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1. INTRODUCTION

It is a surprising result of Martindale [16] that every multiplicative bijective mapping from a prime

ring containing a nontrivial idempotent onto an arbitrary ring is necessarily additive. This result was

utilized by Šemrl in [20] to describe the form of the semigroup isomorphisms of standard operator

algebras on Banach spaces. Some other results on the additivity of multiplicative mappings between

operator algebras can be found in [3, 5, 13, 14, 17, 18]. Besides additivity of multiplicative mappings,

additivity of derivable mappings is also an interesting problem.

Let A be an algebra. Recall that a mapping φ from A into A is called a derivable mapping if

φ(AB) = φ(A)B + Aφ(B) for all A,B ∈ A and a Jordan derivable mapping if φ(AB + BA) =

φ(A)B + Aφ(B) + φ(B)A + Bφ(A) for all A,B ∈ A. We say that additive derivable mappings

are additive derivations, and additive Jordan derivable mappings are additive Jordan derivations. Lu

[15] showed that each Jordan derivable mapping of a 2-torsion free prime ring containing a nontrivial
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idempotent is also additive. Let [A,B] = AB−BA be the usual Lie product of A and B. Recall that

a mapping φ from A into A is called a Lie derivable mapping if φ([A,B]) = [φ(A), B] + [A,φ(B)]

for all A,B ∈ A. Lu [12] gave a characterization of Lie derivable mapping of operator algebra on

Banach space. Some other results on derivable mappings can be found in [1, 7, 11].

In recent years, the additivity of *-derivable mappings has attracted the attentions of many re-

searchers. Let A be an algebra with involution, a mapping φ : A → A is called a ∗-Lie derivable

mapping if for any A,B ∈ A, φ([A,B]∗) = [φ(A), B]∗ + [A,φ(B)]∗, where [A,B]∗ = AB −BA∗

is the skew Lie product of A and B. In [21] Yu and Zhang showed that every ∗-Lie derivable mapping

from a factor von Neumann algebra on an infinite dimensional complex Hilbert space into itself is an

additive ∗-derivation. In [10], Li, Lu and Fang arrived the same conclusion on von Neumann algebra

without central abelian projections. Jing [8] proved that every ∗-Lie derivable mapping of standard

operator algebra on complex Hilbert space is an inner ∗-derivation. A mapping φ : A → A is called

a ∗-Jordan triple multiplicative mapping if for anyA, B ∈ A, φ(AB∗A) = φ(A)φ(B)∗φ(A). In [3],

Gao gave a full characterization of ∗-Jordan triple multiplicative surjective mappings. Notice that the

operator algebras in above papers are all on complex Hilbert space, how about on real space?

In [1] a mapping φ satisfying φ(ABA) = φ(A)φ(B)φ(A) is called a Jordan semi-triple mapping.

Molnár showed in [17] that in the case of standard operator algebras acting on infinite dimensional

Banach spaces every bijective semi-triple mapping is additive. Later, Lu in [13, 14] presented a

purely algebraic proof. Gorazd Lešnjak and Nung-Sing Sze [4] gave a characterization of injective

Jordan semi-triple mapping on matrix algebra Mn(F) with entries in a field F. Du and Zhang in

[2] gave a characterization of Jordan semi-triple derivable mapping (i.e. a mapping φ satisfying

φ(ABA) = φ(A)BA + Aφ(B)A + ABφ(A)) on matrix algebra over 2-torsion free commutative

ring with unity.

In this paper, motivated by [2-4], we follow this line of investigation and consider ∗-Jordan

semi-triple derivable mapping (i.e. a mapping φ satisfying φ(AB∗A) = φ(A)B∗A + Aφ(B)∗A +

ABφ(A)∗). We shall give a full characterization of a ∗-Jordan semi-triple derivable mapping on

matrix algebra over 2-torsion free commutative real ring with unity and on operator algebra B(H)

respectively.

Let us fix some notation. Throughout this paper, R denote 2-torsion free commutative real ring,

Mn(R) (n ≥ 2) denote the algebra of n × n matrices over R. For any 1 ≤ j, k ≤ n we write Ejk

for the matrix having 1 as its (j, k)th entry and zeros elsewhere. For a matrix A ∈ Mn(R) and a

homomorphism ϕ of R, let Aϕ be the matrix obtained by applying ϕ entrywise, i.e. [Aϕ]jk = ϕ(ajk).
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Let H be a (real or complex) Hilbert space and denote by B(H) the algebra of all bounded linear

operators on H.

2. MAIN RESULTS

Before giving the main results we collect some easy verifiable facts about ∗-Jordan semi-triple deriv-

able mappings.

Lemma 2.1 — If Φ : A → A is a ∗-Jordan semi-triple derivable mapping, then

(1) Φ(0) = 0;

(2) Φ(I) = −Φ(I)∗.

PROOF : In fact, take A = B = 0, we get Φ(0) = 0. Take A = B = I , we have Φ(I) =

Φ(II∗I) = Φ(I)I∗I + IΦ(I)∗I + II∗Φ(I) = 2Φ(I) + Φ(I)∗, hence Φ(I) = −Φ(I)∗. 2

Lemma 2.2 — Let R be a 2-torsion free commutative real ring with unity, and M2(R) be the

algebra of 2 × 2 matrices over R. If Φ : M2(R) → M2(R) is a ∗-Jordan semi-triple derivable

mapping (here ∗ denote the transpose), then there exist T ∈ M2(R), T ∗ = −T , and an additive

derivation ϕ of R such that

Φ(A) =
1
2
Φ(I)A +

1
2
AΦ(I) + AT − TA + Aϕ

for all A ∈ Mn(R), where Aϕ = (ϕ(aij)).

PROOF : Suppose Φ(E11) = (aij), Φ(E12) = (bij), Φ(E21) = (cij), Φ(E22) = (dij), aij , bij , ci,j ,

dij ∈ R, 1 ≤ i, j ≤ 2. Since Φ(E11E
∗
11E11) = Φ(E11)E∗

11E11 +E11Φ(E11)∗E11 +E11E
∗
11Φ(E11),

we get a11 = 0, a22 = 0, thus Φ(E11) =

(
0 a12

a21 0

)
. Similarly, we can get Φ(E12) =

(
b11 0

0 b22

)
, Φ(E21) =

(
c11 0

0 c22

)
, Φ(E22) =

(
0 d12

d21 0

)
.

By the definition of ∗-Jordan semi-triple derivable mapping, chose A = E11, B = E12 in the

above equality, we can get b11 = −a12. Similarly, chose A = E11, B = E21, we can get c11 = −a21;

chose A = E12, B = E22, we can get d12 = −b22; chose A = E21, B = E22, we can get d21 = −c22.

Thus we have

Φ(E11) =

(
0 a12

a21 0

)
, Φ(E12) =

(
−a12 0

0 b22

)
, (2.1)



828 LIN CHEN AND JIANHUA ZHANG

Φ(E21) =

(
−a21 0

0 c22

)
and Φ(E22) =

(
0 −b22

−c22 0

)
. (2.2)

For any A ∈ M2(R), define

Ψ(A) = Φ(A)− 1
2
Φ(I)A− 1

2
AΦ(I). (2.3)

It is easy to verify that Ψ is a ∗-Jordan semi-triple derivable mapping with Ψ(I) = 0. So, for each

A ∈ M2(R), Ψ(A2) = Ψ(A)A + AΨ(A). Since

Ψ(A∗) = Φ(A∗)− 1
2
Φ(I)A∗ − 1

2
A∗Φ(I)

= Φ(I)A∗ + Φ(A)∗ + A∗Φ(I)− 1
2
Φ(I)A∗ − 1

2
A∗Φ(I)

=
1
2
Φ(I)A∗ +

1
2
A∗Φ(I) + Φ(A)∗

= −1
2
Φ(I)∗A∗ − 1

2
A∗Φ(I)∗ + Φ(A)∗

= (Φ(A)− 1
2
Φ(I)A− 1

2
AΦ(I))∗

= Ψ(A)∗,

hence Ψ preserving ∗ operation. By Lemma 2.1, assume φ(I) =

(
0 −b

b 0

)
, for some b ∈ R. It

follows from Eq. (2.1) and Eqs. (2.2) and (2.3) that

Ψ(E11) =

(
0 a12 + 1

2b

a21 − 1
2b 0

)
, Ψ(E12) =

(
−a12 − 1

2b 0

0 b22 − 1
2b

)
, Ψ(E21) =

(
−a21 + 1

2b 0

0 c22 + 1
2b

)
and Ψ(E22) =

(
0 −b22 + 1

2b

−c22 + 1
2b 0

)
.

Since Ψ(E12) = Ψ(E∗
12) = Ψ(E21), we have b = a21 − a12 = b22 − c12. By Lemma 2.1,

0 = Ψ(E2
12) = E12Ψ(E12) + E12Ψ(E12), we get b22 + c22 = −(a12 + a21). Let a12 + a21 = 2x.

Then

Ψ(E11) =

(
0 x

x 0

)
, Ψ(E12) =

(
−x 0

0 x

)
,

Ψ(E21) =

(
−x 0

0 x

)
and Ψ(E22) =

(
0 −x

−x 0

)
.
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Let T =

(
0 x

−x 0

)
.

It is clear that T = −T ∗ and Ψ(Eij) = EijT − TEij for all 1 ≤ i, j ≤ 2. Now for any

A ∈ M2(R), define

∆(A) = Ψ(A)− (AT − TA). (2.4)

It is easy to verify that ∆ is a ∗-Jordan semi-triple derivable mapping with ∆(Eij) = 0 for all

1 ≤ i, j ≤ 2. For A = (aij) ∈ M2(R), let ∆(A) = (bij). Then

bijEji = Eji∆(A)Eji = ∆(EijAEij) = ∆(ajiEji).

Thus, the (i, j)th entry of ∆(A) depends on the (j, i)th entry of A only. Therefore, we may write

∆(A) =

(
ϕ11(a11) ϕ12(a21)

ϕ21(a12) ϕ22(a22)

)
for some maps ϕij on R. Furthermore, from ∆(Eij) = 0 for all

i, j ∈ {1, 2} we conclude that ϕij(0) = 0 and ϕij(1) = 0. Let J = E11 + E12 + E21 + E22. For any

a ∈ R, since ∆(I) = 0, we have

ϕ(a11)J =J(ϕ(a11E11))J = J∆(aE11)J

= ∆(aJE11J) = ∆(aJ) =

(
ϕ11(a11) ϕ12(a21)

ϕ21(a12) ϕ22(a22)

)
.

Therefore, ϕ11 = ϕ12 = ϕ21 = ϕ22. We label this common mapping by ϕ and it follows that

∆(A) = Aϕ for every A ∈ M2(R). It remains to prove that ϕ is an additive derivation of R. For any

a, b ∈ R, let A = aE11 + bE12. Then ∆(A) = ϕ(a)E11 + ϕ(b)E12. Since

ϕ(a)2E11 + ϕ(a)ϕ(b)E12 = ∆(A)2 = ∆(A2) = ϕ(a2)E11 + ϕ(ab)E12

and

(ϕ(a) + ϕ(b))J = J∆(A)J = ∆(JAJ) = ∆((a + b)J) = ϕ(a + b)J,

we have ϕ(ab) = ϕ(a)ϕ(b) and ϕ(a + b) = ϕ(a) + ϕ(b). Hence, by Eq. (2.3) and Eq. (2.4),

Φ(A) = 1
2Φ(I)A + 1

2AΦ(I) + AT − TA + Aϕ for all A ∈ M2(R). 2

Theorem 2.3 — Let R be a 2-torsion free commutative real ring with unity, and Mn(R) (n ≥ 2)

be the algebra of n × n matrices over R. If Φ is a ∗-Jordan semi-triple derivable mapping from

Mn(R) into Mn(R) (here ∗ denote the transpose) if and only if there exist T ∈ Mn(R), T ∗ = −T ,

and an additive derivation ϕ of R such that

Φ(A) =
1
2
Φ(I)A +

1
2
AΦ(I) + AT − TA + Aϕ
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for all A ∈ Mn(R), where Aϕ is the image of A under ϕ applied entrywise.

PROOF : For any A ∈ Mn(R), define

Ψ(A) = Φ(A)− 1
2
Φ(I)A− 1

2
AΦ(I). (2.5)

By the proof of Lemma 2.1, we know that Ψ(I) = 0, Ψ(A2) = Ψ(A)A + AΨ(A) and Ψ(A∗) =

Ψ(A)∗. We proceed to prove the theorem by induction of n for Ψ. By Lemma 2.1, the theorem is

hold for n = 2. Now we assume that the theorem is hold for n = m. For n = m+1, let P = Im⊕ [0]

and P⊥ = I−P = [0]m⊕ [1], [0]m is the zero matrix in Mm(R). Since Ψ(P 2) = Ψ(P )P +PΨ(P ),

we have PΨ(P )P = P⊥Ψ(P )P⊥ = 0. Thus

Ψ(P ) = PΨ(P )P⊥ + P⊥Ψ(P )P = PU − UP,

here U = PΨ(P )P⊥ − P⊥Ψ(P )P ∈ Mm+1(R) and U∗ = −U . For any A ∈ Mm+1(R), replacing

Ψ by the mapping

A 7→ Ψ(A)− (AU − UA) (2.6)

we may assume that Ψ(P ) = 0. For any Am ∈ Mm(R) let A = Am ⊕ [0]. Then A = PAP ∈
Mm+1(R) and Ψ(P ) = 0 implies

Ψ(A) = Ψ(PAP ) = PΨ(A)P = Bm ⊕ [0]

for some matrix Bm ∈ Mm(R). Define the mapping Ψ̂ on Mm(R) by Ψ̂(Am) = Bm. It is easy to

check that Ψ̂ is a ∗-Jordan semi-triple derivable mapping from Mm(R) into Mm(R). By the induction

hypothesis there is a S ∈ Mm(R) with T ∗ = −T and an additive derivation from R into R such that

Ψ̂(Am) = AmS − SAm + Aϕ for all Am ∈ Mm(R). Let V = S ⊕ [0]. For any X ∈ Mm+1(R),

define

∆(X) = Ψ(X)− (XV − V X). (2.7)

Thus we can get a ∗-Jordan semi-triple derivable mapping ∆̂ from Mm(R) into Mm(R) such that

∆(Am ⊕ [0]) = ∆̂(Am)⊕ [0]. This is equivalent to

∆(Am ⊕ 0) = Aϕ ⊕ 0. (2.8)

Also, for any A =

(
A11 A12

A21 A22

)
∈ Mm+1(R) with A11 ∈ Mm(R) we have PAP = A11 ⊕ [0].
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Thus

P∆(A)P = ∆(PAP ) = ∆̂(A11 ⊕ [0]) = (A11)ϕ ⊕ [0]. (2.9)

Let us define matrices Di for each i ∈ {1, 2, · · · ,m} by Di = Im+1 − Eii − E(m+1)(m+1) +

Ei(m+1) + E(m+1)i. Let i be arbitrary, but fixed. From Eq. (2.9) we have P∆(Di)P = 0. Then

there exists xi = (xi1, xi2, · · · , xim), (yi1, yi2, · · · , yim) ∈ Rm and zi ∈ R such that ∆(Di) =(
0m xi

∗

yi zi

)
.

For each fixed i, since D2
i = Im+1, from the equality

Di∆(Di) + ∆(Di)Di = ∆(D2
i ) = ∆(Im+1) = 0

we get xii = −yii, zi = 0 and xik = yik = 0 (k 6= i). Hence,

∆(Di) = xiiEi(m+1) − xiiE(m+1)i.

Let j ∈ {1, 2, · · · ,m} and j 6= i. Then DiDjDi = Im+1−Eii−Ejj +Eij +Eji. From the equality

0 = P∆(Im+1 − Eii −Ejj + Eij + Eji)P = P∆(DiDjDi)P

= P [∆(Di)DjDi + Di∆(Dj)Di + DiDj∆(Di)]P

= P [(xii − xjj)Eij + (xjj − xii)Eji]P

= (xii − xjj)Eij + (xjj − xii)Eji

we get xii = xjj for all i, j ∈ {1, 2, · · · ,m} and i 6= j. So, ∆(Di) = x11Ei(m+1) − x11E(m+1)i for

each i ∈ {1, 2, · · · , m}. Let W = [0]m ⊕ x11. For any X ∈ Mm+1(R), replacing ∆ by the map

X 7→ Ψ(X)− (XW −WX) (2.10)

we may assume that ∆(Di) = 0 for all i ∈ {1, 2, · · · ,m}. Let us fix some i ∈ {1, 2, · · · ,m}
again. As m ≥ 2, there is another j ∈ {1, 2, · · · ,m} and j 6= i such that Ei(m+1) = DjEijDj and

Eji = DjE(m+1)iDj
. Then for any a ∈ R,

∆(aEi(m+1)) = ∆(Dj(aEij)Dj) = Djϕ(a)EijDj = ϕ(a)Ei(m+1) (2.11)

and

∆(aE(m+1)i) = ∆(Dj(aEji)Dj) = Djϕ(a)EjiDj = ϕ(a)E(m+1)i. (2.12)
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Also E(m+1)(m+1) = D1E11D1, we arrive

∆(aE(m+1)(m+1)) = ∆(D1(aE11)D1) = D1ϕ(a)E11D1 = ϕ(a)E(m+1)(m+1). (2.13)

Eq. (2.8), (2.11), (2.12), (2.13) imply that ∆(aEij) = ϕ(a)Eij for all i, j ∈ {1, 2, · · ·m + 1} and

a ∈ R. Finally, for any A ∈ Mm+1(R), let ∆(A) = (bij). Then

bijEji = Eji∆(A)Eji = ∆(EijAEij) = ∆(ajiEji).

This shows ∆(A) = (ϕ(aij)) = Aϕ for all A ∈ Mm+1(R). By Eq. (2.6), (2.7) and (2.10), we get

Ψ(A) = AT − TA + Aϕ

for all A ∈ Mm+1(R), here T = U + V + W with T ∗ = −T . Thus, by Eq. (2.5)

Φ(A) =
1
2
Φ(I)A +

1
2
AΦ(I) + AT − TA + Aϕ

for all A ∈ Mn(R), and hence the proof is completed. 2

In the following theorem, we will characterize a ∗-Jordan semi-triple derivable mapping of B(H).

For A ∈ B(H), A∗ denote self adjoint of A.

Theorem 2.4 — LetH be an infinite dimensional complex Hilbert space and B(H) be the algebra

of all bounded linear operators on H. If Φ is a ∗-Jordan semi-triple derivable mapping from B(H)

into B(H) if and only if there exist T ∈ B(H) with T ∗ = −T such that

Φ(A) =
1
2
Φ(I)A +

1
2
AΦ(I) + AT − TA

for all A ∈ B(H).

PROOF : For any A ∈ B(H), define

Ψ(A) = Φ(A)− 1
2
Φ(I)A− 1

2
AΦ(I). (2.14)

By the proof of Lemma 2.1, we know that Ψ(I) = 0, Ψ(A2) = Ψ(A)A + AΨ(A) and Ψ(A∗) =

Ψ(A)∗. If Ψ is additive, then Ψ is an additive Jordan derivation. By [6, Theorem 3.1], Ψ is a

derivation. By the Kadison-Sakai theorem [9, 19], it is an inner derivation, thus by Eq. (2.14) the

theorem is proved. So, it remains to show that Ψ is additive.

Since dimH = ∞, there exists a projection P ∈ B(H) such that dim(PH) = dim(P⊥H) = ∞.

Let P1 = P, P2 = P⊥ and Aij = PiB(H)Pj , 1 ≤ i, j ≤ 2. Then B(H) = A11⊕A12⊕A21⊕A22.
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For the convenience of citation and clarity of exposition, we shall organize the proof in a series of

claims.

Claim 1 : There exists S ∈ B(H) with S∗ = −S such that Ψ(Pi) = PiS − SPi, i = 1, 2.

Since Ψ(Pi) = Ψ(Pi)Pi + PiΨ(Pi), we get PjΨ(Pi)Pj = 0, for 1 ≤ i 6= j ≤ 2. Thus,

Ψ(Pi) = PiΨ(Pi)Pj + PjΨ(Pi)Pi

for 1 ≤ i 6= j ≤ 2. Since

Ψ(P1) = Ψ((I − 2P2)P1(I − 2P2))

= Ψ(I − 2P2)P1 + (I − 2P2)Ψ(P1)(I − 2P2) + P1Ψ(I − 2P2)

Multiplying both sides of the above equation by P1 (or P2) and P2 (or P1) from the left and right,

respectively, we get that

2P1Ψ(P1)P2 = P1Ψ(I − 2P2)P2 and 2P2Ψ(P1)P1 = P2Ψ(I − 2P2)P1.

Since

Ψ(P2) = Ψ((I − 2P2)P2(I − 2P2))

= −Ψ(I − 2P2)P2 + (I − 2P2)Ψ(P2)(I − 2P2)− P2Ψ(I − 2P2)

Multiplying both sides of the above equation by P1 (or P2) and P2 (or P1) from the left and right,

respectively, we get that

2P1Ψ(P2)P2 = −P1Ψ(I − 2P2)P2 and 2P2Ψ(P2)P1 = −P2Ψ(I − 2P2)P1.

Hence, Ψ(P1) = −Ψ(P2). Let S = P1Ψ(P1)P2−P2Ψ(P1)P1. For i = 1, 2, Ψ(Pi) = PiS−SPi.

Now, for any A ∈ B(H), define ∆(A) = Ψ(A)− (AS − SA). It is easy to verify that ∆ is also

a ∗-Jordan semi-triple derivable mapping and ∆(Pi) = 0 for i = 1, 2.

Claim 2 : For any A ∈ B(H) and i, j = 1, 2, we have ∆(PiAPj) = Pi∆(A)Pj .

For any A ∈ B(H) and i = 1, 2, it follows from ∆(Pi) = 0 that

∆(PiAPi) = ∆(Pi)A∆(Pi) + Pi∆(A)Pi + PiA∆(Pi) = Pi∆(A)Pi. (2.15)

Since dimP1H = dimP2H, by polar decomposition theorem, there exists a partial isometry U ∈
A12 such that UU∗ = P1, U

∗U = P2. Since P2U = UP1 = 0, we have

0 = ∆(UP1AP2U) = ∆(U)P1AP2U + U∆(P1AP2)U + UP1AP2∆(U)

= U∆(P1AP2)U.
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Multiplying both sides of the above equation by U∗, we get P2∆(P1AP2)P1 = 0. This together

with Eq. (2.15), we get ∆(P1AP2) = P1∆(P1AP2)P2. Similarly, one can prove that ∆(P2AP1) =

P2∆(P2AP1)P1. In particularly, ∆(U∗) = P2∆(U∗)P1. On the other hands, from the fact U∗AU∗ =

U∗P1AP2U
∗ we have

∆(U∗P1AP2U
∗) = ∆(U∗)P1AP2U

∗ + U∗∆(P1AP2)U∗ + U∗P1AP2∆(U∗)

= ∆(U∗AU∗) = ∆(U∗)AU∗ + U∗∆(A)U∗ + U∗A∆(U∗)

= ∆(U∗)P1AP2U
∗ + U∗∆(A)U∗ + U∗P1AP2∆(U∗),

this shows U∗∆(P1AP2)U∗ = U∗∆(A)U∗. Hence, P1∆(P1AP2)P2 = P1∆(A)P2. This together

with ∆(P1AP2) = P1∆(P1AP2)P2 we get ∆(P1AP2) = P1∆(A)P2. Similarly, one can prove that

∆(P2AP1) = P2∆(A)P1.

Claim 3 : Let Aij ∈ Aij , 1 ≤ i, j ≤ 2. Then ∆(
∑2

i,j=1 Aij) =
∑2

i,j=1 ∆(Aij).

Suppose there exists X ∈ B(H) such that X = ∆(
∑2

i,j=1 Aij). By Claim 2,

Xij = Pi∆




2∑

i,j=1

Aij


Pj = ∆


Pi




2∑

i,j=1

Aij


Pj


 = ∆(Aij).

Hence ∆(
∑2

i,j=1 Aij) =
∑2

i,j=1 ∆(Aij).

Claim 4 : Let Aij ∈ Aij , 1 ≤ i 6= j ≤ 2. Then ∆(2Aij) = 2∆(Aij).

For any Aij ∈ Aij , 1 ≤ i 6= j ≤ 2, by Claim 1 and Claim 3 we have

∆(I + Aij) = ∆(P1 + P2 + Aij) = ∆(Aij).

Thus

∆(2Aij) = ∆((I + Aij)2) = ∆(I + Aij)(I + Aij) + (I + Aij)∆(I + Aij)

= ∆(Aij)(I + Aij) + (I + Aij)∆(Aij) = 2∆(Aij).

Claim 5 : Let Aij , Bij ∈ Aij , 1 ≤ i 6= j ≤ 2. Then ∆(Aij + Bij) = ∆(Aij) + ∆(Bij).

For any Aij , Bij ∈ Aij and 1 ≤ i 6= j ≤ 2, we have

(I +
1
2
Aij)(I + Bij)(I +

1
2
Aij) = I + Aij + Bij .
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By Claim 4,

∆(Aij + Bij) = ∆(I + Aij + Bij)

= ∆((I +
1
2
Aij)(I + Bij)(I +

1
2
Aij))

=
1
2
∆(Aij)(I + Bij)(I +

1
2
Aij) + (I +

1
2
Aij)∆(Bij)(I +

1
2
Aij)

+ (I +
1
2
Aij)(I + Bij)

1
2
∆(Aij)

=
1
2
∆(Aij) + ∆(Bij) +

1
2
∆(Aij)

= ∆(Aij) + ∆(Bij).

Claim 6 : Let Aii ∈ Aii, Bij ∈ Aij , 1 ≤ i 6= j ≤ 2. Then ∆(AiiBij) = ∆(Aii)Bij +Aii∆(Bij).

For any Aii ∈ Aii, Bij ∈ Aij , 1 ≤ i 6= j ≤ 2, we have

Aii + AiiBij = (Pi + Bij)Aii(Pi + Bij).

By Claim 4 and Claim 5,

∆(Aii + AiiBij) = ∆(Aii + ∆(AiiBij) = ∆((Pi + Bij)Aii(Pi + Bij))

= ∆(Bij)Aii(Pi + Bij) + (Pi + Bij)∆(Aii)(Pi + Bij)

+ (Pi + Bij)Aii∆(Bij)

= (Pi + Bij)∆(Aii)(Pi + Bij) + (Pi + Bij)Aii∆(Bij)

= ∆(Aii) + ∆(Aii)Bij + Aii∆(Bij).

Hence, ∆(AiiBij) = ∆(Aii)Bij + Aii∆(Bij).

Claim 7 : Let Aii, Bii ∈ Aii, i = 1, 2. Then ∆(Aii + Bii) = ∆(Aii) + ∆(Bii).

Suppose 1 ≤ j 6= i ≤ 2, for any Aii, Bii ∈ Aii and Cij ∈ Aij , by Claim 6 we have

∆((Aii + Bii)Cij) = ∆(Aii + Bii)Cij + (Aii + Bii)∆(Cij). (2.16)

On the other hands, by Claim 5 and Claim 6,

∆(Aii + Bii)Cij) = ∆(AiiCij) + ∆(BiiCij)

= ∆(Aii)Cij + Aii∆(Cij) + ∆(Bii)Cij + Bii∆(Cij)

= (∆(Aii) + ∆(Bii))Cij + Aii∆(Cij) + Bii∆(Cij).
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This together with Eq. (2.16) we can get

∆(Aii + Bii)Cij = (∆(Aii) + ∆(Bii))Cij

for all Cij ∈ Aij . So, ∆(Aii + Bii) = ∆(Aii) + ∆(Bii) for all Aii, Bii ∈ Aii.

Claim 8 : ∆ is additive.

Let A,B ∈ B(H). Then A =
∑2

i,j=1 Aij and B =
∑2

i,j=1 Bij , Aij , Bij ∈ Aij . By Claim 3,

Claim 5, Claim 6 and Claim 7,

∆(A + B) = ∆(
2∑

i,j=1

(Aij + Bij)) =
2∑

i,j=1

∆(Aij + Bij)

=
2∑

i,j=1

∆(Aij) + ∆(Bij) =
2∑

i,j=1

∆(Aij) +
2∑

i,j=1

∆(Bij)

= ∆(A) + ∆(B).

Completing the proof. 2
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