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Abstract In this paper we construct a quantum extension of the Laguerre semigroup and study its prop-
erties. In particular we show that it has a unique pure invariant state and any initial state converges to this
invariant state. For initial states satisfying a finite energy condition, convergence is exponentially fast.
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1 Introduction

Quantum Markov semigroups (QMS) are weakly *-continuous semigroups of completely positive, identity
preserving and normal maps on a von Neumann algebra. They are a natural generalization of classical
Markov semigroups on a function space, which is replaced in quantum theory by a non-commutative
operator algebra. Moreover, they also arise from scaling limits of quantum systems interacting with external
environments (see e.g. [2, 7]).

Often a QMS on a non-commutative von Neumann algebra leaves invariant an abelian subalgebra. In
this way one identifies a classical Markov process by restriction of a quantum Markov process.

P.-A. Meyer pointed out that a classical finite Markov chain in continuous time could be found in this
way and also viewed upon as an Evans-Hudson diffusion (see [11]). In a subsequent paper, K.R. Partha-
sarathy and K.B. Sinha [19] showed that whenever the structure maps of Evans-Hudson are defined on a
commutative �-algebra of operators, the whole Evans-Hudson diffusion is commutative or, equivalently, is a
classical stochastic process even though the driving quantum noises are non-commutative. This fact enabled
them to construct a whole class of continuous-time Markov chains as Evans-Hudson diffusions by using
general group actions.
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Later the first author [12, 14] showed that also elliptic diffusions on Rd with smooth covariance and drift
can be realised in the same way. Several other processes have also been considered in the literature, one can
see, for example the recent paper [4] and the references therein.

These constructions are based on the identification of a generalized Gorini-Kossakowski-Sudharshan-
Lindblad (GKSL) representation of the generator and the proof that the corresponding minimal QMS is
Markov. The main difficulty stems from the proof that the minimal QMS is identity preserving.

Carrying on this program becomes much more difficult when one considers domains with boundaries or
elliptic degenerate diffusion (see [5, 13]). This happens also in the classical case where the construction of a
Markov semigroup and the characterisation of the domain of the generator are typically a non-trivial
problem (see [3, 10]).

In this paper we construct a quantum extension of the Laguerre semigroup whose generator (2.1) is
elliptic degenerate on a domain with boundary and we study its properties. In particular we show (Theo-
rem 4.1) that it has a unique pure invariant state, the ground state of the Laguerre operator. Moreover, any
initial state converges to this invariant state and, if it satisfies a finite energy condition, convergence is
exponentially fast.

The paper is organised as follows. In Section 2 we find a generalized GKSL representation of the
generator of the classical Laguerre semigroup. Then, in Section 3 we prove (Theorem 3.2) that the minimal
semigroup is identity preserving for a� 1 and, in this case, it is an extension of the classical Laguerre
semigroup (Theorem 3.3). Finally, in Section 4, we show that, the quantum extension of the classical
Laguerre semigroup that we constructed for a� 1 has a unique pure invariant state and initial states
satisfying a finite energy condition converge exponentially fast to this invariant state (Theorem 4.1).

2 GKSL representation of the generator

The Laguerre operator, as Markovian pre-generator of a diffusion process on ð0;þ1Þ, is typically defined
on the space C1

c ðð0;þ1Þ;CÞ with compact support by

ðAaf ÞðxÞ ¼
1

2
xf 00ðxÞ þ ðaþ 1� xÞf 0ðxÞð Þ ð2:1Þ

where a� 0. It is well-known (see e.g. [10] Chapter 8, Theorem 2.1) that Aa (actually 2Aa but the constant 2,
of course, plays no role) is closable and its closure generates a strongly continuous contraction semigroup
ðTtÞt� 0 of positive maps on the Banach space of complex-valued continuous functions on ð0;þ1Þ van-

ishing at 0 and þ1. Moreover, adjoining the constant function 1, and defining Tt1 ¼ 1 for all t� 0, one
finds the Markov semigroup of the classical Laguerre diffusion process (see [3] Sect. 2.7.3, page 113). This
is a strongly continuous semigroup on the abelian C�-algebra A of continuous function on ð0;þ1Þ with the
same limits at 0 and þ1. It is worth noticing here that these boundary conditions on the generator play
some role only for a\1(see [9] Th. 2.1).

We now define a quantum extension (see [14], Chapter 4). Throughout the paper BðhÞ will denote the
von Neumann algebra of all bounded operators on a complex separable Hilbert space h.

Definition 2.1 A quantum Markov semigroup ðT tÞt� 0 on BðhÞ is a quantum extension of a classical
Markov semigroup ðTtÞt� 0 on a commutative unital C� algebra A if A is a subalgebra of BðhÞ and

T tðaÞ ¼ TtðaÞ for all t� 0 and a 2 A.

Since the operator Aa is unbounded, the candidate generator of a QMS extending the semigroup gen-
erated by Aa will also be so. QMSs with unbounded generators can be effectively constructed by the
minimal semigroup method (see e.g. [14, 17] and the references therein) whenever one can find a gener-
alized GKSL representation of the generator which can be formally written as
LðXÞ ¼ G�X þ

P
‘ L

�
‘XL‘ þ XG. To be precise, we make the following definition (see [14, Chapter 4]).

Definition 2.2 The infinitesimal generator A of a strongly continuous semigroup ðTtÞt� 0 defined on an
abelian C� algebra A is said to be represented in a generalized GKSL form on BðhÞ if A is a subalgebra of
BðhÞ and there exist operators G and fL‘g‘� 1 on h such that

(i) the operator G is the infinitesimal generator of a strongly continuous contraction semigroup ðPtÞt� 0

on h,
(ii) for ‘� 1; the domain of the operators L‘ contains the domain of G,
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(iii) for all u; v 2 DomðGÞ; we have

hv;Gui þ
X

‘� 1

hL‘v;L‘ui þ hGv; ui ¼ 0;

where the series is absolutely convergent,

(iv) for all u; v 2 DomðGÞ and all f 2 DomðAÞ, we have

hv; ðAf Þui ¼ hv; fGui þ
X

‘� 1

hL‘v; fL‘ui þ hGv; fui:

Assumptions (i), (ii) and (iii) are needed for constructing a quantum Markov semigroup by the minimal
semigroup method.

In this section, we show how to choose the unbounded operators for a generalized GKSL representation
of a candidate generator of a quantum extension of the Laguerre semigroup. In other words, we decide what
choices can be made for h;G and L‘ in Definition 2.2 when A is as given by (2.1). Note that in this case, (iv)
of Definition 2.2 reduces to the following condition:

for all u; v 2 DomðGÞ and all f 2 C1
c ðð0;þ1Þ;CÞ, or f constant, we have

hv; ðAaf Þui ¼ hv; fGui þ
X

‘� 1

hL‘v; fL‘ui þ hGv; fui:

For the moment, we only do algebraic calculations, analytical and technical aspects will be considered later.
As a first step, following the scheme introduced in (Sections 4.1 and 4.2, [14]) we first compute

ðAafgÞðxÞ � f ðxÞðAagÞðxÞ � ðAaf ÞðxÞgðxÞ ¼ xf 0ðxÞg0ðxÞ:

Comparison with the known formula for the (bounded) generator L of a QMS

LðX�YÞ � X�LðYÞ � LðX�ÞY ¼
X

‘

½L‘;X��½L‘;Y �

for all X, Y in BðhÞ, leads us to consider a GKSL generator with only one operator L with domain containing
functions in C1

c ðð0;þ1Þ;CÞ acting as follows

ðLuÞðxÞ ¼ x1=2ðoxuÞðxÞ ¼ x1=2u0ðxÞ: ð2:2Þ

where ox denotes the derivative with respect to x. Indeed, denoting by M(f) the multiplication operator by a

smooth function f, the commutator [L, M(f)] is the multiplication operator Mðx1=2f 0Þ by the function x !
x1=2f 0ðxÞ and so

½L;Mðf Þ��½L;MðgÞ� ¼ Mðx �f 0g0Þ:

As Hilbert space h we consider L2ðð0;þ1Þ; xae�xdxÞ where the choice of the weight function xae�x is
motivated by the fact that it is the unique invariant measure of the classical Laguerre diffusion process. A

simple computation shows that the adjoint of L is an extension of the operator Ly on C1
c ðð0;þ1Þ;CÞ

ðLyvÞðxÞ ¼ �x1=2v0ðxÞ � aþ 1

2

� �
vðxÞ
x1=2

þ x1=2vðxÞ:

With the above choice of L and Ly we can consider the formal GKSL generator

LðXÞ ¼ � 1

2
LyLX þ LyXL� 1

2
XLyL

and compute
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LðMðf ÞÞ ¼ 1

2
Ly½Mðf Þ; L� þ ½Ly;Mðf Þ�L
� �

¼ 1

2
oxMðx1=2ÞMðx1=2 f 0Þ �Mðx1=2 f 0ÞMðx1=2Þ ox

� �

þ 1

2
Mðax�1=2 � x1=2ÞMðx1=2 f 0Þ

¼ 1

2
ox;Mðxf 0Þ½ � þ 1

2
Mðða� xÞf 0Þ

¼ 1

2
Mðxf 00 þ ðaþ 1� xÞf 0Þ

¼MðAaf Þ:

ð2:3Þ

Therefore it follows that the condition (iv) of Definition 2.2 is also satisfied as (2.3) and the condition (iv) of
Definition 2.2 are equivalent due to the scheme introduced in (Sections 4.1 and 4.2, [14]).

It is worth noticing here that the operator �LyL acts on C1
c ðð0;þ1Þ;CÞ as follows

�ðLyLuÞðxÞ ¼ xu00ðxÞ þ ðaþ 1� xÞu0ðxÞ ð2:4Þ

therefore it coincides with the Laguerre operator 2Aa on C1
c ðð0;þ1Þ;CÞ and ð�1=2ÞLyL is a good can-

didate for a generator of a strongly continuous contraction semigroup the Hilbert space h.

Remark The above choice of the GKSL representation is not unique. One could check by similar com-
putations that the following operators defined on smooth functions with compact support

ðLuÞðxÞ ¼x1=2u0ðxÞ þ gðxÞuðxÞ

ðLyuÞðxÞ ¼ � x1=2u0ðxÞ � aþ 1

2

� �
uðxÞ
x1=2

þ x1=2uðxÞ þ gðxÞuðxÞ

ðHuÞðxÞ ¼ � i

2
nðxÞu0ðxÞ � i

2
ðnuðxÞÞ0 þ i

2
1� a

x

� �
nðxÞuðxÞ

where g and n are two functions on ð0;þ1Þ satisfying
nðxÞ þ nðxÞ ¼ x1=2 gðxÞ þ gðxÞð Þ

would give another GKSL representation of Aa, namely for all smooth function f,

LðMðf ÞÞ þ i½H;Mðf Þ� ¼ MðAaf Þ:

However, here we consider g ¼ n ¼ 0 for which G coincides with a Laguerre operator as an operator on h;
other choices lead to difficult problems on semigroup generation. Indeed, one may work with another
operator G which is a perturbation of the Laguerre operator with a singular potential.

We end this section by addressing the problem of self-adjoint extensions of the operator LyL defined on
smooth functions with compact support.

Proposition 2.3 The closure of the operator LyL defined on the space C1
c ðð0;þ1Þ;CÞ by (2.4) is self-

adjoint for a� 1.

Proof The operator LyL is clearly closable because it is symmetric on C1
c ðð0;þ1Þ;CÞ and so it has a

densely defined adjoint
By Theorem 2.1 of [9] its closure generates a C0 semigroup, and therefore is self-adjoint, if the function

x 7!
Z 1

x

y�ðaþ1Þey dy

Z 1

y

zae�z dz ð2:5Þ

is not in L2ðð0; 1Þ; xae�xdxÞ and not in L2ðð1;1Þ; xae�xdxÞ. Square integrability in a neighborhood of 0
depends in the behaviour of the integrand near 0. Now, for x� 0 and a[ � 1, we have
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y�ðaþ1Þey
Z 1

y

zae�z dz� cay
�ðaþ1Þey

where ca ¼
R 1

0
zae�z dz so that the leading part of (2.5) in a neighbourhood of 0 is

x ! ca

Z 1

x

y�ðaþ1Þdy� a�1cax
�a

for a[ 0. As a consequence (2.5) belongs to L2ðð0; 1Þ; xae�xdxÞ if and only if 0\a\1. In a similar way, for
a ¼ 0, the leading term of (2.5) in a neighbourhhood of 0 is �c0 logðxÞ and (2.5) belongs to

L2ðð0; 1Þ; xae�xdxÞ. Summing up, (2.5) is not in L2ðð0; 1Þ; xae�xdxÞÞ if and only if a� 1.
Now, for all x� þ1, we have

Z 1

x

y�ðaþ1Þey dy

Z 1

y

zae�z dz ¼
Z x

1

y�ðaþ1Þey dy

Z y

1

zae�z dz

The asymptotic behaviour of integrand, for large y, is �Cðaþ 1Þy�ðaþ1Þey and (2.5) diverges as x goes to
þ1. Moreover, by L’Hôpital’s rule

lim
x!þ1

R x
1
y�ðaþ1Þey dy

R y
1
zae�z dz

x�ðaþ1Þex
¼ lim

x!þ1

x�ðaþ1Þex
R x
1
zae�z dz

x�ðaþ1Þex � ðaþ 1Þx�ðaþ2Þex

¼
Z þ1

1

zae�z dz

\1:

Therefore (2.5) is not in L2ðð1;1Þ; xae�xdxÞ for all a� 0 and the conclusion follows. h

Remark By applying Theorem 2.2 of [9] one can see, by the same arguments, that the closure of LyL
defined on C1

c ðð0;þ1Þ;CÞ by (2.4) is not self-adjoint for 0� a\1.

3 Minimal semigroup and conservativity

The discussion in the previous section shows that a natural candidate as operator G is an extension of � 1
2
LyL

that generates a strongly continuous contraction semigroup on the complex Hilbert space

h ¼ L2ðð0;þ1Þ; xae�xdxÞ. Moreover, some extension of the operator L defined by (2.2) is a natural can-
didate as L1 and all the remaining L‘ are zero.

As we noted in the previous section, for all u 2 C1
c ðð0;þ1Þ;CÞ we have

� 1

2
LyLu ¼ Aau: ð3:1Þ

By Proposition 2.3, the closure in h of LyL defined on C1
c ðð0;þ1Þ;CÞ is self-adjoint for a� 1. In this case

it coincides with �2G where G is the self-adjoint operator defined through its spectral decomposition

DomðGÞ ¼ u 2 h j
X

n� 0

n2 hu; enij j2\1
( )

Gu ¼�
X

n� 1

n

2
jenihenj u

¼�
X

n� 1

n

2
unen

ð3:2Þ

where un :¼ hen; ui; n� 1; and ðenÞn� 0 is the orthonormal system obtained by normalization of generalized
Laguerre polynomials ðpnÞn� 0 satisfying

xp00nðxÞ þ ðaþ 1� xÞp0nðxÞ ¼ �npnðxÞ:
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In particular

p0ðxÞ ¼ 1; p1ðxÞ ¼ �xþ aþ 1; . . . ; pnðxÞ ¼
x�aex

n!

dn

dxn
xaþne�xð Þ

and

enðxÞ ¼
n!

ðnþ aÞ!

� �1=2

pnðxÞ:

We refer to [3, 21, 22] for more details. The case where a\1, in which the domain C1
c ðð0;þ1Þ;CÞ is no

more a core for G, will be studied in another paper.
We now complete the construction of the minimal semigroup. Let G be the negative self-adjoint operator

defined by (3.2), let ðPtÞt� 0 be the strongly continuous contraction semigroup on h generated by G which is
also analytic for a� 1 because G is negative self-adjoint.

Let L be the operator defined as:

DomðLÞ ¼ DomðGÞ; ðLuÞðxÞ ¼ x1=2u0ðxÞ ð3:3Þ

Then obviously G and L satisfy conditions (i) (ii) and (iii) of Definition 2.2. We have already noted from
(2.3) that the condition (iv) of Definition 2.2 holds. Therefore we found a generalized GKSL representation
of the generator (2.1).

The minimal semigroup associated with operators G, L (see, for instance, [6, 14]) is constructed, on
elements x of BðhÞ, by means of the non decreasing sequence of positive maps ðT ðnÞ

t Þn� 0 defined, by
recurrence, as follows

T ð0Þ
t ðxÞ ¼P�

t xPt;

v; T ðnþ1Þ
t ðxÞu

D E
¼ Ptv; xPtuh i þ

Z t

0

LPt�sv; T ðnÞ
s ðxÞLPt�su

D E
ds

ð3:4Þ

for all x 2 BðhÞ, t� 0, v; u 2 DomðGÞ. Indeed, we have

T tðxÞ ¼ sup
n� 0

T ðnÞ
t ðxÞ

for all positive x 2 BðhÞ and all t� 0. The definition of positive maps T t is then extended to all the elements
of BðhÞ by linearity. The minimal semigroup associated with G, L satisfies the integral equation

hv; T tðxÞui ¼hv; xui

þ
Z t

0

hGv; T sðxÞui þ hLv; T sðxÞLui þ hv; T sðxÞGuið Þds
ð3:5Þ

for all x 2 BðhÞ, t� 0, v; u 2 DomðGÞ. Moreover, it is the unique solution to the above equation if and only
if it is conservative (or Markov) i.e. T tð1Þ ¼ 1 for all t� 0 (see e.g. reference [14]).

We will achieve conservativity by applying Corollary 3.41 of [14] that we now recall here (in the special
case where there is only one non-zero operator L) for the reader’s convenience.

Proposition 3.1 Let G and L as in (3.2) and (3.3) above. Suppose that there exist a self-adjoint operator
C with domain coinciding with the domain of G and a core D for C with the following properties:

(i) LðDÞ 	 DðC1=2Þ,
(ii) there exists a self-adjoint operator U such that

�2Re u;Guh i ¼ u;Uuh i� u;Cuh i

for all u 2 D,
(iii) there exists a non-negative constant b such that the inequality

2Re Cu;Guh i þ C1=2Lu;C1=2Lu
D E

� b u;Cuh i ð3:6Þ

holds for every u 2 D.
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Then the minimal quantum dynamical semigroup is Markov.

Applying the above result we can prove the following

Theorem 3.2 The minimal semigroup ðT tÞt� 0 associated with the above G, L is conservative for a� 1.

Proof Let C ¼ �2G so that C coincides with the closure of LyL and let D ¼ C1
c ðð0;þ1Þ;CÞ. Clearly, D

is an invariant domain for L and so LðDÞ 	 D 	 DomðCÞ 	 DomðC1=2Þ. It follows that assumption (i) of
Proposition 3.1 holds.

Assumption (ii) also holds because G is self-adjoint. We finally check assumption (iii). For every u 2 D
we have

2Re Cu;Guh i þ C1=2Lu;C1=2Lu
D E

¼� LyLu;LyLu
� 	

þ Lu;LyL Lu
� 	

¼ Lu; Ly; L

 �

Lu
� 	

where Ly; L

 �

denotes the commutator of Ly and L. Since Lu belongs to D the following formal computation
makes sense as an operator on D

½Ly;L� ¼ �x1=2ox � aþ 1=2ð Þx�1=2 þ x1=2; x1=2ox

h i

¼ � aþ 1=2ð Þx�1=2 þ x1=2; x1=2ox

h i

¼� 1

2
1þ aþ 1

2

� �
1

x

� �

:

It follows that

2Re Cu;Guh i þ C1=2Lu;C1=2Lu
D E

� � 1

2
Lu;Luh i

¼ � 1

2
u;Cuh i� 0

ð3:7Þ

for all u 2 D and the proof is complete. h

Remark By a known characterization of the domain of the generator of a conservative quantum Markov
semigroup (Proposition 3.32 [14]), Theorem 3.2 implies that the domain of the generator of ðT tÞt� 0 consists
of all operators X 2 BðhÞ such that the bilinear form

DomðGÞ 
 DomðGÞ 3 ðv; uÞ ! Gv;Xuh i þ Lv;XLuh i þ v;XGuh i

is bounded. Moreover, the linear manifold generated by rank one operators juihvj is an essential domain for
the generator of the predual semigroup.

We can now prove that the QMS T extends the classical Markov semigroup generated by Aa.

Theorem 3.3 The abelian C�-algebra A of complex-valued continuous functions on ð0;þ1Þ with the
same limits at 0 and þ1 is invariant for the minimal semigroup and T tðMðf ÞÞ ¼ MðTtf Þ for all f 2 A.

Proof Clearly the identity (iv) of Definition 2.2 holds by our choice of operators G and L and, denoting by
tr the usual trace, we have

trðjuihvjMðAaf ÞÞ ¼ trðL�ðjuihvjÞMðf ÞÞ

where L� is the generator of the predual semigroup. The linear span of rank one operators juihvj for
u; v 2 DomðGÞ is a core for L� because the minimal QMS is conservative (see [14] Proposition 3.32),
therefore we have

trðgMðAaf ÞÞ ¼ trðL�ðgÞMðf ÞÞ

for all g 2 DomðL�Þ and all f 2 DomðAaÞ. As a consequence, for all t[ 0,
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d

ds
trðT �sðgÞMðTt�sf ÞÞ ¼trðL�ðT �sðgÞÞMðTt�sf ÞÞ � trðT �sðgÞMðAaTt�sf ÞÞ

¼0:

It follows that

trðgT tðMðf ÞÞÞ ¼ trðT �tðgÞMðf ÞÞ ¼ trðgMðTtf ÞÞ

for all t� 0 and all g trace class operator, therefore T tðMðf ÞÞ ¼ MðTtf Þ and the proof is complete. h

4 The quantum Laguerre semigroup

In this section we will study the structure of the quantum Laguerre semigroup on BðhÞ that we have
constructed. Throughout this section a� 1.

It is well-known (see e.g. [3]) that the classical Laguerre semigroup of the Laguerre diffusion process is
irreducible and admits the function

ð0;þ1Þ 3 x7! xa

Cðaþ 1Þ e
�x 2 R

where C denotes the Euler Gamma function, as the unique invariant measure. This defines a faithful normal
state on the von Neumann algebra L1ðð0;þ1Þ;CÞ.

Surprisingly, the quantum Laguerre semigroup has other qualitative features that we will now
investigate.

Let ðT �tÞt� 0 denote the predual semigroup.

Theorem 4.1 The constant function on ð0;þ1Þ

e0ðxÞ ¼ Cðaþ 1Þ�1=2

defines a norm one vector in h: The pure state je0ihe0j is the unique, invariant state for the quantum
Laguerre semigroup T and for all initial normal states q,

lim
t!1

T �tðqÞ ¼ je0ihe0j

in the trace norm topology. Moreover, for all initial state q satisfying the finite energy condition
trðqCÞ\1; where C ¼ �2G, we have

T �tðqÞ � je0ihe0jk k1 � 2 e�t=4 trðqCÞ1=2:

We begin by a useful Lemma which is essentially a byproduct of our proof of conservativity.

Lemma 4.2 Let C ¼ �2G as in the proof of Theorem 3.2 and, for all e[ 0 consider bounded approxi-

mations Ce ¼ Cð1þ eCÞ�1. For all t� 0 and e[ 0 the following inequality holds

T tðCeÞ� e�t=2C:

Proof Fix e[ 0. We note that Ce �C: Recalling the construction of the minimal semigroup as limit of a

non decreasing sequence of positive maps ðT ðnÞ
t Þn� 0 defined, by recurrence as in (3.4), we check that

T ðnÞ
t ðCeÞ� e�t=2C for all t� 0 and n� 0.
For n ¼ 0, for all z 2 C and u 2 h orthogonal to e0; uk :¼ hek; ui; k� 1; by explicit computation we find
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ze0 þ u; T ð0Þ
t ðCeÞðze0 þ uÞ

D E
¼ Ptðze0 þ uÞ;CePtðze0 þ uÞh i

¼
X

k� 1

e�ktjukj2
k

1þ ek

� e�t
X

k� 1

jukj2
k

1þ ek

¼ e�t ze0 þ u;Ceðze0 þ uÞh i

and so T ð0Þ
t ðCeÞ� e�tCe � e�t=2C.

If T ðnÞ
t ðCeÞ� e�t=2 C for a certain n, then recalling that the semigroup ðPtÞt� 0 is analytic for all

u 2 DomðGÞ, Pt for t[ 0 maps DomðGÞ to DomðGmÞ 8m[ 0 and operator compositions CLPt, C
1=2LPt

make sense 8t[ 0,

u; T ðnþ1Þ
t ðCeÞu

D E
¼ Ptu;CePtuh i þ

Z t

0

LPt�su; T ðnÞ
s ðCeÞLPt�su

D E
ds

� Ptu;CePtuh i þ
Z t

0

e�s=2 LPt�su;CLPt�suh ids

¼ Ptu;CePtuh i þ
Z t

0

e�s=2 C1=2LPt�su;C
1=2LPt�su

D E
ds:

By the inequality (3.7) in the proof of Theorem 3.2, we have

u; T ðnþ1Þ
t ðCeÞu

D E
� �

Z t

0

e�s=2 2Re C=Pt�su;GC=Pt�su
D E

ds

� 1

2

Z t

0

e�s=2 Pt�su;CPt�suh idsþ Ptu;CePtuh i

¼ Ptu;CePtuh i þ
Z t

0

e�s=2 d

ds
C1=2Pt�su

�
�

�
�2ds

� 1

2

Z t

0

e�s=2 C1=2Pt�su
�
�

�
�2ds

Integrating by parts the first integral, terms with integrals on [0, t] cancel. Using Ce �C, we get the
inequality

u; T ðnþ1Þ
t ðCeÞu

D E
� Ptu;CPtuh i þ e�s=2 C1=2Pt�su

�
�

�
�2

h it

0

� e�t=2 C1=2u
�
�

�
�2¼ e�t=2 u;Cuh i:

Therefore T ðnÞ
t ðCeÞ� e�t=2C for all n� 0: h

We now recall the following inequality on the trace norm distance from a pure state (see Theorem 4.1 of [1])

Theorem 4.3 Let q be a normal state and e0 a unit vector. Then one has

k q� je0ihe0j k1 � 2ð1� q00Þ1=2

where q00 ¼ he0;q e0i.
We can now prove Theorem 4.1.

Proof of Theorem 4.1 By Proposition 3.32 of [14] all rank one operators belong to the domain of the
generator L� of the predual semigroup. Therefore, since Ge0 ¼ Le0 ¼ 0, we have

L�ðje0ihe0jÞ ¼ jGe0ihe0j þ jLe0ihLe0j þ je0ihGe0j ¼ 0

and je0ihe0j is an invariant state.
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Let q be a state satisfying the finite energy condition trðqCÞ\1 and let qt ¼ T �tðqÞ. By Theorem 4.3
we have

kqt � je0ihe0j k1 � 2ð1� he0; qt e0iÞ1=2

¼ 2 1� trðqT tðje0ihe0jÞÞð Þ1=2

¼ 2 trðqT tðje0ihe0j?ÞÞ
� �1=2

;

where je0ihe0j? denotes the projection orthogonal to the rank one projection je0ihe0j.
First note that je0ihe0j? �C, and trðxCÞ ¼ supe[ 0 trðxCeÞ for all state x such that the left-hand side is

finite. By Lemma 4.2, implying, in particular, that the projection je0ihe0j?, which is superharmonic in the
sense of [15] converges to 0 exponentially fast in the norm topology, we immediately find

kqt � je0ihe0j k1 � 2 trðqt CÞð Þ1=2

¼ 2 ðsup
e[ 0

trðqt CeÞÞ1=2

¼ 2 ðsup
e[ 0

trðqT tðCeÞÞÞ1=2

� 2 e�t=4 trðqCÞ1=2:

Convergence towards the invariant state je0ihe0j for an arbitrary initial state follows from the trace norm
density of states satisfying the finite energy condition (in particular finite rank states) in the set of all states.

This also proves the uniqueness of the pure invariant state je0ihe0j. h
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Exp. No. 761, 3, 35-47.

19. K. R. Parthasarathy and K.B. Sinha, Markov chains as Evans-Hudson diffusions in Fock space, Séminaire de Probabilités,
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