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In this paper we introduce the concept of completeness of sets. We study this property on the

set of integers. We examine how this property is preserved as we carry out various operations

compatible with sets. We also introduce the problem of counting the number of complete subsets

of any given set. That is, given any interval of integers H := [1, N ] and letting C(N) denotes the

complete set counting function, we establish the lower bound C(N) À N log N .
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1. INTRODUCTION

The development of set theory dates back to the days of the German mathematician George Cantor.

Infact he was one of the major pioneers of set theory and it’s development, and so, he is thought today

as the major force behind it [1]. Today it is widely studied in many areas of mathematics, including

number theory, combinatorics, computer science, algebra etc. Intuititively, a set can be thought of as

a collection of well-defined objects. The objects in the set can be seen as it’s members or elements.

These elements do characterize and tell us more about the nature of the set in question. The elements

of a set can either be finite or infinite. For example the set A := {2, 5, 9, 1,−54} denotes a finite set

of integers, since all the elements are integers. The set of R of real numbers and the set Z of integers

are examples of infinite sets.

In what follows we setA±B := {ai± bi : ai ∈ A and bi ∈ B},A·B := {aibj : ai ∈ A, bi ∈ B}
and c ·A := {ca : a ∈ A},A\B := A−B for finite sets of integersA and B. We recall an arithmetic

progression of length n to be the set A of the form A = {a0, a0 + q, a0 + 2q, . . . , a0 + (n − 1)q}.

In a more special case we have the A := {q, 2q, . . . , nq}, a homogenous arithmetic progression. For
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the set A := {a0, a1, . . . , an}, we call A(N) := {a′0, a′1, . . . , a′n}, where a′i = ai−a0
d(A) and where

d(A) = (a0 − a0, a1 − a0, . . . , an − a0) with 0 = a′0 < a′1 < . . . < a′n, the normal form of A.

There are various classifications concerning set of integers. For example, the theory of multiple

sets and primitive sets is very vast and rich (See [2]). A set F can also be classed as sumfree if the

relation a + b = c is not satisfied in F , for a, b, c ∈ F . In this paper, however, we study a particular

class of sets of integers.

2. COMPLETE SETS

In this section we introduce the concept of completeness of a set. Using various operations compatible

with sets, we investigate how this property is preserved.

Definition 2.1 — Let A := {a1, a2, · · · , an} be a finite set of elements in B, where addition and

multiplication is well defined in B. Then A is said to be complete in B if there exists some b ∈ B
such that

n∏
i=1

ai = b
n∑

i=1
ai.

It follows from the above definition the nature of a complete set will depend on the set B. If

we take B := R, then the complete set in question will be a complete set of real numbers. Again

if we take B := N, then the complete set in question will be a complete set of natural numbers. If

B := F[x], then any complete set under B will be a complete set of polynomials. Let us consider the

finite set natural numbers P := {3, 5, 7}. It is easily seen that this set is a complete set of natural

numbers. Again we notice that the set F := {x2,−x2, 2x2} is a complete set of polynomials in Z[x].

However, the set {4x3, 7x3, 10x3} is not complete in Z[x]. So therefore there are, if not infinitely

many, complete sets under any given type of set. Every finite set of real numbers is easily seen to

be complete in R, hence the concept of completeness is not very interesting in this setting. Thus we

examine this concept on the set of integers Z, where it is very strong.

3. COMPLETENESS IN Z

In this section we study the concept of completeness of finite sets of integers. In this case the set B in

Ddefinition 2.1 reduces to the set of all integers. Hence we can rewrite the definition in this particular

setting as follows:

Definition 3.1 — Let A := {a1, a2, . . . , an} be a finite set of integers. Then A is said to be

complete in Z if there exists some b ∈ Z such that
n∏

i=1
ai = b

n∑
i=1

ai.

3.1 Examples of complete sets in Z
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(i) The sets {3, 5, 7}, {−2, 5, 3,−1}, {1, 3, 2}, {3, 7, 11} are examples of sets of integers complete

in Z.

(ii) The sets {3, 7, 9, 4, 2}, {7, 11, 13, 15} , {1, 18, 17, 3} are not complete in Z.

(iii) The sets {2, 4, 6}, {7, 14, 21, 28, 35}, {3, 5, 12} are all complete in Z.

3.2 Properties of completeness of sets in Z

In this section we examine some properties of completeness of finite set of integers in Z. We examine

how this property is preserved as we perform various algebras compatible with sets.

Theorem 3.2 — Let A1 := {a1, a2, . . . , an} and A2 := {b1, b2, . . . , bn} be complete sets in Z.

Then the following remain valid:

(i) The prodset A1 · A2 is also complete in Z.

(ii) The unionA1∪A2 is complete in Z provided there exist some t ∈ Z such that aibj = t(ai+bj)

for each 1 ≤ i, j ≤ n.

(iii) Let H := {c1, c2, . . . , cn}. Then the set A1 ∪ H is complete in Z provided A1 ∩ H = ∅ and

c1 + c2 + · · · cn = 0.

(iv) Let H := {a1, a2, . . . , an, b1, b2, . . . , bn}. Then the set H \ A1 := {b1, b2, . . . bn} is also

complete in Z provided for each i = 1, . . . n, bi = tai for some fixed t ∈ Z.

(v) Let A := {d1, d2, . . . , dn} be complete in Z and suppose |2A| = n(n+1)
2 . Then the two fold

sumset 2A is complete in Z provided (n + 1)|(di + dj) with i 6= j for some 1 ≤ i, j ≤ n.

(vi) The set q · A1 := {qa1, qa2, . . . , qan} is also complete in Z.

PROOF : (i) Suppose A1 := {a1, a2, . . . , an} and A2 := {b1, b2, . . . , bn}. Then the prodset

A1 · A2 := {a1b1, . . . , a1bn, a2b1, a2b2, . . . , a2bn, . . . , anb1, anb2, . . . , anbn}. Now, it follows that

n∏

i,j=1

aibj = (b1b2 · · · bn)(a1a2 · · · an)
(

(b1b2 · · · bn)n−1
n∏

i=1

an−1
i

)
.

Since A1 and A2 are complete in Z, it follows that
n∏

i,j=1
aibj = K

(
n∑

i=1
ai

)(
n∑

j=1
bj

)
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(
(b1b2 · · · bn)n−1

n∏
i=1

an−1
i

)
, for some K ∈ Z. Thus we can write

n∏

i,j=1

aibj = R

n∑

i,j=1

aibj ,

where it is easily seen that R ∈ Z. Hence the conclusion follows immediately.

(ii) Suppose A1 := {a1, a2, . . . , an} and A2 := {b1, b2, . . . , bn} be complete in Z. Now the

union A1 ∪ A2 = {a1, a2, . . . , an, b1, b2, . . . , bn}. Let us take the product of all the elements of the

set, given by (a1a2 · · · an)(b1b2 · · · bn). Bearing in mind each of the sets is complete in Z, it follows

that (a1a2 · · · an)(b1b2 · · · bn) = R

(
n∑

i=1
ai

)(
n∑

j=1
bj

)
= R

n∑
i,j=1

aibj . It follows from the hypothesis

that
n∑

i,j=1
aibj = S

n∑
i=1

ai + S
n∑

j=1
bj , where S ∈ Z. Hence it is easy to see that the conclusion follows

immediately.

(iii) Suppose A1 := {a1, a2, . . . , an} be a complete set in Z and let H := {c1, c2, . . . , cn} such

that c1 + c2 + · · · + cn = 0. Assume the set A1 ∪ H := {a1, a2, . . . , an, c1, c2, . . . , cn} so that

A1 ∩H = ∅. SinceA1 is complete in Z, we see that a1 · a2 · · · anc1 · c2 · · · cn = R(c1c2 · · · cn)(a1 +

a2 · · · an + c1 + c2 + · · ·+ cn) = R1(a1 + a2 · · · an + c1 + c2 + · · ·+ cn) and it follows thatA1 ∪H
is also complete in Z.

(iv) Consider the set H \ A1 := {b1, b2, . . . , bn}. Using the hypothesis and the fact that A1 is

complete in Z, it follows that b1 · b2 · · · bn = tn(a1 · a2 · · · an) = tnk(a1 + a2 + · · ·+ an). Hence it

follows that H \ A1 is also complete in Z.

(v) Suppose A := {d1, d2, . . . , dn} is complete in Z and let |2A| = n(n+1)
2 . Then the two fold

sumset 2A := {d1+d1, d1+d2, . . . , d1+dn, d2+d2, d2+d3, . . . , d2+dn, . . . , dn−1+dn−1, dn−1+

dn, dn + dn}. The product of the elements in 2A is given by 2n(d1 · d2 · · · dn)
n∏

i,j=1
i6=j

(di + dj). Since

A is complete in Z and n + 1|(di + dj) for some 1 ≤ i, j ≤ n with i 6= j, we have that 2n(d1 ·
d2 · · · dn)

n∏
i,j=1
i6=j

(di+dj) = R(n+1)
n∑

i=1
di with R ∈ Z, and we see that the result follows immediately.

(vi) The result follows immediately, since A1 is complete in Z. 2

Remark 3.3 : Property (iii) in Theorem 32. is very important and useful for construction purposes.

It tells us we only need to find a complete set of small size as we seek for a large complete set, since

a larger complete set can be obtained by adding well-balanced elements of any size we wish into the

set. Again property (v) in Theorem 3.2 informs us that if a set is complete, then the two fold sumset
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has a very high chance of being complete provided the size is not too small. Finally property (ii) tells

us that if the product of any two elements from any two complete sets, not necessarily distinct, can be

controlled additively then their union will certainly be complete in Z.

Theorem 3.4 — Let G be a finite set of integers. Then the normal form of G, denoted G(N) is

always complete in Z.

PROOF : Consider the set G = {a0, a1, . . . , an} of integers, where a0 < a1 < · · · < an. The

normal form of G is given by G(N) := {a′0, a′1, . . . , a′n}, where a′i = ai−a0
d(G) and where d(G) =

(a0 − a0, a1 − a0, . . . , an − a0) with 0 = a′0 < a′1 < . . . < a′n. It follows immediately that GN is

complete, thereby ending the proof.

Remark 3.5 : We have seen in Theorem 3.2 in order to construct a large complete set we only

need to first find a small complete set and then add terms of a well-balanced finite sequence into the

set, thereby obtaining a complete set. This process requires adding negative integers. We can avoid

the negative integers by examining the following result encapsulated in the following theorem.

Theorem 3.6 — Let F be a finite set of integers. If F is a homogenous arithmetic progression of

odd length, then F is complete in Z.

PROOF : Let us consider the homogenous arithmetic progression F = {d, 2d, . . . , (n− 1)d, nd}.

Clearly we see that (d · 2d · · ·nd) = dnn!. We observe that

dnn! =
n(n + 1)

2
dn

(
2(n− 2)!− 4

(n− 2)!
n + 1

)
.

Suppose F is of odd length, then it is easy to see that (n + 1)|4(n − 2)!. Thus,

(
2(n − 2)! −

4 (n−2)!
n+1

)
∈ Z, and it follows that F is complete in Z, as required.

Remark 3.7 : This result , albeit easy to state, is very useful for the theory. It helps us to construct

complete sets of integers of any length we wish. More than this, it relates two important concepts of

sets of integers, one of which is widely studied in the whole of mathematics and has led to massive

developments, arithmetic progression. It is also worth pointing out that the converse of Theorem 3.6

is not true, since there are complete sets that are not homogenous arithmetic progressions.

Example 3.8 : Theorem 3.6 informs us that the sets {3, 6, 9}, {23, 46, 69, 92, 115}, {4, 8, 12, 16, 20},

{7, 14, 21, 28, 35}, {101, 202, 303, 404, 505}, {11, 22, 33, }, {9, 18, 27, 36, 45, 54, 63, 72, 81} are all

complete in Z.

Corollary 1 — Every interval [1, N ] of positive integers of odd length N is complete in Z.
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PROOF : The result follows immediately from Theorem 3.6, since all integers in the interval [1, N ]

form a homogenous arithmetic progression. 2

Conjecture 3.1 — LetH := {p1, p2, . . . , pn} be a set of odd length of the first n odd primes, with

3 = p1 < p2 · · · < pn. Then either H is a complete set or

n∑

i=1

pi = L,

is prime or Ω(L) = 2, where Ω(L) =
∑
p||L

1.

Conjecture 3.2 — Every finite set T ⊂ N can be completed in N.

Theorem 3.9 — There exist no complete sets of the form {r, r2, . . . , rn} inN for n ∈ N and r 6= 0

with n > 1.

PROOF : It suffices to exclude the case r = 1, since
n∑

i=1
1 = n and

∏n
i=1 1 = 1, and we find

that n 6 |1. So let us assume for the moment that {r, r2, . . . , rn} is complete in N for r 6= 1. Then it

follows that there exist some b ∈ N such that

r · r2 · · · · rn = b(r + r2 + · · ·+ rn).

Since r 6= 0, it follows that

r · r2 · · · · rn−1 = b(1 + r + · · ·+ rn−1).

Again it follows that

r · r2 · · · rn−1 =
b

rn
(r + r2 + · · ·+ rn).

By comparing both equations, we find that

b

rn
(r + r2 + · · ·+ rn) = b(1 + r + · · ·+ rn−1).

By solving this equation, we find that 1
rn = 1, which is absurd, since this relation can only be true

if r = 1. This completes the proof. 2

4. THE NUMBER OF COMPLETE SETS IN Z

In this section we turn our attention to counting the number complete subsets that can be formed from

any finite set of integers. We begin addressing the problem from a narrower perspective, which is
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to say we seek the maximum number of complete subsets of the set {1, 2, . . . , N} of integers. We

obtain a lower bound in the following results.

Lemma 4.1 — The estimate
∑

n≤x

1
n

= log x + O(1),

is valid.

PROOF : See Theorem 6.9 in the book of Nathanson [2]. 2

Theorem 4.2 — Let C(N) denotes the total number of complete subsets of the setH = {1, 2, . . . , N}
of integers, then

C(N) À N log N.

PROOF : Using Theorem 3.6, we only need to count the number of homogenous arithmetic pro-

gression of length k that can be formed from the interval [1, N ], where k runs through the odd numbers

no bigger than N . Let us consider all the homogenous arithmetic progressions of length 3 that can

be formed from the interval [1, N ]; clearly there are
⌊

N
3

⌋
such number of sets. We have the total

count for those of length 5 to be
⌊

N
5

⌋
. The total count for those of length j is given by

⌊
N
j

⌋
. This

culminates into the assertion that the total number of such complete sets is given by
∑

j≥3

⌊
N

j

⌋
,

where j runs over the odd numbers no bigger that N . Hence the assertion follows immediately by

applying Lemma 4.1. 2

Example 4.3 : Let us consider the interval [1, 10]. The complete sets {1, 2, 3}, {2, 4, 6} and

{3, 6, 9}, represents complete sets of size 3 that can be formed from the interval [1, 10]. Clearly there

are 3 of them. Again the set {1, 2, 3, 4, 5} and {2, 4, 6, 8, 10} represents complete sets of size 5 that

can be formed from the interval. Similarly, there is only one complete set of size 7 that can be formed

from [1, 10] and {1, 2, 3, 4, 5, 6, 7} is an example. The set L = {1, 2, 3, 4, 5, 6, 7, 8, 9} represents a

complete set of size 9 that can be formed from [1, 10]. Thus in total there are at least 7 constructible

complete sets that can be formed from the interval [1, 10].

Conjecture 4.1 — Let C(N) be the number of complete subsets of the set H := {1, 2, . . . , N}.

Then

C(N) = O(N(log N)(log log N)).
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Remark 4.4 : Conjecture 4.1 tells us a great deal about the distribution of complete subsets of

the set {1, 2 . . . , N}. In probabilistic language, it tells us that the chance of any subset of the set

{1, 2, . . . , N} to be complete is very minimal, since

lim
N−→∞

N(log N)(log log N)
2N

= 0.

5. END REMARKS

As mentioned earlier, there are some complete sets that are not homogeneous arithmetic progressions.

Given the interval [1, 10] it turns out that the sets {3, 5, 7}, {2, 5, 7} and {2, 3, 5}, that were not taken

into account in Theorem 4.2, are also complete in Z. Such a loss becomes very significant an N

is taken sufficiently large. This significant loss indicates something wierd unfolding as N increases

without bound, and does suggest the lower bound C(N) À N log N is not the best possible and can

be improved. To this end we raise some questions whose answer may be attributed to such a loss.

Question 1 : If the set F is complete, does there exist some integer s < M such that F + {s} is

complete?
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