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The author in [7] conjectured the following inequality; If a and b are nonnegative real numbers

with a + b = 1/2, then the inequality 1/2 ≤ a(2b)k

+ b(2a)k ≤ 1 holds for 0 ≤ k ≤ 1. In this

paper, we shall prove the conjecture affirmatively and give the upper and lower estimation of the

power exponential functions ab + ba for the nonnegative real numbers a and b with a + b = 2.

Moreover, we pose some inequalities with power exponential functions.
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1. INTRODUCTION

The inequality with double power exponential functions

a(2b)k
+ b(2a)k ≤ 1 (1)

holds for nonnegative real numbers a and b with a + b = 1 and k ≥ 1, which is posed by Cı̂rtoaje [3]

as Conjecture 5.1 and proved by Miyagi et al. in [5]. Also, the author [7] proved that the following

inequality with the power exponential functions holds: If a and b are nonnegative real numbers with

a + b = c, then the inequality

a2b + b2a ≤ 1 (2)
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holds for 1/2 ≤ c ≤ 1.

The above symmetric inequalities (1) and (2) with the power exponential functions look like very

simple forms, but these proofs are not immediate. Moreover, the author [7] conjectured the following

inequality with double power exponential functions.

Conjecture 2.10 — If a and b are nonnegative real numbers with a + b = 1/2, then the inequality

1
2
≤ a(2b)k

+ b(2a)k ≤ 1

holds for 0 ≤ k ≤ 1.

We shall prove the conjecture 2.10 affirmatively.

Theorem 1.1 — The conjecture 2.10 is holds true.

It is known that, for the case of a + b = 2, the inequalities

a2b + b2a +
(

a− b

2

)2

≤ 2 (3)

and

a3b + b3a +
(

a− b

2

)4

≤ 2 (4)

hold.

The inequality (3) is posed by Cı̂rtoaje [2] as Proposition 4.5 and the inequality (4) is posed by

Cı̂rtoaje [2] as Conjecture 4.7 and proved by Miyagi et al. [6]. It is known that, other result of the

case of a + b = 2, Matejı́čka [4] proved; the inequality

arb + bra ≤ 2

holds for nonnegative real numbers a and b with a + b = 2, if and only if 0 < r ≤ 3.

The above claim is posed by Cı̂rtoaje [2] as Conjecture 4.6. We show the upper and lower esti-

mations of the power exponential functions for the case of a + b = 2 in Theorem 1.2. It is no known

that the lower inequality with the power exponential functions for a + b = 2, hence, the inequality of

Theorem 1.2 is a new result.

Theorem 1.2 — If a and b are nonnegative real numbers with a + b = 2, then the inequality

−
( |a− b|

2

)α

+ 2 ≤ ab + ba ≤ −
( |a− b|

2

)β

+ 2

holds, where the constants α = ln 2 ∼= 0.693147 and β = 2 are the best possible.
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2. PROOF OF THEOREM 1.1

If a + b = c and 0 < c ≤ 1/2, without loss of generality, we may assume that 0 < a ≤ c/2 ≤ b < c.

Here, we have

a(2b)k
+ b(2a)k

= a(2c−2a)k
+ (c− a)(2a)k

and we set

F (k, a) = a(2c−2a)k
+ (c− a)(2a)k

for k > 0 and 0 < a ≤ c/2.

The derivative of F (k, a) is

Fk(k, a) =
∂

∂k
F (k, a)

=(2a)k(ln a + ln 2)(c− a)(2a)k
ln (c− a)

+ 2k(ln a)a(2c−2a)k
(c− a)k(ln (c− a) + ln 2) .

Here, we have ln a+ln 2 < 0, ln (c−a) < 0, ln a < 0 and ln (c−a)+ln 2 < 0 for 0 < c ≤ 1/2.

Hence, we can get Fk(k, a) > 0 for k > 0 and 0 < c ≤ 1/2. Therefore, F (k, a) is strictly increasing

for k > 0.

PROOF OF THEOREM 1.1 : If c = 1/2 then we have F (0, a) ≤ F (k, a) ≤ F (1, a) and F (1, a) ≤
1 by the inequality (2). Thus, we obtain 1/2 ≤ F (k, a) ≤ 1 and the proof of Theorem 1.1 is

complete. 2

3. PROOF OF THEOREM 1.2

PROOF OF THEOREM 1.2 : Consider the equation
( |a− b|

2

)n

= 2− ab − ba .

Using the substitution

a = 1− t, b = 1 + t, 0 ≤ t ≤ 1,

the equation becomes

tn = 2− (1− t)1+t − (1 + t)1−t .

Since 0 ≤ t ≤ 1, we need to show that ln 2 ≤ n ≤ 2, which is true if and only if

ln 2 < G(t) < 2 (5)
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for 0 < t < 1, and

lim
t→0+0

G(t) = 2 , lim
t→1−0

G(t) = ln 2, (6)

where

G(t) =
ln

(
2− (1− t)1+t − (1 + t)1−t

)

ln t
.

The relations (6) can be proved by l’Hopital’s rule [8]. The right inequality (5) follows immedi-

ately from Bernoulli’s inequality, as follows:

G(t) <
ln

(
2− (1− t)(1− t2)− 1− t(1− t)

)

ln t

=2 +
ln (2− t)

ln t
< 2.

To prove the left inequality (5), we consider two cases: 0 < t ≤ 1/3 and 1/3 ≤ t < 1.

Case 1 : 0 < t ≤ 1/3. By Bernoulli’s inequality, we get

G(t) >
ln

(
2− 1 + t(1 + t)− (1 + t)(1− t2)

)

ln t

=2 +
ln (2 + t)

ln t
= ln 2 +

f(t)
ln t

,

where

f(t) = ln (2 + t) + (2− ln 2)ln t .

Thus, it suffices to prove that f(t) < 0 for 0 < t ≤ 1/3. Since f(t) is strictly increasing, we have

f(t) ≤ f

(
1
3

)
= ln 7− (3− 2ln 2)ln 3 ∼= −0.588427 < 0 .

Case 2 : 1/3 ≤ t < 1. From the next Lemma 3.3 and Lemma 3.4, we have

G(t) > G3(t) > lim
t→1−0

G3(t) .

By l’Hopital’s rule,

lim
t→1−0

G3(t) = lim
t→1−0

t(−6t + 4tln 2 + 6)
−3t2 + 2(t2 − 1)ln 2 + 6t + 1

= ln 2 .

Thus, the proof is completed. 2

Lemma 3.1 — We have

(1 + t)−t >
1
2

+ (1− t)
(

1
4

+
ln 2
2

)
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for 1/3 ≤ t < 1.

PROOF : We set

f(t) = (t + 1)−t − 1
2
− (1− t)

(
1
4

+
ln 2
2

)

then the derivatives of f(t) are

f ′(t) = −(t + 1)−t

(
− t

t + 1
− ln (t + 1)

)
+

1
4

+
ln 2
2

and

f ′′(t) = (t + 1)−t−1g(t) ,

where

g(t) = t + (t + 1)(ln (t + 1))2 + 2tln (t + 1)− 2 .

The derivative of g(t) is

g′(t) =
3t + (t + 1)(ln (t + 1))2 + 4(t + 1)ln (t + 1) + 1

t + 1
> 0.

Hence, g(t) is strictly increasing for 1/3 < t < 1 and

g

(
1
3

)
= −5

3
+

4
3

(
ln

4
3

)2

+
2
3
ln

4
3
∼= −1.36453

and

g(1) =− 1 + 2(ln 2)2 + 2ln 2 = 1.3472 .

Thus, there exists a unique real number t0 such that g(t) < 0 for 1/3 ≤ t < t0 and g(t) > 0 for

t0 < t ≤ 1. f ′(t) is strictly decreasing for 1/3 < t < t0 and strictly increasing for t0 < t < 1. From

f ′
(

1
3

)
=

1
4

+
ln 2
2

+
(

3
4

) 1
3
(
−1

4
− ln

4
3

)
∼= 0.108057

and f ′ (1) = 0, there exists a unique real number t1 such that f ′(t) > 0 for 1/3 ≤ t < t1 and

f ′(t) < 0 for t1 < t < 1. Hence, f(t) is strictly increasing for 1/3 < t < t1 and strictly decreasing

for t1 < t < 1. By

f

(
1
3

)
= −1

2
+

(
3
4

) 1
3

+
2
3

(
−1

4
− ln 2

2

)
∼= 0.0108446



1766 YUSUKE NISHIZAWA

and f(1) = 0, we obtain f(t) > 0 for 1/3 ≤ t < 1. 2

The following Lemma 3.2 is given by Anderson et al. [1].

Lemma 3.2 — Let f , g : [a, b] → R be two continuous functions which are differentiable on

(a, b). Further, let g′(x) 6= 0 on (a, b). If
f ′(x)
g′(x)

is increasing (or decreasing) on (a, b), then the functions

f(x)− f(b)
g(x)− g(b)

and
f(x)− f(a)
g(x)− g(a)

are also increasing (or decreasing) on (a, b).

Lemma 3.3 — For 1/3 ≤ t < 1, we have

G(t) > G3(t) ,

where

G3(t) =
ln

(−3t2 + 2t2ln 2 + 6t + 1− 2ln 2
)− 2ln 2

ln t
.

PROOF : By (1 − t)1+t > (1 − t)2 and Lemma 3.1, we can get G(t) > G3(t) for 1/3 ≤ t < 1,

where

G3(t) =
ln

(
2− (t− 1)2 − (t + 1)

(
1
2 + (1− t)

(
1
4 + ln 2

2

)))

ln t

=
ln

(−3t2 + 2t2ln 2 + 6t + 1− 2ln 2
)− 2ln 2

ln t
.2

Lemma 3.4 — G3(t) is strictly decreasing for 1/3 ≤ t < 1.

PROOF : We set

f(x) = ln
(−3t2 + 2t2ln 2 + 6t + 1− 2ln 2

)− 2ln 2

and

g(x) = ln t .

We consider the function h(t) = f ′(t)/g′(t). The function h(t) is

h(t) =
t(−6t + 4tln 2 + 6)

−3t2 + 2(t2 − 1)ln 2 + 6t + 1
.



THE BEST POSSIBLE CONSTANTS OF THE INEQUALITIES 1767

The derivative of h(t) is

h′(t) =
2

(−9t2 + (6t2 + 16t− 6)ln 2− 6t− 8t(ln 2)2 + 3
)

(−3t2 + 2(t2 − 1)ln 2 + 6t + 1)2

=
2k(t)

(−3t2 + 2(t2 − 1)ln 2 + 6t + 1)2
.

The derivative of k(t) is

k′(t) =2(2ln 2− 3)(3t + 1− 2ln 2)

∼=2× (−1.61371)(3t + 1− 2ln 2)

<2× (−1.61371)
(

3× 1
3

+ 1− 2ln 2
)

∼=− 1.98068 .

Therefore, k(t) is strictly decreasing for 1/3 ≤ t < 1. From k(1/3) = −8(ln 2)2/3 ∼= −1.28121

and k(t) < 0 for 1/3 ≤ t < 1, h(t) is strictly decreasing for 1/3 ≤ t < 1. By Lemma 3.2,

(f(t)− f(1))/(g(t)− g(1)) = G3(t) is strictly decreasing for 1/3 ≤ t < 1. 2

4. CONJECTURES

We shall pose some conjectures relate to the inequalities with power-exponential functions.

Conjecture 4.1 — If a and b are nonnegative real numbers with a + b = 1, then the inequality

a(2b)k
+ b(2a)k ≥ 1

holds for 0 ≤ k ≤ 2−3ln 2
(ln 2)2−ln 2

∼= 0.373501, where the constant 2−3ln 2
(ln 2)2−ln 2

is the best possible.

Conjecture 4.2 — If a and b are nonnegative real numbers with a + b = 2, then the inequality

a(2b)k
+ b(2a)k ≥ 2

holds for 0 ≤ k ≤ s ∼= 2.65986, where s is the solution of 2s = 1 + 2s.

Conjecture 4.3 — If a and b are nonnegative real numbers with a + b = 2, then the inequality

a(3b)k
+ b(3a)k ≤ 2

holds for 0 ≤ k ≤ 1, where the constant 1 is the best possible.



1768 YUSUKE NISHIZAWA

ACKNOWLEDGEMENT

I would like to thank referees for their careful reading of the manuscript and for their remarks and

suggestions.

REFERENCES

1. G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for quasiconformal mappings in

space, Pac. J. Math. , 160 (1) (1993), 1-18.

2. V. Cı̂rtoaje, On some inequalities with power-exponential functions, J. Inequal. Pure Appl. Math. , 10(1)

Art. 21 (2009).

3. V. Cı̂rtoaje, Proofs of three open inequalities with power-exponential functions, J. Nonlinear Sci. Appl. ,

4(2) (2011), 130-137.
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