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Abstract Let D be a weighted oriented graph with the underlying graph G and I(D), I(G) be the edge ideals
corresponding to D and G respectively. We show that the regularity of edge ideal of a certain class of
weighted oriented graph remains same even after adding certain kind of new edges to it. We also establish
the relationship between the regularity of edge ideal of weighted oriented path and cycle with the regularity
of edge ideal of their underlying graph when vertices of Vþ are sinks.
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1 Introuduction

A weighted oriented graph is a triplet D ¼ ðVðDÞ;EðDÞ;wÞ; where V(D) is the vertex set, E(D) is the edge
set and w is a weight function w : VðDÞ �! Nþ, where Nþ ¼ f1; 2; . . .g. Specifically E(D) consists of
ordered pairs of the form ðxi; xjÞ which represents a directed edge from the vertex xi to the vertex xj. The
weight of a vertex xi 2 VðDÞ is wðxiÞ, denoted by wi or wxi . We set VþðDÞ :¼ fx 2 VðDÞjwðxÞ� 2g and it is
denoted by Vþ. The underlying graph of D is the simple graph G whose vertex set is same as the vertex set
of D and whose edge set is ffx; ygjðx; yÞ 2 EðDÞg. If VðDÞ ¼ fx1; . . .; xng we can regard each vertex xi as a
variable and consider the polynomial ring R ¼ k½x1; . . .; xn� over a field k. The edge ideal of D is defined as

IðDÞ ¼ ðxixwj

j jðxi; xjÞ 2 EðDÞÞ:

If a vertex xi ofD is a source, we shall always assumewi ¼ 1 because in this case the definition of I(D) does not
depend on the weight of xi: If wðxÞ ¼ 1 for all x 2 V , then I(D) recovers the usual edge ideal of the underlying
graph G, which has been extensively studied in the literature in [1–3, 5, 14, 15]. The interest in edge ideals of
weighted digraphs comes from coding theory, in the study of Reed-Muller types codes. The edge ideal of
weighted digraph appears as initial ideals of vanishing ideals of projective spaces over finite fields [17].
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Algebraic invariants like Cohen-Macaulayness and unmixedness of edge ideals of weighted oriented
graphs have been studied in [9, 11, 18]. In [18], Pitones et al. have characterised the minimal strong property
of D when vertices of Vþ are sinks. Recently, the invariants like Castelnuvo-Mumford regularity and
projective dimension of weighted oriented graphs have drawn the attention of many researchers. In [20],
Zhu et al. have expressed the projective dimension and regularity of edge ideals of some class of weighted
oriented forests or cycles and in [4], Beyarslan et al. gave the formula for projective dimension and
regularity of edge ideals of weighted oriented graphs having the property P defined as follows:

A weighted oriented graph D is said to have property P if there is at most one edge oriented into each
vertex and suppose that for all non-leaf, non-source vertices, xj; either wj � 2 or the unique edge ðxi; xjÞ into
the vertex xj has the property that xi is a leaf.

In general it is a difficult problem to give a general formula for the regularity of edge ideal of an arbitrary
weighted oriented graph even if the regularity of edge ideal of its underlying graph is known as the edge
ideal changes according to the orientation of its edges and its weight function. In this paper we study the
regularity of weighted oriented graphs arising by adding new edges to the weighted oriented graphs having
property P. By studying the regularity of edge ideal of weighted oriented graphs we partially answer one
question asked by H.T. Hà in [12]. Also we establish the relation between the regularity of edge ideal of
weighted oriented graph D and its underlying graph G when D is a weighted oriented path or cycle with
vertices of Vþ are sinks.

This paper is structured as follows. In section 2, we recall all the definitions and results that will be
required for the rest of the paper. In section 3, we prove that the regularity of edge ideal of one or more
weighted oriented graphs with property P remains unchanged even after adding new edges among the
connected and disconnected components (Theorem 3.3). As some applications of Theorem 3.3, we compute
the regularity of edge ideals of some weighted oriented graphs whose underlying graphs are dumbbell graph,
complete graph, join of two cycles and complete m�partite graph. In Theorem 3.10, we prove that the
regularity of edge ideal of a weighted oriented graph with property P remains same even after adding certain
type of oriented edges from new vertices towards a single vertex of it. By using Proposition 3.11, we able to
give the combinatorial conditions for one question asked by H.T. Hà in [12]. In section 4, we compute the
regularity of edge ideal of a weighted oriented path or cycle in terms of regularity of edge ideal of their
underlying graph when vertices of Vþ are sinks.

2 Preliminaries

In this section we present some of the definitions and results that will be needed throughout the paper. Let
D ¼ ðVðDÞ;EðDÞ;wÞ be aweighted oriented graphwith underlyinggraphG ¼ ðVðGÞ;EðGÞÞ. For a vertexu in a
graphG, let NGðuÞ ¼ fv 2 VðGÞjfu; vg 2 EðGÞg be the set of neighbours of u and set NG½u� :¼ NGðuÞ [ fug:
For a subsetW � VðGÞ of the vertices inG, defineG nW to be the subgraphofGwith the vertices inW (and their

incident edges) deleted. Let x be a vertex of the weighted oriented graph D, then the sets Nþ
D ðxÞ ¼ fy : ðx; yÞ 2

EðDÞg and N�
D ðxÞ ¼ fy : ðy; xÞ 2 EðDÞg are called the out-neighbourhood and the in-neighbourhood of x

respectively. Further,NDðxÞ ¼ Nþ
D ðxÞ [ N�

D ðxÞ is the set of neighbourhoods of x and setND½u� :¼ NDðuÞ [ fug:
For T � V ; we define the induced subgraphD ¼ ðVðDÞ;EðDÞ;wÞ ofD to be the weighted oriented graph such
thatVðDÞ ¼ T and for any u; v 2 VðDÞ; ðu; vÞ 2 EðDÞ if and only if ðu; vÞ 2 EðDÞ. HereD ¼ ðVðDÞ;EðDÞ;wÞ
is a weighted oriented graphwith the same orientation as inD and for any u 2 VðDÞ; if u is not a source inD; then
its weight equals to theweight of u inD, otherwise, its weight inD is 1. For a subsetW � VðDÞ of the vertices in
D, define D nW to be the induced subgraph of D with the vertices inW (and their incident edges) deleted. For
Y � EðDÞ; we define D n Y to be a subgraph of D with all edges in Y deleted (but its vertices remained). If
Y ¼ feg for some e 2 EðDÞ; we write D n e in place of D n feg: Define degDðxÞ ¼ jNDðxÞj for x 2 VðDÞ. A
vertex x 2 VðDÞ is called a leaf vertex if degDðxÞ ¼ 1. A vertex x 2 VðDÞ is called a source vertex if NDðxÞ ¼
Nþ
D ðxÞ: A vertex x 2 VðDÞ is called a sink vertex if NDðxÞ ¼ N�

D ðxÞ:
Now we give some algebraic definitions and results. Let k be a field and R ¼ k½x1; . . .; xn� be the

polynomial ring in n variables over k. Suppose that M is a non zero graded R-module with minimal free
resolution

0 �! � � � �! a
j

Rð�jÞb1;jðMÞ �! a
j

Rð�jÞb0;jðMÞ �! M �! 0
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where bi;jðMÞ denote the (i, j)-th graded Betti number of M, is an invariant of M that equals the number of
minimal generators of degree j in the i�th syzygy module of M. The invariant which measures the
complexity of the module is Castelnuvo-Mumford regularity denoted by regðMÞ and defined as

regðMÞ :¼ maxfj� i j bi;jðIÞ 6¼ 0g:

Let I � R be a monomial ideal. Then GðIÞ denotes the set of minimal generators of I. In general, it is difficult
to find the regularity even for monomial ideals. With the help of Betti splitting we can compute this type of
invariant for certain class of ideals. The Betti splitting is defined as follows:

Definition 2.1 Let I be a monomial ideal and suppose that there exist monomial ideals J and K such that
GðIÞ is the disjoint union of GðJÞ and GðKÞ. Then I ¼ J þ K is a Betti splitting if

bi;jðIÞ ¼ bi;jðJÞ þ bi;jðKÞ þ bi�1;jðJ \ KÞ

for all i; j� 0; where bi�1;jðJ \ KÞ ¼ 0 if i ¼ 0:

This formula was first obtained for the total Betti numbers by Eliahou and Kervaire [6] and extended to the
graded case by Fatabbi [7]. In [8], the authors describe the following sufficient conditions for an ideal I to
have a Betti splitting.

Theorem 2.2 [8, Corollary 2.7] Suppose that I ¼ J þ K where GðJÞ contains all the generators of I
divisible by some variable xi and GðKÞ is a nonempty set containing the remaining generators of I. If J has a
linear resolution, then I ¼ J þ K is a Betti splitting.

When I is having a Betti splitting, Definition 2.1 implies the following result:

Corollary 2.3 If I ¼ J þ K is a Betti splitting, then

regðIÞ ¼ maxfregðJÞ; regðKÞ; regðJ \ KÞ � 1g:

Let u 2 R be a monomial, we set SuppðuÞ ¼ fxi : xijug: Let I be a monomial ideal, GðIÞ ¼ fu1; . . .; umg

denote the unique minimal set of monomial generators of I and we set SuppðIÞ :¼
[m

i¼1

SuppðuiÞ: The

following lemmas are well known.

Lemma 2.4 [19, Lemma 3.4] Let R1 ¼ k½x1; . . .; xm� and R2 ¼ k½xmþ1; . . .; xn� be two polynomial rings, I �
R1 and J � R2 be two nonzero homogeneous ideals. Then

regðI þ JÞ ¼ regðIÞ þ regðJÞ � 1:

Lemma 2.5 [10, Lemma 2.3] Let I, J be two monomial ideals such that SuppðIÞ \ SuppðJÞ ¼ /: Then
regðIJÞ ¼ regðIÞ þ regðJÞ:
Lemma 2.6 [10, Lemma 1.2] Let 0 ! A ! B ! C ! 0 be short exact sequence of finitely generated
graded R-modules. Then

regðBÞ � maxfregðAÞ; regðCÞg and the equality holds if regðAÞ �1 6¼ regðCÞ:
Lemma 2.7 [12, Lemma 3.1] Let G ¼ ðV ;EÞ be a simple graph. If G0 is an induced subgraph of G, then
regðIðG0ÞÞ � regðIðGÞÞ:
The following two corollaries are based on the regularity of edge ideal in path and cycle.

Corollary 2.8 [3, Theorem 4.7] Let G be a path of length n denoted as Pn: Then

(a) regðIðPnÞÞ ¼ bnþ 2

3
c þ 1;

(b) regðIðPnÞÞ ¼ regðIðPn�3ÞÞ þ 1 for n� 4:

Corollary 2.9 [3, Theorem 4.7, Theorem 5.2] Let G be a cycle of length n denoted as Cn: Then

(a) if n 	 0; 1ð mod 3Þ; then regðIðGÞÞ ¼ regðIðG n fxgÞÞ ¼ regðIðG n N½x�ÞÞ þ 1 except n ¼ 3; 4 and
regðIðGÞÞ ¼ regðIðG n fxgÞÞ ¼ 2 for n ¼ 3; 4.

(b) if n 	 2ð mod 3Þ; then regðIðGÞÞ ¼ regðIðG n fxgÞÞ þ 1 ¼ regðIðG n N½x�ÞÞ þ 1:
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In order to deal with non square-free monomial ideals, polarization is proved to be a powerful process to
obtain a square-free monomial ideal from a given monomial ideal.

Definition 2.10 Suppose that u ¼ x1
a1 � � � xnan is a monomial in R. Then we define the polarization of u to

be the square-free monomial

PðuÞ ¼ x11x12 � � � x1a1x21x22 � � � x2a2 � � � xn1xn2 � � � xnan
in the polynomial ring RP ¼ k½xij j 1� i� n; 1� j� ai� . If I � R is a monomial ideal with GðIÞ =

fu1; . . .; umg, the polarization of I, denoted by IP is defined as:

IP ¼ ðPðu1Þ; . . .;PðumÞÞ

which is a square-free monomial ideal in the polynomial ring RP .

The following lemma shows that the regularity is preserved under polarization.

Lemma 2.11 [13, Corollary 1.6.3] Let I � R be a monomial ideal and IP � RP its polarization. Then

(a) bijðIÞ ¼ bijðIPÞ for all i and j,
(b) regðIÞ ¼ regðIPÞ:
Next we see the connection of square-free monomial ideals with hypergraphs and labeled hypergraphs.

2.1 Hypergraph

A hypergraph H over X ¼ fx1; . . .; xng is a pair H ¼ ðX;EÞ where X is the set of elements called vertices
and E is a set of non-empty subsets of X called hyperedges or edges. A hypergraph H is simple if there is no
nontrivial containment between any pair of its edges.

The following construction gives a one-to-one correspondence between square-free monomial ideals in
R ¼ k½x1; . . .; xn� and simple hypergraphs over X.

Definition 2.12 Let H be a simple hypergraph on X. For a subset E � X; let xE denote the monomialY

xi2E
xi. Then the edge ideal of H is defined as

IðHÞ ¼ ðxEjE � X is an edge in HÞ � R:

2.2 Labeled Hypergraph

The labeled hypergraph associated to a given square-free monomial ideal I introduced in [16]. In the
definition of labeled hypergraph, generators of the ideal correspond to vertices of the hypergraph and the
edges of the hypergraph correspond to variables which are obtained by the divisibility relations between the
minimal generators of the ideal.

Definition 2.13 [16] Let I � R ¼ k½x1; . . .; xn� be a square-free monomial ideal with minimal monomial
generating set ff1; . . .; flg: The labeled hypergraph of I is the tuple HðIÞ ¼ ðV ;X;E; EÞ: The set V ¼ ½l� is
called the vertex set of H. The set E is called the edge set of H(I) and is the image of the function
E : fx1; . . .; xng �! PðVÞ defined by EðxiÞ ¼ fj : xi divides fjg where PðVÞ represents the power set of V.
Here the set X ¼ fxi : EðxiÞ 6¼ ;g:
The label of an edge F � E is defined as the collection of variables xi 2 fx1; . . .; xng such that EðxiÞ ¼ F:
The number |X| counts the number of labels appearing in H(I) while jEj counts the number of distinct edges.
A vertex v 2 V is closed if fvg 2 E; otherwise, v is open. An edge F 2 E of H(I) is called simple if jFj � 2
and F has no proper subedges other than ;: If every open vertex is contained in exactly one simple edge,
then we say that H(I) has isolated simple edges.

Example 2.14 Let I ¼ ðx1x3x5; x1x2x3; x3x4x5; x4x5x6Þ � k½x1; . . .; x6�: Let f1 ¼ x1x3x5; f2 ¼ x1x2x3; f3 ¼
x3x4x5 and f4 ¼ x4x5x6: Then V ¼ f1; 2; 3; 4g; X ¼ fx1; x2; x3; x4; x5; x6g, and E ¼ ff1; 2g; f2g; f1; 2; 3g;
f3; 4g; f1; 3; 4g; f4gg: See Figure 1.

123

1058 M. Mandal, D. K. Pradhan



3 Some results of regularity in weighted Oriented graphs

In this section, we compute the regularity of R/I(D) for certain class of weighted oriented graph D by
connecting their polarized edge ideal with the labeled hypergraph and using the technique of Betti splitting.
In this section we have considered a particular type of weighted oriented graph having property P as defined
in the introuducion.

The regularity of edge ideal of weighted oriented graph having property P was first studied by Beyarslan
et al. in the following result.

Proposition 3.1 [4, Corollary 3.1] Let D be a weighted oriented graph having property P with weight
function w on the vertices x1; . . .; xn. Then

regðR=IðDÞÞ ¼
Xn

i¼1

wi � jEðDÞj:

Beyarslan et al. have proved the above result using the concept of labeled hypergraph described in [16]. We
noticed that the following result of Lin and McCullough using the concept of isolated simple edges of
labeled hypergraphs will be useful for calculating the regularity of some new class of weighted oriented
graphs.

Proposition 3.2 [16, Theorem 4.12] Let I � R be a square-free monomial ideal and suppose that HðIÞ ¼
ðV ;X;E; EÞ has isolated simple edges. Then

regðR=IÞ ¼ jXj � jV j þ
X

F 2 E
Fsimple

ðjFj � 1Þ:

The following theorem shows that the regularity of edge ideal of one or more weighted oriented graphs with
property P remains unchanged even after adding new edges among the connected and disconnected
components.

Theorem 3.3 Let D1;D2; . . .;Ds for s� 1 are the weighted oriented graphs having property P with weight
function w on vertex sets fx11 ; . . .; xn11g ,fx12 ; . . .; xn22g; . . .; fx1s , . . .; xnssg respectively. Let D be a weighted
oriented graph obtained by adding k new oriented edges among D1;D2; . . .;Ds where every edge is of the
form ðxai ; xbjÞ for some xai 2 VðDiÞ; xbj 2 VðDjÞ (i may equal with j) with wai ;wbj � 2 and no vertex of
N�
Dj
ðxbjÞ is a leaf vertex in Dj: Then

regðR=IðDÞÞ ¼ regðR=IðD1ÞÞ þ � � � þ regðR=IðDsÞÞ:

Proof Here VðDÞ ¼ VðD1Þ [ � � � [ VðDsÞ ¼ fx11 ; . . .; xn11 ; . . .; x1s ; . . .; xnssg: Let jEðD1Þj ¼
e1; . . .; jEðDsÞj ¼ es; then jEðDÞj ¼ e1 þ � � � þ es þ k: Let IðD1Þ; . . .; IðDsÞ; IðDÞ be the edge ideals of the
weighted oriented graphs D1; . . .;Ds;D respectively. Let m1; . . .;me1þ���þesþk be the minimal generators of

the polarized ideal IðDÞP : Suppose k1; . . .; ks number of new edges are oriented towards D1; . . .;Ds where

1 2

34

x1

x3

x2

x4

x5

x6

Figure 1 The labeled hypergraph of I ¼ ðx1x3x5; x1x2x3; x3x4x5; x4x5x6Þ
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k1 þ � � � þ ks ¼ k: Let the k1 new edges are oriented towards r1 vertices of D1 where for any vertex xj1
among those r1 verices wj1 � 2 and no vertex of N�

D1
ðxj1Þ is a leaf vertex in D1: Now we consider the labeled

hypergraph of IðDÞP i.e. HðIðDÞPÞ ¼ ðV ;X;E; EÞ where V ¼ ½e1 þ � � � þ es þ k�: Without loss of generality
let xq1 is one of those r1 vertices and l11 number of new edges are oriented towards xq1 : Since D1 has
property P, jN�

D1
ðxq1Þj ¼ 1 and so jN�

D ðxq1Þj ¼ l11 þ 1: Let the generators corresponding to those l11 þ 1

edges numbered as do; d1; d2; . . .; dl11 where each di 2 ½e1 þ � � � þ es þ k�. Here Eðxq1iÞ ¼
fdo; d1; d2; . . .; dl11g for 2� i�wq1 : Let F11 ¼ Exq12

: Then F11 � E with label fxq1i; 2� i�wq1g. Since no

vertex of N�
D1
ðxq1Þ is a leaf vertex in D1; then no vertex of N�

D ðxq1Þ is a leaf vertex in D. Thus there does not

exist any element of X which lies in the generators of IðDÞP corresponding to some proper subset of F11

which implies F11 is a simple edge. Let us assume l21 ; . . .; lr11 number of new edges are oriented towards
remaining r1 � 1 vertices of D1, then similarly we get F21 ; . . .;Fr11 are the simple edges with cardinality
l21 þ 1; . . .; lr11 þ 1 respectively. Thus jFj1 j ¼ lj1 þ 1 for 1� j� r1 where l11 þ � � � þ lr11 ¼ k1: Let ki new
edges are oriented towards ri vertices of Di for 2� i� s by the definition of new edges. If we assume
l1i ; . . .; lri i number of new edges are oriented towards ri vertices of Di, then similarly we get F1i ; . . .;Frii are
the simple edges with cardinality l1i þ 1; . . .; lrii þ 1 respectively for 2� i� s i.e. jFji j ¼ lji þ 1 for 1� j� ri,
2� i� s where l1i þ � � � þ lrii ¼ ki for each i. Let F ¼ F11 [ � � � [ Fr11 [ � � � [ F1s [ � � � [ Frss and C ¼
V n F: Let Vi � V be the set of vertices corresponding to the minimal generators of IðDiÞP for 1� i� s in

HðIðDÞPÞ.
For c 2 C \ V1; let mc ¼ xi11

Ywj1

t¼1

xj1t i.e. a minimal generator of IðDÞP corresponding to some edge

ðxi1 ; xj1Þ of D1. If xj1 is a leaf in both D1 and D, then mc is the only minimal generator of IðDÞP which is
divisible by xj11 and therefore fcg 2 E with label fxj1t; 1� t�wj1g: In case of xj1 is a leaf in D1 but not in D,
atleast one new edge is oriented away from xj1 ; then by definition of new edges wj1 � 2 and mc is the only

minimal generator of IðDÞP which is divisible by xj12: Therefore fcg 2 E with label fxj1t; 2� t�wj1g: If xj1
is not a leaf in D1, then by assumption since xj1 is not a source, either wj1 � 2 or xi1 is a leaf in D1. If xi1 is a
leaf in D1; then wi1 ¼ 1: Thus none of the new edges are connected with xi1 and xi1 is a leaf in D, then mc is

the only minimal generator of IðDÞP which is divisible by xi11 and fcg 2 E with label fxi11g: If xi1 is not a
leaf in D1 then wj1 � 2 in D1 and so is in D. By the property P of D1, at most one edge is oriented into the
vertex xj1 in D1 and so is in D because no new edge is oriented towards xj1 . Then mc is divisible by xj12 and

none of any other generator of IðDÞP is divisible by xj12: Thus fcg 2 E with label fxj1t; 2� t�wj1g:
Therefore for every c 2 C \ V1; fcg 2 E: By the similar arguement for every c 2 C \ Vi; fcg 2 E where
2� i� s. So every c 2 C is closed. Here each of the remaining edges of E is some image Eðxpi1Þ where xpi is
one of the non-leaf vertex of Di for some i 2 ½s�; p 2 ½ni� and it contains either one Fji for some j 2 ½ri� or
atleast one {c} for some c 2 C \ Vi as a proper subset. Thus they are not simple. Therefore Fji’s are the only

simple edges in the labeled hypergraph HðIðDÞPÞ and by the definition of Fji’s no two Fji’s have a common

element which implies every open vertex is contained in exactly one simple edge i.e. HðIðDÞPÞ has isolated
simple edges. Hence by Lemma 2.11, Proposition 3.2 and Proposition 3.1, we have

regðR=IðDÞÞ ¼ jXj � jVj þ
Xr1

i¼1

ðjFi1 j � 1Þ þ � � � þ
Xrs

i¼1

ðjFis j � 1Þ

¼
X

v2VðD1Þ
wðvÞ þ � � � þ

X

v2VðDsÞ
wðvÞ � ðe1 þ � � � þ es þ kÞ

þ ðl11 þ � � � þ lr11Þ þ � � � þ ðl1s þ � � � þ lrssÞ
¼

X

v2VðD1Þ
wðvÞ þ � � � þ

X

v2VðDsÞ
wðvÞ � ðe1 þ � � � þ es þ kÞ þ k1 þ � � � þ ks

¼
X

v2VðD1Þ
wðvÞ � e1 þ � � � þ

X

v2VðDsÞ
wðvÞ � es

¼ regðR=IðD1ÞÞ þ � � � þ regðR=IðDsÞÞ:

h
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Corollary 3.4 Let D be a weighted oriented graph having property P with weight function w on the
vertices x1; . . .; xn. Let D

0 be a weighted oriented graph obtained by adding k new oriented edges where each
edge is of the form ðxi; xjÞ for some xi; xj 2 VðDÞ with wi; wj � 2 and no vertex of N�

D ðxjÞ is a leaf vertex in D.
Then

regðR=IðD0ÞÞ ¼ regðR=IðDÞÞ:

Proof The proof directly follows from Theorem 3.3 for s ¼ 1: h

In the next two corollaries we give application of Corollary 3.4 into some particular kind of weighted
oriented graphs.

A graph G is called a dumbbell graph if G contains two cycles Cn and Cm of length n and m respectively
joined by a path Pr of length r and we denote it by Cn � Pr � Cm:

A path or cycle is said to be naturally oriented if all of its edges oriented in same direction. In a naturally
oriented unicyclic graph, the cycle is naturally oriented and each edge of the tree connected with the cycle
oriented away from the cycle. A naturally oriented dumbbell graph is the union of two naturally oriented
cycles and a naturally oriented path joining them.

Corollary 3.5 Let D0 ¼ ðVðD0Þ;EðD0Þ;wÞ be a weighted naturally oriented dumbbell graph whose
underlying graph is G ¼ Cn � P1 � Cm where Cn ¼ x1. . .xnx1;P1 ¼ x1y1 and Cm ¼ y1. . .ymy1 with wðxÞ� 2
for any vertex x. Then

regðR=IðD0ÞÞ¼
X

x2VðD0Þ
wðxÞ � jEðD0Þj þ 1:

Proof Here VðD0Þ ¼ fx1; . . .; xn; y1; . . .; ymg: Without loss of generality we give orientation to D0 as shown
in Figure 2. Let D ¼ D0 n e where e ¼ ðym; y1Þ: Since D is a weighted naturally oriented unicyclic graph, it

has property P. Thus by Proposition 3.1, we have regðR=IðDÞÞ ¼
X

x2VðDÞ
wðxÞ � jEðDÞj ¼

X

x2VðD0Þ
wðxÞ �

ðjEðD0Þj � 1Þ: By adding the oriented edge e to D we get D0: Hence by Corollary 3.4,

regðR=IðD0ÞÞ ¼ regðR=IðDÞÞ¼
X

x2VðD0Þ
wðxÞ � jEðD0Þj þ 1: h

x4
x1

x3 x2

xn 2 xn 1 xn

y4
y1

y2 y3

ym−2ym ym 1

Cn Cm

P1

Figure 2 Weighted naturally oriented Dumbbell graph(G ¼ Cn � P1 � Cm)
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Remark 3.6 Similarly we can find the regularity of edge ideal of weighted naturally oriented dumbbell
graph when the two naturally oriented cycles are joined by a naturally oriented path of length r for r� 2:

Corollary 3.7 Let D be a weighted naturally oriented cycle whose underlying graph is Cn ¼ x1. . .xnx1
with wðxÞ� 2 for any vertex x. Let Dk be a weighted oriented graph we get after addition of k diagonals in

any direction to D for 1� k� n
2

� �
� n and here D

n
2

� �
�n

is a weighted oriented complete graph. Then for

each k,

regðR=IðDkÞÞ ¼ regðR=IðDÞÞ ¼
Xn

i¼1

wi � n:

Proof Here VðDkÞ ¼ VðDÞ ¼ fx1; . . .; xng for each k. Since D is a weighted naturally oriented cycle, it has

property P. Thus by Proposition 3.1, regðR=IðDÞÞ ¼
Xn

i¼1

wi � n: Here Dk is obtained by adding k diagonals

with any direction to D, for 1� k� n
2

� �
� n: Hence by Corollary 3.4, we have regðR=IðDkÞÞ ¼

regðR=IðDÞÞ ¼
Xn

i¼1

wi � n for each k. h

As some application of Theorem 3.3, we derive the formulas for regularity of edge ideals of some weighted
oriented graphs whose underlying graphs are the join of two cycles and complete m-partite graph.

The join of two simple graphs G1 and G2, denoted by G1 
 G2 is a graph on the vertex set VðG1Þ t VðG2Þ
and edge set EðG1Þ [ EðG2Þ together with all the edges joining VðG1Þ and VðG2Þ:

A graph G is m�partite graph if VðGÞ ¼ V1 t � � � t Vm where Vi’s are independent set and this
m�partite graph is complete m�partite graph if fx; yg 2 EðGÞ if and only if x 2 Vi, y 2 Viþ1 for 1� i�m
where Vmþ1 ¼ V1.

Corollary 3.8 Let D1 and D2 be two weighted naturally oriented cycles whose underlying graphs are
Cn ¼ x1. . .xnx1 and Cm ¼ y1. . .ymy1 respectively with wðvÞ� 2 for any vertex v. Let D0

k be a weighted
oriented graph we get after addition of k oriented edges joining VðG1Þ and VðG2Þ in any direction between
D1 and D2 for 1� k�mn and here D0

mn is a weighted oriented graph whose underlying graph is Cn 
 Cm:
Then for each k,

regðR=IðD0
kÞÞ ¼ regðR=IðD1ÞÞ þ regðR=IðD2ÞÞ ¼

Xn

i¼1

wxi þ
Xm

i¼1

wyi � ðnþ mÞ:

Proof Here VðD0
kÞ ¼ VðD1Þ [ VðD2Þ ¼ fx1; . . .; xn; y1; . . .; ymg for 1� k�mn. Since D1 and D2 are

weighted naturally oriented cycle, they have property P. Thus by Proposition 3.1, regðR=IðD1ÞÞ ¼

Xn

i¼1

wxi � n and regðR=IðD2ÞÞ ¼
Xm

i¼1

wyi � m. Here D0
k is obtained by adding k new oriented edges joining

VðCnÞ to VðCmÞ in any direction between D1 and D2 for 1� k�mn: Hence by Theorem 3.3 for s ¼ 2, we

have regðR=IðD0
kÞÞ ¼ regðR=IðD1ÞÞ þ regðR=IðD2ÞÞ ¼

Xn

i¼1

wxi þ
Xm

i¼1

wyi � ðnþ mÞ for each k. h

In the following corollary, we give a short proof of [21, Theorem 5.1] using Theorem 3.3.

Corollary 3.9 Let D ¼ ðVðDÞ;EðDÞ;wÞ is a weighted oriented complete m-partite graph for m� 3 with

vertex set VðDÞ ¼
Gm

i¼1

Vi and edge set EðDÞ ¼
Gm

i¼1

EðDiÞ where Di is a weighted oriented complete bipartite

graph on Vi t Viþ1 and every edge of EðDiÞ is of the form (u, v) with u 2 Vi, v 2 Viþ1 for 1� i�m by
setting Vmþ1 ¼ V1. If wðxÞ� 2 for all x 2 VðDÞ, then
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regðR=IðDÞÞ ¼
X

x2VðDÞ
wðxÞ � jVðDÞj:

Proof Let Vi ¼ fx1i; x2i; . . .; xni ig for 1� i�m. For 1� i�m, let D0
i be the oriented graph over vertex set

VðD0
iÞ ¼ Vi t Viþ1 and the edge set EðD0

iÞ ¼ fðx1i; x1iþ1Þ; ðx2i; x2iþ1Þ, . . .; ðxni i; xni iþ1Þg [
fðx1i; xniþ1iþ1Þ; ðx1i; xniþ2iþ1Þ; . . .; ðx1i; xniþ1 iþ1

Þg if ni\niþ1 or the edge set EðD0
iÞ ¼

fðx1i; x1iþ1Þ; ðx2i; x2iþ1Þ; . . .; ðxniþ1 i; xniþ1 iþ1
Þg if ni � niþ1.

Let D0 ¼ ðVðD0Þ;EðD0Þ;wÞ be the weighted oriented m�partite graph over the vertex set VðD0Þ ¼
Gm

i¼1

Vi

and the edge set EðD0Þ ¼
Gm

i¼1

EðD0
iÞ with the same weight function as in D. Observe that in each D0

i, there is

exactly one edge oriented into each vertex of Viþ1 which implies in D0; exactly one edge oriented into each

vertex of VðD0Þ. Thus each component of D0 is with property P. Hence by Proposition 3.1, regðR=IðD0ÞÞ ¼
X

x2VðD0Þ
wðxÞ � jEðD0Þj ¼

X

x2VðD0Þ
wðxÞ � jVðD0Þj ¼

X

x2VðDÞ
wðxÞ � jVðDÞj: Here D is obtained by adding all the

edges of the set EðDÞ n EðD0Þ to D0. If there is s components in D0 for some s� 1, then by Theorem 3.3, we
have

regðR=IðDÞÞ ¼ regðR=IðD0ÞÞ ¼
X

x2VðDÞ
wðxÞ � jVðDÞj:

h

In the following theorem, we show that the regularity of edge ideal of a weighted oriented graph D with
property P remains same even after adding certain type of edges from new vertices oriented towards a single
vertex of it.

Theorem 3.10 Let D be a weighted oriented graph having property P with weight function w on the
vertices x1; . . .; xn. Let D

0
k be a weighted oriented graph after adding k new oriented edges to D at xp with

wp � 2 for a fixed p 2 ½n� where each edge is of the form ðxnþi; xpÞ for some i 2 ½k� and each xnþi is a new
vertex. Then

regðIðD0
kÞÞ ¼ regðIðDÞÞ ¼

Xn

i¼1

wi � jEðDÞj þ 1:

Proof Here VðDÞ ¼ fx1; . . .; xng. Without loss of generality let xp ¼ xn. We prove this theorem by
applying induction on the number of new oriented edges added to D at xn.

Base case: If k ¼ 0, then the proof follows trivially.
For k� 1, let D0

k be a weighted oriented graph after adding the k new oriented edges
ðxnþ1; xnÞ; ðxnþ2; xnÞ; . . ., ðxnþk; xnÞ from new vertices to xn in D where wn � 2. Here IðD0

kÞ ¼ IðD0
k�1Þ þ

xnþkx
wn
n where D0

k�1 ¼ D0
k n fxnþkg. Then IðD0

kÞ
P ¼ IðD0

k�1Þ
P þ xnþk;1

Ywn

j¼1

xnj: Note that in D0
k�1; there are

k � 1 new oriented edges added to D at xn. Let J ¼ xnþk;1

Ywn

j¼1

xnj and K ¼ IðD0
k�1Þ

P : Since J has linear

resolution, IðD0
kÞ

P ¼ J þ K is a Betti splitting. Here regðJÞ ¼ wn þ 1: By Lemma 2.11, Proposition 3.1 and

induction hypothesis, we have regðKÞ ¼ regðIðD0
k�1ÞÞ ¼ regðIðDÞÞ ¼

X

x2VðDÞ
wðxÞ �jEðDÞj þ 1: Now we

want to compute regðJ \ KÞ � 1 (Fig. 3).
Let N�

D0
k
ðxnÞ ¼ fxn�1; xnþ1; xnþ2; . . .; xnþkg where xn�1 2 VðDÞ and xnþ1; xnþ2; . . .; xnþk are the new

vertices in D0
k. Let N

þ
D ðxnÞ ¼ fxn1 ; xn2 ; . . .; xnr ; xnrþ1

; . . .; xnsg among which wni ¼ 1 for 1� i� r and wni � 2

for r þ 1� i� s in D. Let N�
D ðxn�1Þ ¼ fxn�2g and Nþ

D ðxn�1Þ ¼ fxn; xn�11 ; xn�12 ; . . .; xn�1p ; xn�1pþ1
; . . .; xn�1tg

such that xn�11 ; xn�12 ; . . ., xn�1p are leaf vertices and xn�1pþ1
; xn�1pþ2

; . . .; xn�1t are non-leaf vertices in D. Here
the r vertices xn1 ; xn2 ; . . .; xnr are leaf vertices and the t � p vertices xn�1pþ1

; xn�1pþ2
; . . .; xn�1t are of weight

� 2 in D by the property P.
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Let J \ K ¼ JL ¼ ðxnþk;1

Ywn

j¼1

xnjÞððxnþ2;1; xnþ3;1; . . .; xnþk;1; xn�1;1; xn1;1; xn2;1; . . .; xnr ;1,
Ywnrþ1

j¼1

xnrþ1;j;
Ywnrþ2

j¼1

xnrþ2;j; . . .;
Ywns

j¼1

xns;jÞ þ ðIðD n fxn; xn�1gÞPÞ. Let L1 ¼ ð
Ywnrþ1

j¼1

xnrþ1;j ,
Ywnrþ2

j¼1

xnrþ2;j; . . .;
Ywns

j¼1

xns;jÞ

and L2 ¼ ðIðD n fxn; xn�1gÞÞP . Note that regðLÞ ¼ regðL1 þ L2Þ: By expressing L1 as

ðxnrþ1;1

Ywnrþ1

j¼2

xnrþ1;j; xnrþ2;1

Ywnrþ2

j¼2

xnrþ2;j ,. . .; xns;1
Qwns

j¼2 xns;jÞ, we can think of L1 þ L2 as the polarized edge ideal

of the weighted oriented graph with jEðDÞj � ðt þ r þ 2Þ edges obtained from D n fxn; xn�1g by adding one
leaf of weight wni � 1 to each xni for i ¼ r þ 1; . . .; s. Observe that in this graph the s� r vertices
xnrþ1

; . . .; xns ; the t � p vertices xn�1pþ1
; . . .; xn�1t become source vertices and each of its component is with

property P. So we can apply Proposition 3.1 to compute the regðL1 þ L2Þ:
Case-I: Let xn�2 2 Nþ

D ðxnÞ. Then by the property P, xn�2 2 fxnrþ1
; xnrþ2

; . . .; xnsg and wn�1 � 2: Thus by
Lemma 2.5 and Proposition 3.1, we have

regðJ \ KÞ � 1 ¼ regðJÞ þ regðLÞ � 1

¼ regðJÞ þ regðL1 þ L2Þ � 1

¼ ðwn þ 1Þ þ
X

x2VðDÞnV1

wðxÞ þ ð1þ wnrþ1
� 1Þ þ ð1þ wnrþ2

� 1Þ

þ � � � þ ð1þ wns � 1Þ þ ðt � pÞ � ½jEðDÞj � ðt þ r þ 2Þ� þ 1� 1

¼
X

x2VðDÞnV2

wðxÞ � jEðDÞj þ ðt � pÞ þ ðt þ r þ 2Þ þ 1

where V1 ¼ fxn; xn�1; xn1 ; xn2 ; . . .; xnr ; xnrþ1
; . . .; xns ; xn�11 ; . . .; xn�1p ; xn�1pþ1

; . . .; xn�1tg and
V2 ¼ V1 n fxn; xnrþ1

; . . .; xnsg:
Since the sum of the weights of vertices of V2 ¼ wn�1 þ ðwn1 þ wn2 þ � � � þ wnrÞ þ ðwn�11 þ wn�12 þ

� � � þ wn�1pÞ þ ðwn�1pþ1
þ wn�1pþ2

þ � � � þ wn�1tÞ� 2þ r þ pþ 2ðt � pÞ ¼ ðt � pÞ þ ðt þ r þ 2Þ; regðJ \
KÞ � 1� regðKÞ: Thus by Lemma 2.11 and Corollary 2.3, we have

regðIðD0
kÞÞ ¼ regðIðD0

kÞ
PÞ ¼ maxfregðJÞ; regðKÞ; regðJ \ KÞ � 1g ¼ regðKÞ ¼ regðIðDÞÞ:

Case-II: Let xn�2 62 Nþ
D ðxnÞ. If xn�2 is a leaf, then xn�2 become a source vertex which implies wn�2 ¼ 1 and

by the property P, wn�1 � 1: Then we follow the same process of Case-I and see that the value of regðJ \ KÞ
remains same as in Case-I where only V2 is replaced by V2 [ fxn�2g. If xn�2 is not a leaf, wn�2 � 1 and by
the property P, wn�1 � 2: Again we follow the same process of Case-I and see that the value of regðJ \ KÞ

xns

xnr

xnr 1

xn2

xn1

xn 11
xn 12

xn 1p

xn 1p 1

xn 1t

xn 1

xn 2

xn 1

xn 2

xn k

xn

Figure 3 Neighbourhood of xn�1 and xn in weighted oriented graph D0
k
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remains same as in Case-I where V2 also remains same. Wheather xn�2 is a leaf or non-leaf vertex, sum of
the weights of vertices of V2 �ðt � pÞ þ ðt þ r þ 2Þ: Therefore by the similar arguement as in Case-I,
regðIðD0

kÞÞ ¼ regðIðDÞÞ: h

Proposition 3.11 Let D1;D2; . . .;Ds for s� 2 are the weighted oriented graphs having property P with
weight function w on vertex sets fx11 ; . . .; xn11g, fx12 ; . . .; xn22g; . . .; fx1s , . . .; xnssg respectively. Let D be a
weighted oriented graph obtained by adding k new oriented edges among D1;D2; . . .;Ds where every edge is
of the form ðxai ; xbjÞ for some xai 2 VðDiÞ; xbj 2 VðDjÞ; i 6¼ j with wai ;wbj � 2 such that no vertex of N�

Dj
ðxbjÞ

is a leaf vertex in Dj and the set of new edges oriented towards Dt go to a single vertex of Dt for t ¼ 1; . . .; s:
Let k1; . . .; ks number of new edges are oriented towards D1; . . .;Ds where k1 þ � � � þ ks ¼ k and D0

t be the
new weighted oriented graph after addition of the kt new oriented edges to Dt which are oriented towards a
single vertex of it for t ¼ 1; . . .; s: Then

regðR=IðDÞÞ ¼ regðR=IðD0
1ÞÞ þ � � � þ regðR=IðD0

sÞÞ:

Proof By Theorem 3.3, we have regðR=IðDÞÞ ¼ regðR=IðD1ÞÞ þ � � � þ regðR=IðDsÞÞ and by
Theorem 3.10, regðR=IðDtÞÞ ¼ regðR=IðD0

tÞÞ for t ¼ 1; . . .; s: Hence regðR=IðDÞÞ ¼ regðR=IðD0
1ÞÞ

þ � � � þ regðR=IðD0
sÞÞ: h

The above proposition partially answer the following question asked by H.T. Hà in [12].

Question 1 [12, Problem 6.8] Let H;H1; . . .;Hs be simple hypergraphs over the same vertex set X and

assume that EðHÞ ¼
[s

i¼1

EðHiÞ: Find combinatorial conditions for the following equality to hold:

regðS=IðHÞÞ ¼
Xs

i¼1

regðS=IðHiÞÞ:

Observation: Let D;D0
1;D

0
2; . . .;D

0
s and R are same as defined in Proposition 3.11. Let

X ¼ fx111; . . .; x11w11
; . . .; xn111; . . .; xn11wn11

; . . .; x1s1; . . .; x1sw1s
; . . .; xnss1; . . .; xnsswnss

g

and S ¼ RP : If we assume that H;H1; . . .;Hs be the simple hypergraphs over X such that

IðDÞP ; IðD0
1Þ

P ; . . .; IðD0
sÞ

P
are the square-free monomial edge ideals IðHÞ; IðH1Þ; . . ., IðHsÞ respectively

then EðHÞ ¼
[s

i¼1

EðHiÞ and by Proposition 3.11 and Lemma 2.11,

regðS=IðHÞÞ ¼
Xs

i¼1

regðS=IðHiÞÞ:

4 Regularity in weighted Oriented Paths and Cycles

In this section, we relate the regularity of edge ideals of weighted oriented paths or cycles when vertices of
Vþ are sinks with the regularity of edge ideals of their underlying graphs. First we compute the regularity of
edge ideals of weighted oriented paths when vertices of Vþ are sinks.

We divide the set T of all weighted oriented paths when vertices of Vþ are sinks into two sets:
T1: Set of all weighted oriented paths where the two end vertices are in Vþ and the distance between any

two consecutive vertices of Vþ is 3.
Note that the length of any weighted oriented path in T1 is multiple of 3. (See Figure 4.)
T2: Set of remaining weighted oriented paths when the vertices of Vþ are sinks i.e.

x0 x1 x2 x3 x4 x5 x6 xn 3 xn 2 xn 1 xn 3k

Figure 4 A weighted oriented path in T1
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T2 ¼ T n T1:

Remark 4.1 Let D be a weighted oriented path of length n for n� 4 in T2 with underlying graph
G ¼ Pn ¼ x0x1. . .xn: Let D1 ¼ D n fxng, D2 ¼ D n fxn�2; xn�1; xng;D0

1 ¼ D n fx0g and
D0

2 ¼ D n fx0; x1; x2g:
Case-I: Assume n 	 1ð mod 3Þ: Here n� 4 and n ¼ 3k þ 1 for some k 2 N: Then the length of D2 or D

0
2

is 3k � 2 which is not a multiple of 3. Thus both D2 and D0
2 are in T2: If D1 is in T1; then xn�1 2 Vþ which

implies xn 62 Vþ: So one end vertex of D0
1 i.e. xn 62 Vþ: Hence D0

1 is in T2:
Case-II: Assume n 	 2ð mod 3Þ: Here n� 5 and n ¼ 3k þ 2 for some k 2 N: Then the length of D1 and

D2 are 3k þ 1 and 3k � 1 respectively. Note that none of them is a multiple of 3. Hence both D1 and D2 are
in T2:

Case-III: Assume n 	 0ð mod 3Þ: Here n� 6 and n ¼ 3k for some k 2 N: Then the length of D1 or D
0
1 is

3k � 1 which is not a multiple of 3. Thus both D1 and D
0
1 are in T2: If D2 is in T1; then xn�3 2 Vþ: Since D is

in T2; xn 62 Vþ which implies one end vertex of D0
2 i.e. xn 62 Vþ: Hence D0

2 is in T2:
Observe that if D is in T2 then either D1 and D2 or D

0
1 and D0

2 are in T2 in either cases. Thus without loss
of generality we can rename the vertices and always assume that D1 and D2 are in T2:

Theorem 4.2 Let D be a weighted oriented path of length n in T2 with underlying graph G ¼ Pn ¼
x0x1. . .xn: Then regðIðDÞÞ ¼ regðIðGÞÞ þ

X

xi2Vþ

ðwi � 1Þ where wi ¼ wðxiÞ for xi 2 Vþ:

Proof Here VðDÞ ¼ fx0; x1; . . .; xng. We use the method of induction on the number of edges of D and
prove this theorem in different cases depending upon the position of the vertices of Vþ.

Base Case: jEðDÞj � 3:
Assume that jEðDÞj ¼ 3 and VðDÞ ¼ fx0; x1; x2; x3g: If x0; x1 62 Vþ and x3 2 Vþ; then IðDÞ ¼

ðx0x1; x1x2; x2xw3

3 Þ: Let J ¼ ðx2xw3

3 Þ and K ¼ ðx0x1; x1x2Þ: Since J has linear resolution, IðDÞ ¼ J þ K is a
Betti splitting. Here regðJÞ ¼ w3 þ 1 and regðKÞ ¼ 2: Let J \ K ¼ JL where L ¼ ðx0x1; x1Þ which implies
regðJ \ KÞ ¼ w3 þ 2: Thus by Corollary 2.3, we have regðIðDÞÞ ¼ maxfregðJÞ; regðKÞ; regðJ \ KÞ � 1g
¼ w3 þ 1 ¼ regðIðGÞÞ þ w3 � 1: Similarly depending upon the position of the vertices of Vþ using the Betti
splitting technique for any weighted oriented path D in T2 with jEðDÞj � 3; we can show that

regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

Now we consider D to be a weighted oriented path of length n� 4 and VðDÞ ¼ fx0; . . .; xng: Let
D1 ¼ D n fxng, D2 ¼ D n fxn�2; xn�1; xng; H1 ¼ G n fxng and H2 ¼ G n fxn�2; xn�1; xng i.e. H1 and H2 are
the corresponding underlying graphs of D1 and D2 respectively. Without loss of generality by Remark 4.1,
we can fix xn in one end of D such that D1 and D2 are in T2.

Case-I: Assume that xn�2 62 Vþ and xn 2 Vþ. Let J ¼ ðxn�1x
wn
n Þ and K ¼ IðD1Þ: As J has linear

resolution, IðDÞ ¼ J þ K is a Betti splitting and regðJÞ ¼ wn þ 1. Since D1 is the weighted oriented path of

length n� 1 in T2, by induction hypothesis we get regðKÞ ¼ regðIðD1ÞÞ ¼ regðIðH1ÞÞ þ
X

xi2Vþnfxng
ðwi � 1Þ:

Let J \ K ¼ JL where L ¼ ðIðD2Þ; xn�2Þ: Since D2 is the weighted oriented path of length n� 3 in T2, by

induction hypothesis we have regðLÞ ¼ regðIðD2ÞÞ ¼ regðIðH2ÞÞ þ
X

xi2Vþnfxng
ðwi � 1Þ: By Corollary 2.8,

regðIðGÞÞ ¼ regðIðH2ÞÞ þ 1: Thus by Lemma 2.5, we have

regðJ \ KÞ ¼ regðJÞ þ regðLÞ
¼ regðJÞ þ regðIðD2ÞÞ
¼ ðwn þ 1Þ þ regðIðH2ÞÞ þ

X

xi2Vþnfxng
ðwi � 1Þ

¼ regðIðH2ÞÞ þ 1þ
X

xi2Vþnfxng
ðwi � 1Þ þ wn

¼ regðIðGÞÞ þ
X

xi2Vþnfxng
ðwi � 1Þ þ wn

By Lemma 2.7, regðIðH1ÞÞ� regðIðGÞÞ: Thus by Corollary 2.3, we get
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regðIðDÞÞ ¼ maxfregðJÞ; regðKÞ; regðJ \ KÞ � 1g

¼ max wn þ 1; regðIðH1ÞÞ þ
X

xi2Vþnfxng
ðwi � 1Þ; regðIðGÞÞ þ

X

xi2Vþ

ðwi � 1Þ

8
<

:

9
=

;

¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

Case-II: Assume that xn�2 and xn 2 Vþ.
Let J ¼ ðxn�1x

wn
n Þ and K ¼ IðD1Þ: Since J has linear resolution, IðDÞ ¼ J þ K is a Betti splitting. Here

regðJÞ ¼ wn þ 1 and by the same arguement as in Case-I, regðKÞ ¼ regðIðH1ÞÞ þ
X

xi2Vþnfxng
ðwi � 1Þ and

regðJ \ KÞ ¼ regðIðGÞÞ þ
X

xi2Vþnfxng
ðwi � 1Þ þ wn: By the same arguement as in Case-I and Corollary 2.3,

regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

Case-III: Assume that xn�1 2 Vþ.
Let J ¼ ðxnxwn�1

n�1 Þ and K ¼ IðD1Þ: Since J has linear resolution, IðDÞ ¼ J þ K is a Betti splitting. Here

regðJÞ ¼ wn�1 þ 1 and by the same arguement as in Case-I, regðKÞ ¼ regðIðH1ÞÞ þ
X

xi2Vþ

ðwi � 1Þ and

regðJ \ KÞ ¼ regðIðGÞÞ þ
X

xi2Vþnfxn�1g
ðwi � 1Þ þ wn�1: By the same arguement as in Case-I and Corollary

2.3, regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

Case-IV: Assume that xn�2 2 Vþ and xn 62 Vþ.
Let J ¼ ðxn�1xnÞ and K ¼ IðD1Þ: Since J has linear resolution, IðDÞ ¼ J þ K is a Betti splitting. Here

regðJÞ ¼ 2 and by the same arguement as in Case-I, regðKÞ ¼ regðIðH1ÞÞ þ
X

xi2Vþ

ðwi � 1Þ and regðJ \ KÞ ¼

regðIðGÞÞ þ
X

xi2Vþnfxn�2g
ðwi � 1Þ þ wn�2: By the same arguement as in Case-I and Corollary 2.3,

regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

Case-V: Assume that xn�2; xn�1 and xn 62 Vþ:
Let J ¼ ðxn�1xnÞ and K ¼ IðD1Þ: Since J has linear resolution, IðDÞ ¼ J þ K is a Betti splitting. Here

regðJÞ ¼ 2 and by the same arguement as in Case-I, regðKÞ ¼ regðIðH1ÞÞ þ
X

xi2Vþ

ðwi � 1Þ and regðJ \ KÞ ¼

regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ þ 1: By the same arguement as in Case-I and Corollary 2.3,

regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

Hence for any weighted oriented path D of length n in T2,

regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ where wi ¼ wðxiÞ for xi 2 Vþ:

h

Theorem 4.3 Let D be a weighted oriented path of length n in T1 with underlying graph G ¼ Pn ¼
x0x1 � � � xn: Then regðIðDÞÞ ¼ regðIðGÞÞ þ

X

xi2Vþnfxjg
ðwi � 1Þ where wi ¼ wðxiÞ for xi 2 Vþ and xj is one of

the vertices of Vþ with minimum weight.

Proof Here VðDÞ ¼ fx0; x1; . . .; xng. By the definition of T1; G ¼ Pn ¼ P3k for some k 2 N: We use the
method of induction on k (Fig. 5).

Base Case: If k ¼ 1; then IðDÞ ¼ ðxw0

0 x1; x1x2; x2x
w3

3 Þ: Let J ¼ ðx2xw3

3 Þ and K ¼ ðxw0

0 x1; x1x2Þ: Since J has
linear resolution, IðDÞ ¼ J þ K is a Betti splitting. Here regðJÞ ¼ w3 þ 1 and regðKÞ ¼ w0 þ 1: Let J \
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K ¼ JL where L ¼ ðxw0

0 x1; x1Þ which implies regðJ \ KÞ ¼ w3 þ 2: Thus by Corollary 2.3, we have
regðIðDÞÞ ¼ maxfregðJÞ; regðKÞ, regðJ \ KÞ � 1g ¼ maxfw0 þ 1;w3 þ 1g ¼ 2þmaxfw0 � 1;w3 � 1g
¼ regðIðGÞÞ þmaxfw0 � 1;w3 � 1g:

Now we consider the case n ¼ 3k for some k[ 1: Let D1 ¼ D n fxng, D2 ¼ D n fxn�2; xn�1; xng; H1 ¼
G n fxng and H2 ¼ G n fxn�2; xn�1; xng i.e. H1 and H2 are the corresponding underlying graphs of D1 and D2

respectively. Here IðDÞ ¼ ðxw0

0 x1; x1x2, x2x
w3

3 ; . . .; xwn�3

n�3 xn�2; xn�2xn�1; xn�1x
wn
n Þ: Let J ¼ ðxn�1x

wn
n Þ and K ¼

IðD1Þ: Since J has linear resolution, IðDÞ ¼ J þ K is a Betti splitting. Here regðJÞ ¼ wn þ 1: Since
xn�1 62 Vþ, D1 is a weighted oriented path of length n� 1 in T2: By Corollary 2.8, regðIðGÞÞ ¼ regðIðH1ÞÞ:
Thus by Theorem 4.2, we have

regðKÞ ¼ regðIðD1ÞÞ ¼ regðIðH1ÞÞ þ
X

xi2Vþnfxng
ðwi � 1Þ ¼ regðIðGÞÞ þ

X

xi2Vþnfxng
ðwi � 1Þ:

Let J \ K ¼ JL where L ¼ ðIðD2Þ; xn�2Þ and D2 is a weighted oriented path of length n� 3 ¼ 3ðk � 1Þ in
T1: Thus by the induction hypothesis, we get

regðLÞ ¼ regðIðD2ÞÞ ¼ regðIðH2ÞÞ þ
X

xi2Vþnfxn;xmg
ðwi � 1Þ

where xm is one of vertices of VþðD2Þ with minimum weight. By Corollary 2.8, regðIðGÞÞ ¼ regðIðH2ÞÞ þ
1: Thus by Lemma 2.5, we have

regðJ \ KÞ ¼ regðJÞ þ regðLÞ
¼ regðJÞ þ regðIðD2ÞÞ
¼ ðwn þ 1Þ þ regðIðH2ÞÞ þ

X

xi2Vþnfxn;xmg
ðwi � 1Þ

¼ regðIðH2ÞÞ þ 1þ
X

xi2Vþnfxn;xmg
ðwi � 1Þ þ wn

¼ regðIðGÞÞ þ
X

xi2Vþnfxn;xmg
ðwi � 1Þ þ wn

Therefore by Corollary 2.3, we get

regðIðDÞÞ ¼ maxfregðJÞ; regðKÞ; regðJ \ KÞ � 1g

¼ max wn þ 1; regðIðGÞÞ þ
X

xi2Vþnfxng
ðwi � 1Þ; regðIðGÞÞ þ

X

xi2Vþnfxmg
ðwi � 1Þ

8
<

:

9
=

;

¼ regðIðGÞÞ þ
X

xi2Vþnfxjg
ðwi � 1Þ

where xj ¼ minfxn; xmg i.e. xj is one of the vertices of Vþ with minimum weight.
Hence for any weighted oriented path D of length n in T1,

regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþnfxjg
ðwi � 1Þ

where wi ¼ wðxiÞ for xi 2 Vþ and xj is one of the vertices of Vþ with minimum weight. h

Theorem 4.4 Let D be a weighted oriented cycle of length n for n 	 0; 1ð mod 3Þ with underlying graph

G ¼ Cn ¼ x1. . .xnx1 and vertices of Vþ are sinks. Then regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ where wi ¼

wðxiÞ for xi 2 Vþ:

x0 x1 x2 x3 x4 x5 x6 xn 3 xn 2 xn 1 xn 3k

Figure 5 A weighted oriented path in T1
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Proof Here VðDÞ ¼ fx1; . . .; xng. Without loss of generality, let xk 6¼ x1; xn be one of the vertices of Vþ.
Let D1 ¼ D n fxkg; D2 ¼ D n ND½xk�; H1 ¼ G n fxkg and H2 ¼ G n NG½xk� i.e. H1 and H2 are the corre-
sponding underlying graphs of D1 and D2 respectively. By Corollary 2.9, regðIðGÞÞ ¼ regðIðH1ÞÞ ¼
regðIðH2ÞÞ þ 1 except n ¼ 3; 4 and regðIðGÞÞ ¼ regðIðH1ÞÞ ¼ 2 for n ¼ 3; 4.

Now consider the exact sequence

0 �! R

ðIðDÞ : xwk

k Þð�wkÞ�!
:x

wk
k R

IðDÞ �!
R

ðIðDÞ; xwk

k Þ �! 0 ð1Þ

Here ðIðDÞ; xwk

k Þ ¼ ðIðD1Þ; xwk

k Þ where D1 is a weighted oriented path of length n� 2. Since the end vertices
of D1 can not be in Vþ; D1 is in T2. Thus by Lemma 2.4 and Theorem 4.2, we have

regðIðDÞ; xwk

k Þ ¼ regðIðD1ÞÞ þ wk � 1

¼ regðIðH1ÞÞ þ
X

xi2Vþnfxkg
ðwi � 1Þ þ wk � 1

¼ regðIðH1ÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

Here ðIðDÞ : xwk

k Þ ¼ ðIðD2Þ; xk�1; xkþ1Þ except n ¼ 3; 4 and ðIðDÞ : xwk

k Þ ¼ ðxk�1; xkþ1Þ for n ¼ 3; 4:
For n 6¼ 3; 4; since D2 is a weighted oriented path of length n� 4 in T1 or T2; by Theorem 4.2 and

Theorem 4.3, we have

regððIðDÞ : xwk

k Þð�ðwkÞÞÞ ¼ regðIðD2ÞÞ þ wk

� regðIðH2ÞÞ þ
X

xi2Vþnfxkg
ðwi � 1Þ þ wk

¼ regðIðH2ÞÞ þ
X

xi2Vþ

ðwi � 1Þ þ 1

¼ regðIðH1ÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

For n ¼ 3; 4; regððIðDÞ : xwk

k Þð�wkÞÞ ¼ 1þ wk

¼ regðIðH1ÞÞ þ wk � 1

� regðIðH1ÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

By Lemma 2.6 and exact sequence (1), we get

regðIðDÞÞ� maxfregððIðDÞ : xwk

k Þð�wkÞÞ; regðIðDÞ; xwk

k Þg:

Since regððIðDÞ : xwk

k Þð�wkÞÞ � 1 6¼ regðIðDÞ; xwk

k Þ; by Lemma 2.6 and exact sequence (1) we have

regðIðDÞÞ ¼regðIðDÞ; xwk

k Þ
¼regðIðH1ÞÞ þ

X

xi2Vþ

ðwi � 1Þ

¼regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ:

h

Theorem 4.5 Let D be a weighted oriented cycle of length n for n 	 2ð mod 3Þ with underlying graph

G ¼ Cn ¼ x1. . .xnx1 and vertices of Vþ are sinks. Then regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ where wi ¼

wðxiÞ for xi 2 Vþ:

Proof Here VðDÞ ¼ fx1; . . .; xng. We use the method of induction on the number of vertices of Vþ:
Base Case: Assume that Vþ contains no vertex. Then the proof follows trivially.
Now we consider the case when Vþ contains m number of vertices for some m� 1: Without loss of

generality, let xk 6¼ x1; xn be one of the m vertices of Vþ: Let D1 ¼ D n fxkg and H1 ¼ G n fxkg i.e. H1 is the
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corresponding underlying graph of D1. By Corollary 2.9, we have regðIðGÞÞ ¼ regðIðH1ÞÞ þ 1: Consider the
exact sequence

0 �! R

ðIðDÞ : xwk�1
k Þ

ð�ðwk � 1ÞÞ �!
:x

wk�1

k R

IðDÞ �!
R

ðIðDÞ; xwk�1
k Þ

�! 0 ð2Þ

Here ðIðDÞ; xwk�1
k Þ ¼ ðIðD1Þ; xwk�1

k Þ where D1 is a weighted oriented path of length n� 2. Since the end
vertices of D1 can not be in Vþ; D1 is in T2. Then by Theorem 4.2, we have

regðIðD1ÞÞ ¼ regðIðH1ÞÞ þ
X

xi2Vþnfxkg
ðwi � 1Þ:

Thus by Lemma 2.4, we have

regðIðDÞ; xwk�1
k Þ ¼regðIðD1ÞÞ þ ðwk � 1Þ � 1

¼regðIðH1ÞÞ þ
X

xi2Vþ

ðwi � 1Þ � 1

¼regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ � 2:

Here ðIðDÞ : xwk�1
k Þ ¼ IðD3Þ where D3 is a weighted oriented cycle with m� 1 vertices in VþðD3Þ. Thus by

using the induction hypothesis,

regðIðD3ÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþnfxkg
ðwi � 1Þ:

Then regððIðDÞ : xwk�1
k Þð�ðwk � 1ÞÞÞ ¼ regðIðD3ÞÞ þ wk � 1 ¼ regðIðGÞÞ þ

X

xi2Vþ

ðwi � 1Þ: By Lemma 2.6
and exact sequence (2), we have

regðIðDÞÞ� maxfregððIðDÞ : xwk�1
k Þð�ðwk � 1ÞÞÞ; regðIðDÞ; xwk�1

k Þg:

Since regððIðDÞ : xwk�1
k Þð�ðwk � 1ÞÞÞ � 1 6¼ regðIðDÞ; xwk�1

k Þ; by Lemma 2.6 and exact sequence (2), we
get

regðIðDÞÞ ¼ regððIðDÞ : xwk�1
k Þð�ðwk � 1ÞÞÞ ¼ regðIðGÞÞ þ

X

xi2Vþ

ðwi � 1Þ:

Hence for any weighted oriented cycle D of length n where n 	 2ð mod 3Þ with vertices of Vþ are sinks,

regðIðDÞÞ ¼ regðIðGÞÞ þ
X

xi2Vþ

ðwi � 1Þ where wi ¼ wðxiÞ for xi 2 Vþ: h

By the computations in Macaulay 2, we have seen that it is even a hard job to relate the regularity of the
edge ideal of a weighted oriented tree with the regularity of edge ideal of its underlying graph when the
vertices of Vþ are sink.
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