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In this work, we study efficient asymptotically correct a posteriori error estimates for the numer-
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1. INTRODUCTION

The second order Fredholm integro-differential (SFID) equations is defined in the following form

y′′(t) =F
(
t, y(t), y′(t), z[y](t)

)
, t ∈ I := [a, b], (1.1)

y(a) = r1, y(b) = r2, (1.2)

with

z[y](t) :=
∫ b

a
K

(
t, s, y(s)

)
ds,
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where a, b, r1, r2 ∈ (−∞,∞) and b > a. We define W and S as follows

W := {(t, y, y′, z) ; t ∈ I&y, y′, z ∈ (−∞,∞)},
S := {(t, s, u) ; t, s ∈ I&u ∈ (−∞,∞)}.

In this paper we shall assume that F and K are uniformly continuous in W and S, respectively.

We say that z[y](t) is linear if we can write z[y](t) as

z[y](t) =
∫ b

a
Λ(t, s)y(s)ds,

where Λ(t, s) is sufficiently smooth in J := {(t, s) ; t, s ∈ I}. Also, we say that F is semilinear if

we can write F
(
t, y(t), y′(t), z[y](t)

)
as

F
(
t, y(t), y′(t), z[y](t)

)
= a1(t)y′(t) + a2(t)y(t) + a3(t) + z[y](t).

In the nonlinear case, we assume that F (t, y, y′, z), Ft(t, y, y′, z), Fy(t, y, y′, z), Fy′(t, y, y′, z)

and Fz(t, y, y′, z) are Lipschitz-continuous. Also when z[y](t) is nonlinear we assume that K(t, s, u)

and Ku(t, s, u) are Lipschitz-continuous. We say SFID equation with boundary condition (1.2) is

linear if we can write (1.1) as follows

y′′(t) = a1(t)y′(t) + a2(t)y(t) + a3(t) + z[y](t), t ∈ [a, b], (1.3)

where z[y](t) is linear. Also, in the linear case we assume that a1(t), a2(t) and a3(t) are sufficiently

smooth in I . The piecewise polynomial collocation method for integro-differential equations problem

is studied in [2, 4, 9]. Also other methods for the integro-differential equations are studied in [7, 8,

10]. The defect correction principle is introduced in [3, 6]. The deviation of the error estimation

for linear and nonlinear second order boundary value problem can be found in [1, 11]. The error

estimation based on locally weighted defect that we will use in this manuscript, has been introduce in

[1, 11].

The paper is organized as follows. In Section 2, the method is described and we introduce

some details about piecewise polynomial collocation method, finite differences and exact difference

schemes. In Section 3, the analysis of the deviation of the error for linear and nonlinear cases is

given. In Section 4, we present the numerical experiments that demonstrate our theoretical results. A

summary is given at the end of the paper in Section 5.
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2. DESCRIPTION OF THE METHOD

In this section, we introduce piecewise polynomial collocation method, finite differences and exact

difference schemes. Also, we describe some details about the deviation of the error estimation.

2.1 Collocation method

Let

a = τ0 < τ1 < . . . < τn = b, (n ≥ 1),

0 = ρ0 < ρ1 < . . . < ρm < ρm+1 = 1.

We define Xi, Zn and S
(1)
m+1(Zn) as follows

Xi := {ti,j := τi + ρjhi; j = 1, . . . , m},

Zn := {ti,0 := τi; i = 0, . . . , n},

S
(1)
m+1(Zn) := {p ∈ C1(I); p ¹ [τi, τi+1] ∈ Πm+1([τi, τi+1])(i = 0, . . . , n− 1)},

where hi := τi+1 − τi and Πm+1([τi, τi+1]) is a space of real polynomial functions on [τi, τi+1] of

degree6 m + 1. We define h (the diameter of gird Zn) and h′ as

h := max{hi; i = 0, . . . , n− 1}, h′ := min{hi; i = 0, . . . , n− 1}.

Also the set X(n) :=
⋃n−1

i=0 Xi is called the set of collocation points. In the piecewise polynomial

collocation method, we are looking to find a p ∈ S
(1)
m+1(Zn) so that (1.1)-(1.2) holds for all ti,j ∈

X(n). In the collocation method, we use the following quadrature method to determine z[p](t)

z[p](ti,j) ≈
n−1∑

k=0

m+1∑

z=0

αk,zK
(
ti,j , tk,z, p(tk,z)

)
=: z̃ [p](ti,j), (2.1)

where the quadrature weights are given by

αk,z :=
∫ τk+1

τk

L
[τk,τk+1]
z (s)ds,

with (Lagrange polynomial)

Lj(ρ) :=
m+1∏

i=0
i6=j

ρ− ρi

ρj − ρi
, L

[a′,b′]
j (ρ) := Lj(

ρ− a′

b′ − a′
), a ≤ a′ < b′ ≤ b.
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Lemma 2.1 — For sufficiently smooth f , the following estimate holds

|z[f ](ti,j)− z̃ [f ](ti,j)| = O(hm+2), (2.2)

where z̃ [·](ti,j) is defined in (2.1).

PROOF : For nonlinear z[·](t) by using the Interpolation error theorem (see [5]), we can find

z[f ](ti,j)− z̃ [f ](ti,j) =
∫ b

a
K

(
ti,j , s, f(s)

)
ds− z̃ [f ](ti,j)

=
n−1∑

k=0

∫ τk+1

τk

(
K

(
ti,j , s, f(s)

)−
m+1∑

z=0

L
[τk,τk+1]
z (s)K

(
ti,j , tk,z, f(tk,z)

)

︸ ︷︷ ︸
O(hm+2)

)
ds

≤ nhO(hm+2) ≤ h

h′
(b− a)O(hm+2) = O(hm+2).

Similarly, we can obtain (2.2) for linear case. 2

For the piecewise polynomial collocation method, we can find the following theorem [2, 9].

Theorem 2.2 — Assume that the SFID problem (1.1)-(1.2) has a unique and sufficiently smooth

solution y(t). Also, assume that p(t) is a piecewise polynomial collocation solution of degree≤ m+1.

Then for sufficiently small h, the collocation solution p(t) is well-defined and the following uniform

estimates at least hold:

‖y(j)(t)− p (j)(t)‖∞ = O(hm), j = 0, 1, 2,

‖y(j)(t)− p (j)(t)‖∞ = O(hm+2−j), j = 3, . . . , m + 1.

Remark 2.3 : In the piecewise polynomial collocation method when m is odd and the nodes

ρi (i = 1, . . . ,m) are symmetrically distributed, we have

‖y(j)(t)− p (j)(t)‖∞ = O(hm+1), j = 0, 1.

Lemma 2.4 — For z[·](t), we have

|z̃ [p](ti,j)− z̃ [y](ti,j)| = O(hm).

PROOF : For linear case by using Lemma 2.1, Theorem 2.2 and the Integral mean value theorem,

we can write

z̃ [p](ti,j)− z̃ [y](ti,j) = z[e](ti,j) +O(hm+2) =

= (b− a) Λ(ti,j , ζi,j) e(ζi,j)︸ ︷︷ ︸
O(hm)

+O(hm+2) = O(hm),
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where ζi,j ∈ [a, b]. Also, when z[·](t) is nonlinear by using Lemma 2.1 and the Lipschitz condition

for K, we get

|z̃ [y](ti,j)− z̃ [p](ti,j)| = |z̃ [y](ti,j)− z[y](ti,j)− z̃ [p](ti,j) + z[p](ti,j)

+ z[y](ti,j)− z[p](ti,j)| = |
∫ b

a

(
K

(
ti,j , s, y(s)

)−K
(
ti,j , s, p(s)

))
ds|

+O(hm+2) ≤ C

∫ b

a
|y(s)− p(s)|ds +O(hm+2) = O(hm),

which completes the proof. 2

2.2 Finite difference scheme

We define A and B as follows

A := {(i, j); ti,j ∈ X(n) ∪ Zn}, B := A− {(0, 0), (n, 0)},
T := A− {(n, 0)}.

Also, we define

δi,j := ti,j+1 − ti,j , δ̂i,j :=
δi,j−1 + δi,j

2
,

α̂i,j :=
δi,j−1

δ̂i,j

, β̂i,j :=
δi,j

δ̂i,j

.

Now, we write a general one-step finite difference scheme as

(L(2)
A η)i,j = F (ti,j , ηi,j , (L

(1)
A η)i,j , χ[η]i,j), (i, j) ∈ B, (2.3)

η 0,0 = r1, ηn,0 = r2,

where

(L(2)
A η)i,j :=

α̂i,jηi,j+1 − 2ηi,j + β̂i,jηi,j−1

α̂i,j β̂i,j δ̂ 2
i,j

,

(L(1)
A η)i,j :=

ηi,j+1 − ηi,j−1

2δ̂i,j

,

and

χ[η]i,j :=
∑

(l,v)∈T

δl,v

2
(
K(ti,j , tl,v, ηl,v) + K(ti,j , tl,v+1, ηl,v+1)

)
.
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In fact, we use the trapezoidal rule to determine z[·](t). For the trapezoidal rule, we can find the

following theorem.

Theorem 2.5 — Let f be a sufficiently smooth function on the interval [a, b]. Then we have

∣∣χ[f ]− z[f ]
∣∣ ≤ (b− a)h

12h′
h2 max

s∈[a,b]
|∂K

(
ti,j , s, f(s)

)

∂s2
|.

Remark 2.6 : In this work, we find the finite difference scheme by using the trapezoidal rule.

However, we can use the 2-point Gaussian quadrature method as follows

(L(2)
A η)i,j = F

(
ti,j , ηi,j , (L

(1)
A η)i,j , ω[η]i,j

)
, (i, j) ∈ B,

η 0,0 = r1, ηn,0 = r2,

ω[η]i,j :=
1∑

k=0

∑

(l,v)∈T
wk

δl,v

2
K

(
ti,j , λ

l,v
k ,Υl,v(λ

l,v
k )

)
,

where

Υl,v(s) :=
s− tl,v+1

−δl,v
ηl,v +

s− tl,v
δl,v

ηl,v+1,

λl,v
k :=

δl,v

2
$k +

δ+
l,v

2
,

with w0 = w1 = 1, −$0 = $1 =
√

3
3 and δ+

l,v := tl,v+1 + tl,v. This change will have no effect in

the order of the finite difference scheme and the deviation of the error. And a similar argument can

be given for this finite difference scheme. In Section 4, we study this case by numerical experiments.

Definition 2.7 — For any function u, we define

R(u) := {u(ti,j) ; (i, j) ∈ A},

also we define

η := {ηi,j ; (i, j) ∈ A}, L
(l)
A η := {(L(l)

A η)i,j ; (i, j) ∈ A}, l = 1, 2.

For the above finite difference scheme we have the following estimate

‖η −R(y)‖∞ = O(h2),

‖L(l)
A η −R(y(l))‖∞ = O(h2), l = 1, 2,
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where η and L
(l)
A η is defined in the Definition 2.7.

2.3 Exact finite difference scheme and Deviation of the error estimation

Now, we study the deviation of the error estimation for (1.1)-(1.2). In the first step, we consider the

Dirichlet problem

y′′(t) = f(t), a ≤ t ≤ b, y(a) = y(b) = 0, (2.4)

where f(t) is permitted to have jump discontinuities in the points belonging to Zn. For the discretiza-

tion form of (2.4), i.e.,

(L(2)
A η)i,j = f(ti,j), (i, j) ∈ B, (2.5)

according to [1, 11], we have the following lemmas.

Lemma 2.8 — The unique solution η of (2.5) is given by

ηi,j =
∑

(l,v)∈B
G(ti,j , tl,v)δl,vf(tl,v),

where G(t, τ) is Green’s function

G(t, τ) =

{
(b−t)(a−τ)

b−a , a ≤ τ ≤ t ≤ b,
(b−τ)(a−t)

b−a , a ≤ t ≤ τ ≤ b.

Lemma 2.9 — For v ∈ Ĉ2[ti,j−1, ti,j , ti,j+1], where

Ĉ2[ti,j−1, ti,j , ti,j+1] := {v ∈ C1[ti,j−1, ti,j+1] : v′′continuous on

[ti,j−1, ti,j) ∪ (ti,j , ti,j+1], lim
t↑ti,j

v′′ ∈ R, lim
t↓ti,j

v′′ ∈ R exist},

we have

(L(2)
A v)i,j =

∫ bβi,j

−bαi,j

Ri,j(ξ)v′′(ti,j + δ̂i,jξ)dξ,

with kernel

Ri,j(ξ) =





1 + ξ
bαi,j

, ξ ∈ [−αi,j , 0],

1− ξ
bβi,j

, ξ ∈ [0, βi,j ].

Therefore as [1, 11], we can find “the exact finite difference scheme” for (1.1) as follows

(L(2)
A p)i,j = IA

(
F (·, p, p′, z[p]), ti,j

)
,
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where

IA
(
w, ti,j

)
:=

∫ bβi,j

−bαi,j

Ri,j(ξ)w(ti,j + δ̂i,jξ)dξ.

Then we can say that a solution of problem (1.1)-(1.2) satisfies in the exact finite difference

scheme. Also according to the collocation method, we have the following relation.

p′′(ti,j)− F
(
ti,j , p(ti,j), p′(ti,j), z[p](ti,j)

) ≡ 0, (i, j) ∈ X(n).

We define defect at ti,j as follows

Di,j := (L(2)
A p)i,j − IA

(
F (·, p, p′, z[p]), ti,j

)
, (i, j) ∈ B. (2.6)

In order to compute integral in (2.6), we use quadrature formula. When ti,j ∈ X(n), we have [1,

11]

IA
(
F (·, p, p′, z[p]), ti,j

) ≈ QA
(
F (·, p, z̃ [p]), ti,j

)

:=
m+1∑

k=0

γk
i,jF

(
ti,k, p(ti,k), p′(ti,k), z̃ [p](ti,k)

)
,

where

γk
i,j =

∫ bβi,j

−bαi,j

Ri,j(ξ)Lk(ρj + ξ
δ̂i,j

hi
)dξ.

Also for ti,0 = τi, we have [1, 11]

IA
(
F (·, p, p′, z[p]), ti,0

) ≈ QA
(
F (·, p, p′, z̃ [p]), ti,0

)

:=
m+1∑

k=0

γk+
i,0 F

(
ti,k, p(ti,k), p′(ti,k), z̃ [p](ti,k)

)

+
m+1∑

k=0

γk−
i,0 F

(
ti−1,k, p(ti−1,k), p′(ti−1,k), z̃ [p](ti−1,k)

)
,

where

γk+
i,0 =

∫ bβi,0

0
Ri,0(ξ)Lk(ξ

δ̂i,0

hi
)dξ,

γk−
i,0 =

∫ 0

−bαi,0

Ri,0(ξ)Lk(1 + ξ
δ̂i,0

hi
)dξ.
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For the above quadrature formula, we can find the following lemma.

Lemma 2.10 — For sufficiently smooth f the following error holds

IA
(
f, ti,j

)−QA
(
f, ti,j

)
= O(hm+2).

Also, when m is odd and the nodes ρi are symmetrically, we can see the following relation.

IA
(
f, ti,j

)−QA
(
f, ti,j

)
= O(hm+3).

In this step we define π = {πi,j ; (i, j) ∈ A} as the solution of the following finite difference

(L(2)
A π)i,j = F

(
ti,j , πi,j , (L

(1)
A π)i,j , χ[π]i,j

)
+ Di,j , (i, j) ∈ B, (2.7)

π0,0 = r1, πn,0 = r2.

We define D := {Di,j ; (i, j) ∈ B}. For small value D, we have

π −R(p) ≈ η −R(y).

We define ε and e as

ε := π − η ≈ R(p)−R(y) =: e.

An estimate for the error e can be found in Theorem 2.2. The deviation of the error can be defined

as

θ := e− ε.

By using (2.41) and Lemma 2.10 we can easily find the following lemmas.

Lemma 2.11 — The defined defect in (2.41) has order O(hm).

Lemma 2.12 — The π − η has order O(hm).

In the next section, we will study the order of the deviation of the error estimate for SFID equation.

3. ANALYSIS OF THE DEVIATION OF THE ERROR

3.1 Linear case

Lemma 3.1 — For the linear and nonlinear z[·](t), we have

∣∣χ[e]i,j − z̃ [e](ti,j)
∣∣ = O(hm+2). (3.1)
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PROOF : By using the triangle inequality and Lemma 2.1, we can write

∣∣χ[e]i,j − z̃ [e](ti,j)
∣∣ ≤ ∣∣χ[e]i,j − z[e](ti,j)

∣∣ +
∣∣z[e](ti,j)− z̃ [e](ti,j)

∣∣
︸ ︷︷ ︸

O(hm+2)

, (3.2)

also by using Theorem 2.5, we can write

∣∣χ[e]i,j − z[e](ti,j)
∣∣ ≤ (b− a)h

12h′
h2 max

s∈[a,b]
|
∂2

(
K

(
ti,j , s, e(s)

))

∂s2︸ ︷︷ ︸
O(hm)

| = O(hm+2), (3.3)

therefore from (3.2) and (3.3), we can find (3.1). 2

Theorem 3.2 — Consider the SFID equation (1.3) with boundary conditions (1.2). Assume that

the SFID problem has a unique and sufficiently smooth solution. Then the following estimate holds

||θ||∞ = ||e− ε||∞ = O(hm+2),

where e is error, ε is the error estimate and θ is the deviation of the error estimate.

PROOF : Since F is semilinear then by using (2.3) and (2.7), we get

(L(2)
A ε)i,j = a1(ti,j)(L

(1)
A ε)i,j + a2(ti,j)εi,j + χ[ε]i,j + Di,j ,

(L(2)
A e)i,j = QA

(
a1p

′ + a2p + a3 + z̃[p], ti,j
)− IA

(
a1y

′ + a2y + a3 + z[y], ti,j
)

+Di,j +O(hm+2).

Therefore we can write

(L(2)
A θ)i,j = a1(ti,j)(L

(1)
A θ)i,j + a2(ti,j)θi,j + χ[θ]i,j+

IA(a1e
′ + a2e, ti,j)− (a1(ti,j)(L

(1)
A e)i,j + a2(ti,j)ei,j)︸ ︷︷ ︸

I1

+ (QA − IA)(a1p
′ + a2p + a3, ti,j)︸ ︷︷ ︸
I2

+ IA(z[e], ti,j)− χ[e]i,j︸ ︷︷ ︸
I3

+QA

(
z̃[p](ti,j)

)− IA(z[p], ti,j)︸ ︷︷ ︸
I4

+O(hm+2), (3.4)

by using Lemma 6.1 in [11] and [1], we can say

I1 =
1

δ̂i,j

(δi,j−1gi,j− 1
2
− δi,jgi,j+ 1

2
) +

1

2δ̂i,j

(δi,jφi,j+ 1
2
− δi,j−1φi,j− 1

2
) +O(hm+2), (3.5)
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where gi,j± 1
2

= O(hm+1) and φi,j± 1
2

= O(hm+1). Also according to Theorem 6.1 in [11] and [1],

we can obtain I2 = O(hm+2). Also since p ∈ Πm+1 and Λ(t, s) is sufficiently smooth then by using

Lemma 2.10, we can say that I4 = O(hm+2). Now we study I3. By using Lemma 3.1, we obtain

I3 = IA(z[e], ti,j)− χ[e]i,j = IA(z̃ [e], ti,j)− z̃ [e](ti,j) +O(hm+2)

=
∑

(l,v)∈T
αl,ve(tl,v)

( ∫ bβi,j

−bαi,j

Ri,j(ξ)Λ(ti,j + ξδi,j , tl,v)dξ − Λ(ti,j , tl,v)
︸ ︷︷ ︸

I5

)

+O(hm+2).

For I5, we obtain

I5 =
1

2δ̂i,j

(
δ2
i,jΨi,j+ 1

2
(tl,v)− δ2

i,j−1Ψi,j− 1
2
(tl,v)

)
+ S1(tl,v),

where

Ψi,j+ 1
2
(tl,v) :=

∫ 1
2

− 1
2

(u2 +
1
4
)Λt(ti,j+ 1

2
+ δi,ju, tl,v)du,

Ψi,j− 1
2
(tl,v) :=

∫ 1
2

− 1
2

(u2 +
1
4
)Λt(ti,j− 1

2
+ δi,j−1u, tl,v)du,

S1(tl,v) :=
−1

2δ̂i,j

∫ 1
2

− 1
2

(
δ2
i,juΛt(ti,j+ 1

2
+ δi,ju, tl,v) + δ2

i,j−1uΛt(ti,j− 1
2

+ δi,ju, tl,v)
)
du.

We can see that

Ψi,j+ 1
2
(tl,v) = O(1),

Ψi,j− 1
2
(tl,v) = O(1),

S1(tl,v) = O(h2).

Therefore we can rewrite (3.4) as follows

(L(2)
A θ)i,j = a1(ti,j)(L

(1)
A θ)i,j + a2(ti,j)θi,j + χ[θ]i,j

+
1

δ̂i,j

(δi,j−1gi,j− 1
2
− δi,jgi,j+ 1

2
) +

1

2δ̂i,j

(δi,jφi,j+ 1
2
− δi,j−1φi,j− 1

2
)

+
∑

(l,v)∈T
αl,ve(tl,v)

( 1

2δ̂i,j

(
δ2
i,jΨi,j+ 1

2
(tl,v)− δ2

i,j−1Ψi,j− 1
2
(tl,v)

))

+
∑

(l,v)∈T
αl,v e(tl,v)︸ ︷︷ ︸

O(hm)

S1(tl,v)︸ ︷︷ ︸
O(h2)

+O(hm+2)
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= a1(ti,j)(L
(1)
A θ)i,j + a2(ti,j)θi,j + χ[θ]i,j

+
1

δ̂i,j

(δi,j−1gi,j− 1
2
− δi,jgi,j+ 1

2
) +

1

2δ̂i,j

(δi,jφi,j+ 1
2
− δi,j−1φi,j− 1

2
)

+
∑

(l,v)∈T
αl,ve(tl,v)

( 1

2δ̂i,j

(
δ2
i,jΨi,j+ 1

2
(tl,v)− δ2

i,j−1Ψi,j− 1
2
(tl,v)

))

+O(hm+2). (3.6)

The proof is continued by considering the following scheme:

(L(2)
A θ̂ )i,j =

1

δ̂i,j

(δi,j−1gi,j− 1
2
− δi,jgi,j+ 1

2
) +

1

2δ̂i,j

(δi,jφi,j+ 1
2
− δi,j−1φi,j− 1

2
)

+
∑

(l,v)∈T
αl,ve(tl,v)

( 1

2δ̂i,j

(
δ2
i,jΨi,j+ 1

2
(tl,v)− δ2

i,j−1Ψi,j− 1
2
(tl,v)

))
. (3.7)

In this step, we define

H := {δi,j−1gi,j− 1
2
− δi,jgi,j+ 1

2
; (i, j) ∈ B},

Φ := {δi,jφi,j+ 1
2
− δi,j−1φi,j− 1

2
; (i, j) ∈ B},

Θl,v := {δ2
i,jΨi,j+ 1

2
(tl,v)− δ2

i,j−1Ψi,j− 1
2
(tl,v); (i, j) ∈ B}.

Then by using Lemma 2.8, we find

θ̂i,j =

(
1

δ̂i,j

(L2
A)−1H

)

i,j

+

(
1

2δ̂i,j

(L2
A)−1Φ

)

i,j

+
∑

(l,v)∈T
αl,ve(tl,v)

(
1

2δ̂i,j

(L2
A)−1Θl,v

)

i,j

.

Let

g∗ = max
i,j

|gi,j± 1
2
| = O(hm+1),

φ∗ = max
i,j

|φi,j± 1
2
| = O(hm+1),

Ψ∗
l,v = |Ψi,j± 1

2
(tl,v)| = O(1),

therefore we get

‖θ̂‖∞ ≤ 2h(max
w,x

∑

(i,j)∈B
G(tw,x, ti,j)g∗) + h(max

w,x

∑

(i,j)∈B
G(tw,x, ti,j)φ∗)

+ h2
∑

(l,v)∈T
αl,ve(tl,v)

(
max
w,x

∑

(i,j)∈B
G(tw,x, ti,j)Ψ∗

l,v

)
= O(hm+2). (3.8)
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Now, we have:

‖θ‖∞ ≤ ‖θ − θ̂‖∞ + ‖θ̂‖∞ = ‖θ − θ̂‖∞ +O(hm+2).

To end the proof, we prove that ‖θ − θ̂ ‖∞ = O(hm+2). By using (3.6)-(3.7), we get:

(
L

(2)
A (θ − θ̂ )

)
i,j

= a1(ti,j)
(
L

(1)
A (θ − θ̂ )

)
i,j

+ a2(ti,j)(θi,j − θ̂i,j) + χ[θ − θ̂ ]i,j

+ a1(ti,j)(L
(1)
A θ̂ )i,j︸ ︷︷ ︸

Y1

+ a2(ti,j)θ̂i,j︸ ︷︷ ︸
Y2

+χ[θ̂ ]i,j︸ ︷︷ ︸
Y3

+O(hm+2).

By using (3.8) and the definition of χ[·], we can say that Y2 = O(hm+2) and Y3 = O(hm+2).

Also for the term Y1, in a similar way to (6.10) in [11], we can find Y1 = O(hm+2). Then we have

(
L

(2)
A (θ − θ̂ )

)
i,j

= a1(ti,j)
(
L

(1)
A (θ − θ̂ )

)
i,j

+ a2(ti,j)(θi,j − θ̂i,j)

+ χ[θ − θ̂ ]i,j +O(hm+2). (3.9)

Now by using stability of the finite difference scheme, we can say |θ− θ̂ | = O(hm+2). Therefore

we get ‖θ‖∞ = O(hm+2). 2

Nonlinear case

Definition 3.3 — For nonlinear and linear z[·], we define

χ[ε]i,j :=
∑

(l,v)∈T

δl,v

2
(
Γε(ti,j , tl,v)εl,v + Γε(ti,j , tl,v+1)εl,v+1

)
,

where

Γε(ti,j , tl,v) :=

{
Λ(ti,j , tl,v), when z[·] is linear,∫ 1
0 Ku(ti,j , tl,v, ηl,v + τεl,v)dτ, when z[·] is nonlinear,

and

z[e] :=
∫ b

a
Γe(ti,j , s)e(s)ds,

where

Γe(ti,j , s) :=

{
Λ(ti,j , s), when z[·] is linear,∫ 1
0 Ku

(
t, s, y(s) + τe(s)

)
dτ, when z[·] is nonlinear.
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Now we can easily see

χ[π]i,j − χ[η]i,j = χ[ε]i,j , (3.10)

z[p](ti,j)− z[y](ti,j) = z[e](ti,j). (3.11)

Lemma 3.4 — For linear and nonlinear z[·](t), we have

|χ[ε]i,j − z[e](ti,j)| = O(hm).

PROOF : In the linear case by using Lemma 2.12, Theorem 2.2 and the Integral mean value

theorem, we get

χ[ε]i,j − z[e](ti,j) = χ[ε]i,j − z[e](ti,j)

=
∑

(l,v)∈T

δl,v

2
(
Λ(ti,j , tl,v) εl,v︸︷︷︸

O(hm)

+Λ(ti,j , tl,v+1) εl,v+1︸ ︷︷ ︸
O(hm)

)

−
∫ b

a
Λ(ti,j , s) e(s)︸︷︷︸

O(hm)

ds ≤ (b− a)(m + 1)h
h′

O(hm) max
(l,v)∈A

Λ(ti,j , tl,v)

+O(hm)(b− a)Λ(ti,j , ζi,j) = O(hm),

where ζi,j ∈ (a, b). In this step, we study nonlinear case. According to (3.10) and (3.11), we obtain

|χ[ε]i,j | = |χ[π]i,j − χ[η]i,j | = |
∑

(l,v)∈T

δl,v

2
(
K(ti,j , tl,v, πl,v)−K(ti,j , tl,v, ηl,v)

)

+
∑

(l,v)∈T

δl,v

2
(
K(ti,j , tl,v+1, πl,v+1)−K(ti,j , tl,v+1, ηl,v+1)

)|

≤ C
∑

(l,v)∈T

δl,v

2
|πl,v − ηl,v|+ C

∑

(l,v)∈B

δl,v

2
|πl,v+1 − ηl,v+1|

≤ CO(hm)hn(m + 1) ≤ C
(b− a)(m + 1)h

h′
O(hm) = O(hm),

also

|z[e](ti,j)| = |z[p](ti,j)− z[y](ti,j)| ≤
∫ b

a
|K(

ti,j , s, p(s)
)−K

(
ti,j , s, y(s)

)|ds

≤ C(b− a)|p(s)− y(s)| = O(hm),

therefore by using the triangle inequality, we have

|z[e](ti,j)− χ[ε]i,j | ≤ |z[e](ti,j)|+ |χ[ε]i,j | = O(hm).
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Definition 3.5 — By using (2.1), z̃[e](ti,j) is defined as

z̃[e](ti,j) :=
∑

(l,v)∈T
αl,vΓe(ti,j , tl,v)e(tl,v).

As Lemma 3.1, we can write the following lemma.

Definition 3.5 — For linear and nonlinear z[·](t), we have

|χ[e]i,j − z̃[e](ti,j)| = O(hm+2).

When F is nonlinear, we have the following theorem.

Theorem 3.7 — Consider the SFID equation (1.1) with boundary conditions (1.1), where

F (t, y, y′, z), Ft(t, y, y′, z), Fy(t, y, y′, z), Fy′(t, y, y′, z) and Fz(t, y, y′, z) are Lipschitz-continuous.

Also for nonlinear z[·](t), we let K(t, s, u) and Ku(t, s, u) are Lipschitz-continuous. Assume that the

SFID problem has a unique and sufficiently smooth solution. Then the following estimate holds

||θ||∞ = ||e− ε||∞ = O(hm+2),

where e is error, ε is the error estimate and θ is the deviation of the error estimate.

PROOF : We have

(L(2)
A θ)i,j = (L(2)

A e)i,j − (L(2)
A ε)i,j

= IA
(
F (·, p, p′, z[p])− F (·, y, y′, z[y]), ti,j︸ ︷︷ ︸

I6

)

− (
F (ti,j , πi,j , (L

(1)
A π)i,j , χ[π]i,j)− F (ti,j , ηi,j , (L

(1)
A η)i,j , χ[η]i,j)︸ ︷︷ ︸

I7

)

+ QA
(
F (, p, p′, z̃ [p]), ti,j

)− IA
(
F (·, p, p′, z[p]), ti,j

)
+O(hm+2). (3.12)

We can get

I6 = c1(ti,j)e(ti,j) + c2(ti,j)e′(ti,j) + c3(ti,j)z[e](ti,j),

I7 = b1(ti,j)εi,j + b2(ti,j)(L
(1)
A ε)i,j + b3(ti,j)χ[ε]i,j ,
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where

b1(ti,j) :=
∫ 1

0
Fy

(
ti,j , ηi,j + τεi,j , (L

(1)
A π)i,j , χ[π]i,j

)
dτ,

b2(ti,j) :=
∫ 1

0
Fy′

(
ti,j , ηi,j , (L

(1)
A η)i,j + τ(L(1)

A ε)i,j , χ[π]i,j
)
dτ,

b3(ti,j) :=
∫ 1

0
Fz

(
ti,j , ηi,j , (L

(1)
A η)i,j , χ[η]i,j + τχ[ε]i,j

)
dτ,

c1(ti,j) :=
∫ 1

0
Fy

(
ti,j , y(ti,j) + τe(ti,j), p′(ti,j), z[p](ti,j)

)
dτ,

c2(ti,j) :=
∫ 1

0
Fy′

(
ti,j , y(ti,j), y′(ti,j) + τe′(ti,j), z[p](ti,j)

)
dτ,

c3(ti,j) :=
∫ 1

0
Fz

(
ti,j , y(ti,j), y′(ti,j), z[y](ti,j) + τz[e](ti,j)

)
dτ.

Also by using the Lipschitz condition for Fy, Fy′ and Fz , we get
∣∣∣Fy

(
ti,j , ηi,j + τεi,j , (L

(1)
A π)i,j , χ[π]i,j

)− Fy

(
ti,j , y(ti,j) + τe(ti,j), p′(ti,j), z[p](ti,j)

)∣∣∣
≤ C

(∣∣ηi,j − y(ti,j)
∣∣ + τ

∣∣εi,j − e(ti,j)
∣∣
)

+ C
∣∣∣(L(1)

A π)i,j − p′(ti,j)
∣∣∣ + C

∣∣∣χ[π]i,j − z[p](ti,j)
∣∣∣

= O(h2), (3.13)

∣∣Fy′
(
ti,j , ηi,j , (L

(1)
A η)i,j + τ(L(1)

A ε)i,j , χ[π]i,j
)− Fy′

(
ti,j , y(ti,j), y′(ti,j) + τe′(ti,j), z[p](ti,j)

)∣∣∣
≤ C

∣∣ηi,j − y(ti,j)
∣∣ + C

(∣∣(L(1)
A η)i,j − y′(ti,j)

∣∣ + τ
∣∣(L(1)

A ε)i,j − e′(ti,j)
∣∣
)

+ C
∣∣∣χ[π]i,j − z[p](ti,j)

∣∣∣
= O(h2), (3.14)

∣∣Fz

(
ti,j , ηi,j , (L

(1)
A η)i,j , χ[η]i,j + τχ[ε]i,j

)− Fz

(
ti,j , y(ti,j), y′(ti,j), z[y](ti,j) + τz[e](ti,j)

)∣∣∣
≤ C

∣∣ηi,j − y(ti,j)
∣∣ + C

∣∣(L(1)
A η)i,j − y′(ti,j)

∣∣ + C
(∣∣χ[η]i,j − z[y](ti,j)

∣∣ + τ
∣∣χ[ε]i,j − z[e](ti,j)

∣∣
)

= O(h2). (3.15)

Therefore by using (3.13), (3.14) and (3.15), we obtain

ck(ti,j)− bk(ti,j) = O(h2), k = 1, 2, 3.

So we can rewrite (3.12) as follows

(L(2)
A θ)i,j = IA

(
c1(ti,j)e(ti,j) + c2(ti,j)e′(ti,j) + c3(ti,j)z[e](ti,j)

)

− (
b1(ti,j)εi,j + b2(ti,j)(L

(1)
A ε)i,j + b3(ti,j)χ[ε]i,j

)

+ QA
(
F (, p, p′, z̃ [p]), ti,j

)− IA
(
F (·, p, p′, z[p]), ti,j

)
+O(hm+2)
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− (
b1(ti,j)ei,j + b2(ti,j)(L

(1)
A e)i,j + b3(ti,j)χ[e]i,j

)

+
(
b1(ti,j)ei,j + b2(ti,j)(L

(1)
A e)i,j + b3(ti,j)χ[e]i,j

)

− (
c1(ti,j)e(ti,j) + c2(ti,j)e′(ti,j) + c3(ti,j)χ[e](ti,j)

)

+
(
c1(ti,j)e(ti,j) + c2(ti,j)e′(ti,j) + c3(ti,j)χ[e](ti,j)

)

= b1(ti,j)θi,j + b2(ti,j)(L
(1)
A θ)i,j + b3(ti,j)χ[θ]i,j

+ IA
(
c1(ti,j)e(ti,j) + c2(ti,j)e′(ti,j) + c3(ti,j)z[e](ti,j)

)

− (
c1(ti,j)e(ti,j) + c2(ti,j)e′(ti,j) + c3(ti,j)χ[e](ti,j)

)

+ (c1 − b1)(ti,j)︸ ︷︷ ︸
O(h2)

e(ti,j)︸ ︷︷ ︸
O(hm)

+(c2 − b2)(ti,j)︸ ︷︷ ︸
O(h2)

e′(ti,j)︸ ︷︷ ︸
O(hm)

+(c3 − b3)(ti,j)︸ ︷︷ ︸
O(h2)

χ[e](ti,j)︸ ︷︷ ︸
O(hm)

+ QA
(
F (, p, p′, z̃ [p]), ti,j

)− IA
(
F (·, p, p′, z[p]), ti,j

)
︸ ︷︷ ︸

O(hm+2)

+O(hm+2)

= b1(ti,j)θi,j + b2(ti,j)(L
(1)
A θ)i,j + b3(ti,j)χ[θ]i,j

+ IA
(
c1(ti,j)e(ti,j) + c2(ti,j)e′(ti,j)

)− (
c1(ti,j)e(ti,j) + c2(ti,j)e′(ti,j)

)
︸ ︷︷ ︸

I1

+ c3(ti,j)
( IA

(
z[e](ti,j)

)− χ[e](ti,j)︸ ︷︷ ︸
I2

)
+O(hm+2). (3.16)

In the above relation, I1 is obtained as (3.5). For I2, by using Lemma 3.6, we get

I2 = IA
(
z[e](ti,j)

)− χ[e](ti,j) = IA
(
z̃[e](ti,j)

)− z̃[e](ti,j) +O(hm+2)

=
∑

(l,v)∈T
αl,ve(tl,v)

( 1

2δ̂i,j

(
δ2
i,jΞi,j+ 1

2
(tl,v)− δ2

i,j−1Ξi,j− 1
2
(tl,v)

))
+O(hm+2).

where

Ξi,j+ 1
2
(tl,v) :=

∫ 1
2

− 1
2

(u2 +
1
4
)Γe t(ti,j+ 1

2
+ δi,ju, tl,v)du,

Ξi,j− 1
2
(tl,v) :=

∫ 1
2

− 1
2

(u2 +
1
4
)Γe t(ti,j− 1

2
+ δi,j−1u, tl,v)du.

We can see that Ξi,j+ 1
2
(tl,v) = O(1), Ξi,j− 1

2
(tl,v) = O(1). Then we rewrite (3.16) as follows

(L(2)
A θ)i,j = b1(ti,j)θi,j + b2(ti,j)(L

(1)
A θ)i,j + b3(ti,j)χ[θ]i,j

+ (L(2)
A θ̂ )i,j +O(hm+2),



1220 R. PARVAZ, M. ZAREBNIA AND A. S. BAGHERZADEH

where

(L(2)
A θ̂ )i,j =

1

δ̂i,j

(δi,j−1gi,j− 1
2
− δi,jgi,j+ 1

2
) +

1

2δ̂i,j

(δi,jφi,j+ 1
2
− δi,j−1φi,j− 1

2
)

+
∑

(l,v)∈T
αl,ve(tl,v)

( 1

2δ̂i,j

(
δ2
i,jΞi,j+ 1

2
(tl,v)− δ2

i,j−1Ξi,j− 1
2
(tl,v)

))

+O(hm+2).

As (3.8) and (3.9), we can prove that ‖θ̂ ‖∞ = O(hm+2) and ‖θ − θ̂ ‖∞ = O(hm+2). So

‖θ ‖∞ ≤ ‖θ − θ̂ ‖∞ + ‖θ̂ ‖∞ = O(hm+2).2

Remark 3.8 : In special case, when m is odd and the nodes ρi (i = 1, . . . ,m) are symmetrically

distributed by using Remark 2.3 and the above discussion, we can say that

||θ||∞ = ||e− ε||∞ = O(hm+3).

In next section by numerical experiments we study this case (see example 2).

4. NUMERICAL EXAMPLES

We now obtain the numerical results. In this section we have computed the numerical results by

Mathematica-9 programming. A numerical order is calculated according to

Order :=
ln(‖en−1‖∞/‖en‖∞)

ln 2
.

Also in the examples, the boundary conditions are taken from the exact solution.

Example 1 : In this example we consider, the linear case as follows

y′′(t) = ty′(t) + y(t) + a3(t) +
∫ 1

0
tsy(s)ds.

In this case a3(t) is chosen such that exact solution is y(t) = t exp(2t). For this example, we

choose n collocation subintervals of length 1/n. In the Table 1 and 2 we choose m = 2 and assume

that {ρ0 = 0, ρ1 = 0.2, ρ2 = 0.65, ρ3 = 1}. We use the finite difference scheme in the Remark

2.6 to find numerical results for Table 2. Also in the Table 3, we assume that ρi(i = 0, . . . , 5) are

equidistant point.
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Table 1: Numerical results for Example 1.

n ||e||∞ Order ||θ||∞ Order

4 1.37091e-2 −−−− 3.76668e-5 −−−−
8 3.96024e-3 1.79148 1.54185e-6 4.61056

16 1.03416e-3 1.93713 1.06939e-7 3.84981

Table 2: Numerical results for Example 1.

n ||e||∞ Order ||θ||∞ Order

4 1.37091e-2 −−−− 3.77005e-5 −−−−
8 3.96024e-3 1.79148 1.53945e-6 4.61410

16 1.03416e-3 1.93713 1.06864e-7 3.84857

Table 3: Numerical results for Example 1 with m = 4.

n ||e||∞ Order ||θ||∞ Order

4 6.349980e-5 −−−− 3.13330e-8 −−−−
8 4.136140e-6 3.94040 3.95715e-10 6.30708

16 2.576416e-7 4.00485 5.66214e-12 6.12697

Example 2 : For nonlinear case we consider the problem

y′′(t) = (ty′(t))2 + y3(t) + a3(t) +
∫ 1

0
tsy(s)ds,

a3(t) is chosen such that exact solution is y(t) = exp(2t). For this example, we choose n collocation

subintervals of length 1/n. In the Table 4 we choose m = 4 and assume that ρi(i = 0, . . . , 5) are

equidistant points. Also in the Table 4, we we choose m = 3 and {ρ0 = 0, ρ1 = 0.2, ρ2 = 0.65, ρ3 =

0.8, ρ4 = 1}. Numerical results are tabulated in Table 6 by using the finite difference scheme in the

Remark 2.6.

Table 4: Numerical results for Example 2.

n ||e||∞ Order ||θ||∞ Order

4 5.61277e-5 −−−− 6.96467e-7 −−−−
8 3.20050e-6 4.13235 9.89168e-9 6.13770

16 1.94647e-7 4.03937 1.34356e-10 6.20208
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Table 5: Numerical results for Example 2 with m = 3 and equidistant points.

n ||e||∞ Order ||θ||∞ Order

4 5.13598e-4 −−−− 4.19134e-5 −−−−
8 6.29898e-5 3.02745 8.28122e-7 5.66142

16 7.89056e-6 2.99692 1.45131e-8 5.83442

Table 6: Numerical results for Example 2 with m = 5 and equidistant points.

n ||e||∞ Order ||θ||∞ Order

4 1.87219e-6 −−−− 6.96467e-7 −−−−
8 2.79428e-8 6.06611 1.69114e-10 7.55132

16 4.32541e-10 6.01349 7.30527e-13 7.85484

Example 3 : As a last study, we consider here the following nonlinear problem

y′′(t) = (y′(t))2 + y(t) + a3(t) +
∫ 1

0
y2(s)ds,

a3(t) is chosen such that exact solution is y(t) = exp(3t). For this example, we choose n collocation

subintervals of length 1/n. In the Table 7, we choose m = 2 and assume that ρi(i = 0, ..., 3) are

equidistant points.

Table 7: Numerical results for Example 3 with m = 2 and equidistant points.

n ||e||∞ Order ||θ||∞ Order

16 1.17596e-3 −−−− 9.64867e-5 −−−−
32 2.67957e-4 2.13377 9.71034e-6 3.31273

64 6.41159e-5 2.06325 6.93182e-7 3.80822

128 1.57799e-5 2.02259 4.50846e-8 3.94253

5. CONCLUSION

In this work, we study efficient asymptotically correct a posteriori error estimates for the numerical

approximation of second order Fredholm integro-differential equations. In addition, it is shown that
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when we use m degree piecewise polynomial collocation method, the order of the deviation of the

error estimation is O(hm+2). Also, numerical results confirm our theoretical analysis.
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