tn+2
Ly
" Tn+1
xnr+ 1
Tn—1y
I
Tn-1,
xn_ 1p+1
'{B?’L—lt
Tn-2
Figure 3 Neighbourhood of x,_; and x, in weighted oriented graph D
Wy
Let JNK =JL = (Xptk,1 H-xn] (X421 Xn 3,15+« s Xnpk, 1y Xnm 1,15 Xy 1> Xy 15 -+ 5 Xy 15
Wny Wny Wiy Wn, iy Wnyyn Wng

J=
| J S | T Hxns,; (D {oxn, X 1}) ). Let Li=([] w0y o [ %o ][0
= = = = =

and L, = (I(D\{xn,x,,,l})) . Note that reg(L)=reg(L; +L,). By expressing L; as
Wiy Wnyin

Wy . . .
(X011 H X1 > Xnyia,1 H Xn, 2 s Xng 1 [ 125 Xn 7), We can think of Lj + L, as the polarized edge ideal

of the welghted oriented graph with |E(D)| — (¢t 4+ r + 2) edges obtained from D \ {x,,x,_,} by adding one
leaf of weight w,, —1 to each x, for i=r+1,...,s. Observe that in this graph the s —r vertices
Xnppys - -+ Xn,, the £ — p vertices x,1,,,, - - ., X,—1, become source vertices and each of its component is with
property P. So we can apply Proposition 3.1 to compute the reg(L; + L;).

Case-I: Let x,_» € Nj(x,). Then by the property P, x,—» € {X,,,,Xn, 5, - - -, X, } and w,_; >2. Thus by
Lemma 2.5 and Proposition 3.1, we have

reg(JNK) —1=reg(J) +reg(L) —
=reg(J) +reg(Ly + L) — 1
=D+ D W@+ +wa,, =)+ (1 +w,, —1)

xeV(D)\Vy
+- +(1+w,,\—1)+(t— p)—[[ED)|—(t+r+2)]+1-1
Z D)+ (t—p)+ (t+r+2)+1
V(D)\
where V= {x,,,x,,,l,xnl,xnz,...,x,,r,x,,r“,...,xnx,xn,l],...,x,,,lp,x,,,llm,...,xn,h} and

Vo = Vi \ {xn, Xn, 15 Xn, }-
Since the sum of the weights of vertices of Vo = wy—1 + (Wn, + Wy, + -« +wp,) + (Wn—1, + Wae1, +
A Wa,) A+ Waet, AW, W) 22+ p+2(t—p) = (t—p) + (t+r+2), reg(JN
K) — 1 <reg(K). Thus by Lemma 2.11 and Corollary 2.3, we have

reg(I(D})) = reg(1(D})") = max{reg(J), reg(K), reg(J N K) — 1} = reg(K) = reg(/(D)).

Case-II: Let x, » & Ng (xn). If x,,_5 is a leaf, then x,,_, become a source vertex which implies w,,_, = 1 and
by the property P, w,,_; > 1. Then we follow the same process of Case-I and see that the value of reg(J N K)
remains same as in Case-1 where only V; is replaced by V, U {x,_2}. If x,,_5 is not a leaf, w,_, > 1 and by
the property P, w,_; >2. Again we follow the same process of Case-I and see that the value of reg(J N K)
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remains same as in Case-I where V, also remains same. Wheather x,_, is a leaf or non-leaf vertex, sum of
the weights of vertices of V, > (¢t — p) + (¢ + r + 2). Therefore by the similar arguement as in Case-I,

reg(I(Dy)) = reg(I(D)). O
Proposition 3.11 Let D{,D,,...,D for s>2 are the weighted oriented graphs having property P with
weight function w on vertex sets {xi,,...,%u, }, {X1,5 - Xy }, - s {X1,, - .., X, } respectively. Let D be a

weighted oriented graph obtained by adding k new oriented edges among Dy, D, . . ., Ds where every edge is
of the form (x,,,xy,) for some x,, € V(D;), xp, € V(D;), i # j with wa,, wy, > 2 such that no vertex of Np, (x5,)
is a leaf vertex in D; and the set of new edges oriented towards D, go to a single vertex of D, fort = 1,...,s.
Let ky, ..., ks number of new edges are oriented towards D, . ..,Dy; where ki + - - - + ks = k and D), be the
new weighted oriented graph after addition of the k, new oriented edges to D; which are oriented towards a
single vertex of it for t = 1,...,s. Then

reg(R/I(D)) =reg(R/I(Dy)) + - - - + reg(R/I(DY)).

Proof By Theorem 3.3, we have reg(R/I(D))=reg(R/I(Dy))+---+reg(R/I(Dy)) and by
Theorem 3.10, reg(R/I(D;)) =reg(R/I(D;)) for t=1,...,s. Hence reg(R/I(D))=reg(R/I(D}))
+---+reg(R/I(D)). O

The above proposition partially answer the following question asked by H.T. Ha in [12].
Question 1 [12, Problem 6.8] Let H, Hy,. .., Hs be simple hypergraphs over the same vertex set X and

assume that &(H U &(H;). Find combinatorial conditions for the following equality to hold:

reg(S/I(H Zreg S/I(H
Observation: Let D, D}, D), ..., D, and R are same as defined in Proposition 3.11. Let

X = X015 X0 o Xy U o X s e s X105+ s X gw s+ o X 1o+ oy g}

and §S=RP. If we assume that H,H;,...,H, be the simple hypergraphs over X such that
1(D)”, I(D’ )7, .. I(D,)" are the square-free monomial edge ideals I(H),I(H,),..., I(H,) respectively

then &(H U & (H;) and by Proposition 3.11 and Lemma 2.11,
reg(S/1(H Zreg S/I(H

4 Regularity in weighted Oriented Paths and Cycles

In this section, we relate the regularity of edge ideals of weighted oriented paths or cycles when vertices of
V' are sinks with the regularity of edge ideals of their underlying graphs. First we compute the regularity of
edge ideals of weighted oriented paths when vertices of V' are sinks.

We divide the set T of all weighted oriented paths when vertices of V' are sinks into two sets:

T;: Set of all weighted oriented paths where the two end vertices are in V' and the distance between any
two consecutive vertices of V7 is 3.

Note that the length of any weighted oriented path in 7 is multiple of 3. (See Figure 4.)

T: Set of remaining weighted oriented paths when the vertices of V* are sinks i.e.

Zo z1 Z2 x3 T4 Ts Te Tp-3 Tp-2 Tn-1 Tn=3k

4 D o d—o— oD o....... )
Al 14 14

-~
N
-~

Figure 4 A weighted oriented path in T}

@ Springer




1066 M. Mandal, D. K. Pradhan

T, =T\T.

Remark 4.1 Let D be a weighted oriented path of length n for n >4 in 7, with underlying graph
G = P, = xoX1. . Xp. Let D, =D\ {x,}, Dy =D\ {xy_2,X—1,%,}, D) = D\ {x} and
Dlz =D \ {xo,xl,xz}.

Case-I: Assume n = 1( mod 3). Here n >4 and n = 3k + 1 for some k € N. Then the length of D, or D),
is 3k — 2 which is not a multiple of 3. Thus both D, and D) are in 7. If Dy is in Ty, then x,,_; € V* which
implies x, ¢ V*. So one end vertex of D) i.e. x, ¢ V*. Hence D] is in T».

Case-II: Assume n = 2( mod 3). Here n>5 and n = 3k + 2 for some k € N. Then the length of D, and
D, are 3k + 1 and 3k — 1 respectively. Note that none of them is a multiple of 3. Hence both D; and D, are
in Tz.

Case-III: Assume n = 0( mod 3). Here n > 6 and n = 3k for some k € N. Then the length of D; or D] is
3k — 1 which is not a multiple of 3. Thus both D, and D) are in T,. If D, is in T}, then x,,_3 € V. Since D is
in Tz, x, ¢ V' which implies one end vertex of D) i.e. x, ¢ V*. Hence D) is in T.

Observe that if D is in T, then either D; and D, or D’1 and D’2 are in 7T, in either cases. Thus without loss
of generality we can rename the vertices and always assume that D; and D, are in T5.

Theorem 4.2 Let D be a weighted oriented path of length n in T, with underlying graph G = P, =
XoX1. . Xy Then reg(I(D)) = reg(I(G)) + Z (w; — 1) where w; = w(x;) for x; € V.

x; eVt

Proof Here V(D) = {x¢,x1,...,x,}. We use the method of induction on the number of edges of D and
prove this theorem in different cases depending upon the position of the vertices of V.

Base Case: |E(D)| < 3.

Assume that |[E(D)| =3 and V(D)= {xo,x1,x2,x3}. If xo,x; € V" and x3 € V", then I(D)=
(xox1,x1x2, X2x5*). Let J = (xpx3*) and K = (xox1,x1x2). Since J has linear resolution, I(D) =J + K is a
Betti splitting. Here reg(/) = w3 + 1 and reg(K) = 2. Let J N K = JL where L = (xox,x;) which implies
reg(J N K) = wz + 2. Thus by Corollary 2.3, we have reg(/(D)) = max{reg(/),reg(K),reg(/ N K) — 1}
=w; + 1 =reg(I(G)) + w3 — 1. Similarly depending upon the position of the vertices of V using the Betti
splitting technique for any weighted oriented path D in T, with |E(D)| <3, we can show that
reg(I(D)) =reg(I(G)) + Y (wi—1).

x; eVt

Now we consider D to be a weighted oriented path of length n>4 and V(D) = {xo,...,x,}. Let
D] =D \ {xn}, D2 = D\ {x,,_z,x,,_l,xn}, H] = G\ {Xn} and Hz = G\ {x,,_z,xn_l,xn} i.e. H] and H2 are
the corresponding underlying graphs of D; and D, respectively. Without loss of generality by Remark 4.1,
we can fix x,, in one end of D such that D, and D, are in T>.

Case-I: Assume that x,_» ¢ V™ and x, € V'. Let J = (x,_1x)") and K =1I(D;). As J has linear
resolution, I(D) = J + K is a Betti splitting and reg(J) = w, + 1. Since D is the weighted oriented path of
length n — 1 in T,, by induction hypothesis we get reg(K) = reg(I(D;)) = reg(I(H;)) + Z (wi = 1).

xeVi\{x,}
Let JNK = JL where L = (I(D;),x,_2). Since D, is the weighted oriented path of length n — 3 in T3, by
induction hypothesis we have reg(L) = reg(I(D)) = reg(I(H,)) + Z (wi — 1). By Corollary 2.8,
xeV\{x,}
reg(I(G)) = reg(I(H,)) + 1. Thus by Lemma 2.5, we have

reg(J NK) = reg(J) + reg(L)
— reg(J) + reg(I(D2))
= (wo + 1) +reg(I(H))+ Y (wi—1)

x€VI\{x,}
=reg(I(Hy)) + 1+ Z (wi = 1)+ w,
xiEVJr\{xu}
=reg(I(G)+ > (wi—1)+w,

xeV\{x,}

By Lemma 2.7, reg(I(H;)) <reg(I(G)). Thus by Corollary 2.3, we get
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reg(I(D)) = max{reg(J),reg(K),reg(JNK) — 1}

= max{ wy + 1reg(I(H)) + Y (wi—1),reg(I(G)) + > _ (wi—1)

xeVi\{x,} x €Vt

=reg(I(G)) + Z (wi = 1).

x;i eVt

Case-1I: Assume that x,_, and x,, € V.
Let J = (x,—1x") and K = I(D,). Since J has linear resolution, /(D) = J + K is a Betti splitting. Here
reg(J) = w, + 1 and by the same arguement as in Case-1, reg(K) = reg(I(H;)) + Z (w; — 1) and

xeVH\{x,}
reg(JNK) =reg(I(G)) + Z (w; — 1) + w,,. By the same arguement as in Case-I and Corollary 2.3,
xeV\{x,}
reg(1(D)) = res(1(G)) + 3 (wi— 1)
x; eVt

Case-III: Assume that x,,_; € V.
Let J = (x,x'"') and K = I(Dy). Since J has linear resolution, /(D) = J + K is a Betti splitting. Here

n—1
reg(J) = wy—1 + 1 and by the same arguement as in Case-1, reg(K) = reg(/(H;)) + Z (w;— 1) and

)(,‘EV+
reg(J N K) = reg(I(G)) + Z (w; — 1) +w,_;. By the same arguement as in Case-I and Corollary
K€V {1}
2.3, reg(I(D)) = reg(1(G)) + Y (wi — 1).

x;€VH

Case-IV: Assume that x,_, € V™ and x,, € V*.

Let J = (x,-1x,) and K = I(D;). Since J has linear resolution, /(D) = J + K is a Betti splitting. Here
reg(J) = 2 and by the same arguement as in Case-I, reg(K) = reg(I(H;)) + Z (w; — 1) and reg(J NK) =

x;evt
reg(1(G)) + Z (wi—1)4+w,_». By the same arguement as in Case-I and Corollary 2.3,
xiEVJr\{X,,,Q}
reg(I(D)) = reg(I(G)) + > _ (wi —1).
x; eVt

Case-V: Assume that x,_»,x,_; and x, € V*.

Let J = (x,-1x,) and K = I(D;). Since J has linear resolution, I(D) = J + K is a Betti splitting. Here
reg(J) = 2 and by the same arguement as in Case-I, reg(K) = reg(I(H,)) + Z (wi—1)andreg(JNK) =

x; eVt
reg(1(G)) + Z(wi—l)—&—l. By the same arguement as in Case-I and Corollary 2.3,
x; eVt
reg(1(D)) = reg(1(G)) + 3 (w; — 1.

x;eV*H
Hence for any weighted oriented path D of length n in T3,
reg(I(D)) =reg(I(G)) + Z (w; — 1) where w; = w(x;) for x; € V.

X, €Vt
O

Theorem 4.3 Let D be a weighted oriented path of length n in T\ with underlying graph G = P,, =
XoX1 - - Xy. Then reg(I(D)) = reg(I(G)) + Z (w; — 1) where w; = w(x;) for x; € V" and x; is one of
xeVH\{x}

the vertices of V' with minimum weight.
Proof Here V(D) = {x¢,x1,...,%,}. By the definition of T}, G = P, = P for some k € N. We use the
method of induction on k (Fig. 5).

Base Case: If k = 1, then I(D) = (x;°x1,Xx1x2,x2x5° ). Let J = (xpx3*) and K = (x,"x1, x1x2). Since J has
linear resolution, I(D) = J + K is a Betti splitting. Here reg(J) = w3 + 1 and reg(K) = wo + 1. Let J N
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Zo €1 €2 €3 T4 T5 T Tp-3 Tp-2 Tp-1 Tn=3k

D
L4

-~
N
-~

4 |'q
Al L4
Figure 5 A weighted oriented path in T;

K =JL where L = (x;"xi,x;) which implies reg(/ N K) = w3+ 2. Thus by Corollary 2.3, we have
reg(I(D)) = max{reg(J),reg(K), reg(JNK)—1} =max{wyo+ I,ws+1} =2+ max{wy—1,w; — 1}
=reg(I(G)) + max{wo — 1, w3 — 1}.

Now we consider the case n = 3k for some k > 1. Let D1 = D\ {x,}, D» = D\ {xp—2,%4—1,%:}, H1 =
G\ {x,} and H, = G\ {x,-2,%,—1,%,} i.e. H, and H, are the corresponding underlying graphs of D; and D,
respectively. Here I(D) = (x{°x1, X1X2, X2X3°, . . ., X" 3 X2, Xp0Xp—1, Xn—1 X" ). Let J = (x,_;x)") and K =
I(Dy). Since J has linear resolution, /(D) =J + K is a Betti splitting. Here reg(J) = w, + 1. Since
Xn—1 € V¥, Dy is a weighted oriented path of length n — 1 in T,. By Corollary 2.8, reg(I(G)) = reg(I(H,)).
Thus by Theorem 4.2, we have

reg(K) = reg(I(Dy)) = reg(I(H,)) + Z (wi — 1) =reg(I(G)) + Z (w; —1).

eV \{x,} %€V \{x}

Let JN K = JL where L = (I(D;),x,-2) and D, is a weighted oriented path of length n —3 =3(k— 1) in
T,. Thus by the induction hypothesis, we get

reg(L) = reg(I(D2)) = reg(I(H2)) + Y (wi—1)

X €VI\{X 0 }

where x,, is one of vertices of V' (D;) with minimum weight. By Corollary 2.8, reg(I(G)) = reg(I(H,)) +
1. Thus by Lemma 2.5, we have
reg(J NK) =reg(J) + reg(L)
= reg(J) + reg(I(D))
=W+ 1) +reg(I(H)) + Y (wi—1)

xEVT \ {xn Xm }

=reg(/(Hy))+ 1+ Z (wi = 1) + wy
X €VHA\{x, X }

—rg((G)+ Y (w1 tw,

X €VI\{xx0m }
Therefore by Corollary 2.3, we get
reg(I(D)) = max{reg(J),reg(K),reg(J NK) — 1}

= max{ w, + 1,reg(I(G)) + Z (w; — 1),reg(I(G)) + Z (w; — 1)
xEVI\{x,} €V {xn}

=reg(I(G)) + Z (wi —1)

xeVi\{x}

where x; = min{x,, x,,} i.e. x; is one of the vertices of V* with minimum weight.
Hence for any weighted oriented path D of length n in T},

reg(I(D)) =reg(I(G)) + Y (wi—1)

x,EV*\{xj}
where w; = w(x;) for x; € V' and x; is one of the vertices of V* with minimum weight. O

Theorem 4.4 Let D be a weighted oriented cycle of length n for n = 0, 1( mod 3) with underlying graph

G = C, = x1...x,x1 and vertices of V' are sinks. Then reg(I(D)) = reg(1(G)) + Z (wi — 1) where w; =
x;evt

w(x;) for x; € V.
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Proof Here V(D) = {xi,...,x,}. Without loss of generality, let x; # x;,x, be one of the vertices of V.
Let Dy = D\ {xx}, D» = D\ Nplx|, Hl = G\ {xx} and H, = G\ Ng[x¢] i.e. H; and H, are the corre-
sponding underlying graphs of D; and D, respectively. By Corollary 2.9, reg(I(G)) =reg(I(H,)) =
reg(I(Ha)) + 1 except n = 3,4 and reg(I(G)) = reg(I(H;)) =2 for n = 3,4.
Now consider the exact sequence
R 2R R
—(— — — — 0 1
) I ) W

00—

Here (I(D),x;*) = (I(Dy),x;*) where D is a weighted oriented path of length n — 2. Since the end vertices
of Dy can not be in V', Dy is in T,. Thus by Lemma 2.4 and Theorem 4.2, we have
reg(I(D),x*) = reg(I(D1)) +wi — 1
=reg(I(Hy)) + Z wi—1)+we—1

xeVi\{x}

= reg(I(H) + 3 (wi — 1).

x; eVt

Here (I(D) : x;*) = (I(D2), Xk—1,Xk+1) except n = 3,4 and (I(D) : x;*) = (X1, Xx41) for n =3, 4.
For n # 3,4, since D, is a weighted oriented path of length n — 4 in T} or T,, by Theorem 4.2 and
Theorem 4.3, we have

reg((I(D) : x;*)(—(wx))) = reg(I(D2)) + wx
<reg(I(Hy)) + Z (wi — 1) + wy

x,'eV*\{xk}
=reg(I(H,)) + Z (wi—1)+1

x; €Vt
=reg(I(H;)) + Z (wi = 1).

x; eVt

For n = 3,4, reg((I(D) : x;*)(—wk)) = 1 + wy
=reg(I(H)) +wr — 1
<reg((H) + 3 (wi— 1),

xev+
By Lemma 2.6 and exact sequence (1), we get
reg(I(D)) < max{reg((/(D) : x*)(—wx)), reg(I(D), ;") }-
Since reg((I(D) : x;*)(—wx)) — 1 # reg(I(D),x;*), by Lemma 2.6 and exact sequence (1) we have
reg(I(D)) =reg(I(D), x;")
=reg(I(H))) + Y (wi— 1)

x;€VH

=reg(I(G)) + Z (w; —1).

x;i eVt
O

Theorem 4.5 Let D be a weighted oriented cycle of length n for n = 2( mod 3) with underlying graph

G = C, = x1...x,x1 and vertices of V' are sinks. Then reg(I(D)) = reg(I(G)) + Z (wi — 1) where w; =
x; eVt

w(x;) for x; € V.

Proof Here V(D) = {xi,...,x,}. We use the method of induction on the number of vertices of V*.
Base Case: Assume that V™ contains no vertex. Then the proof follows trivially.
Now we consider the case when V' contains m number of vertices for some m > 1. Without loss of
generality, let x; # x, x, be one of the m vertices of V. Let D; = D\ {x;} and H; = G \ {x;} i.e. H] is the
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corresponding underlying graph of D;. By Corollary 2.9, we have reg(I(G)) = reg(I(H;)) + 1. Consider the
exact sequence

R A% UR R
00— ——F——(—(m—1) — — —0 2
o MY D) T g @

Here (I(D),x*"') = (I(Dy),x;* ") where D, is a weighted oriented path of length n — 2. Since the end
vertices of D; can not be in V', D; is in T,. Then by Theorem 4.2, we have

reg(I(Dy)) =reg(I(H\)) + > (w;—1).
x€V\{x}
Thus by Lemma 2.4, we have

reg(I(D),x;* ") =reg(I(D1)) + (we — 1) — 1
—=reg(I(H,)) + Z (wi—1)—1

=reg(I(G)) + Z (wi—1)—2.
x;evV+
Here (I(D) : x{*~") = I(D3) where Djs is a weighted oriented cycle with m — 1 vertices in V*(D3). Thus by
using the induction hypothesis,

reg(1(D3)) = reg(1(G)) + Z (w; —1).
xeVH\{x}

Then reg((I(D) : x;* ")(—(wi — 1)) = reg(I(D3)) +wi — 1 = reg(I(G)) + Z (w; —1). By Lemma 2.6
and exact sequence (2), we have xevE

rea(1(D)) < max{reg((1(D)  x*)(~(ws — 1)), reg((D), 51" ™")}.

Since reg((I(D) : x* ") (—(wx — 1))) — 1 # reg(I(D),x* "), by Lemma 2.6 and exact sequence (2), we
get
reg(I(D)) = reg((I(D) : ¢ ") (=(wi = 1)) = reg(I(G)) + Y (wi = 1).
x; eVt
Hence for any weighted oriented cycle D of length n where n = 2( mod 3) with vertices of V' are sinks,
reg(I(D)) = reg(I(G)) + Z (w; — 1) where w; = w(x;) for x; € V. O

x; eVt

By the computations in Macaulay 2, we have seen that it is even a hard job to relate the regularity of the
edge ideal of a weighted oriented tree with the regularity of edge ideal of its underlying graph when the
vertices of VT are sink.
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