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1. INTRODUCTION

Information and communication technology (ICT) industry approximately consumes 4% of the global

annual energy production [23]. A significant increase in the annual power consumption of ICT is

expected in the next few years [10]. Furthermore, mobile networks contribute to a considerable share

of CO2 emissions of ICT industry [23]. This indicates that with the gradual increase of mobile device
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users, the power consumption of mobile networks will become a significant issue in the future [10].

Therefore, a sleep mode operation was defined by the IEEE 802.16e standard to conserve power and

to increase battery life of mobile broadband wireless access (BWA) devices [8].

The IEEE 802.16e power saving mechanism has two types of sleep modes. First mode is named

as Power Saving Class of Type I, which is based on binary increasing sleep window size. The second

is Power Saving Class of Type II which has constant sleep window size [18]. IEEE 802.16e power

saving mechanism considers the battery life of Subscriber Station (SS). This mechanism helps to

reduce power consumption of SS while the battery life is sustained. In order to save energy, the

sleep mode mechanism of SS is set up into repetitive sleep cycles [8]. The IEEE 802.16e sleep mode

technique roughly runs as follows. In active mode (busy period), the SS communicates with Base

Station (BS) to send and receive data packets. If there is no data traffic between SS and BS, SS stays

in an idle state at some random time duration. When SS completes the idle state, it sends a message

(mobile sleep request (MOB-SLP-REQ)) to the BS requesting permission to undergo the sleep mode.

It goes to the sleeping mode after receiving the mobile sleep response (MOB-SLP-RES) by the BS

[35].

Since queueing theory is a powerful mathematical tool to solve the problems of congestion in

the fields of telecommunication systems and computer and communication systems, a number of

researchers studied the IEEE 802.16e power saving mechanism by using the queuing theory. Seo

et al. [24] analyzed the sleep mode operation in IEEE802.16e by modelling the base station as an

M/GI/1/N queue with multiple vacations. Recently, Alouf et al. [1] studied an M/G/1 queueing

system (BS) that has repeated inhomogeneous vacations with application to IEEE 802.16e power

saving mechanism. In their model, a queueing model was proposed to study many power saving

modes proposed in the standards and in the literature. Especially, their model followed the type I and

Type II power saving modes described in the IEEE 802.16e standard.

Generally, there are a number of vacation policies in queueing systems; single vacation, multiple

vacation, and working vacation. In single vacation, the server goes for a vacation when there are no

customers in the system. Whether customers are in the system or not, the system is ready for the

service after finishing vacation time duration. In the case of multiple vacation policy, server is al-

lowed to take another vacation even after a vacation when it sees that no customers are in the system

further. In working vacation policy, the system reduces its service rate without having a complete

vacation. Levy and Yechiali [19] were the first to discuss the queueing systems with server vacations.

Tian and Zhang [28], Doshi [11] and Takagi [27] developed a number of models for vacation types.

Servi and Finn [25] analyzed working vacations in queueing systems and derived the expressions for
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an M/M/1/MV model. Further, this model was developed as an M/G/1/WV model by by Wu

and Takagi [31]. It was further extended into a G/M/1/WV queueing system by Baba [7]. Aru-

muganathan and Jeyakumar [6] considered N -policy single server queues and focused on multiple

vacations and close down times. The results on transient state of a single server queueing system

were derived by Kalidass et al. [15] with the possibilities to occur catastrophes. Indra and Renu [14]

derived transient solution for a single server queueing model with working vacation policy under two

dimensional view by applying Bernoulli schedule. Sudhesh and Raj [26] obtained remarkable results

for time dependent expression of a single server queueing system with multiple vacations. Time de-

pendent results for an M/M/1/N queue system with multiple vacations were derived by Yang and

Wu [32]. Kalidass and Ramanath [17] derived the transient solution for a single server queue with

multiple vacations. The model for N-policy single server queue with multiple exponential vacation

was further considered by Vijayashree and Janani [29] to obtain the explicit transient solutions. Vi-

jayashree and Janani [30] further extended the studies conducted by Ibe and Isijola [13] with new

type of vacation model (differentiated vacation). Transient solution for the system size probabilities

was derived by them using generating function technique and Laplace transform. They obtained the

performance measures such as mean value, variance, and probability for a server to be busy or in

vacation at a specific time. Under the perspective of differentiated vacation, two vacations types can

be seen in queues, which are longer vacations and shorter vacations. These types of vacation can

be found in systems such as libraries, banks, and super markets. In these the system takes longer

vacations when no customers are in the system. The server allows to take a second type of vacation,

if there are no customers after finishing the first type of vacation.

In this research, the BS is modelled as a single server queueing system with repeated differentiated

vacations. When the BS receives a message giving permission to go to the sleep mode it takes Type-I

sleep mode which is exponentially distributed. if there are no data traffic between BS and SS when

it returns from Type-I sleep mode, BS is allowed to take Type-II sleep mode which is exponentially

distributed. After finishing the Type-II sleep mode, it returns to the normal state if there are data

traffic between BS and SS. Otherwise, BS is allowed to take Type-I sleep mode again. This process

was repeated until there is data traffic between BS and SS.

Since the customers’ impatience is considered as a the most important part of a queueing system,

in long queues, the arrivals normally become impatient when they have to wait for their service.

Therefore, waiting customers may leave the system without fulfilling their service requirements, when

it is in the idle state even after the arrival of a customer to the system. This could happen due to another

scenario such as the long time taken by the system to restart. In real life situations, customers may
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decide to leave the system when they have to wait more time for service. This affects to the stability

and performance measures of the system. The applications of customer impatience can be seen in

systems such as communication networks and production-inventory systems. In this model, when BS

is in any type of sleep mode, a message waiting for BS may be recalled by the sender. According to

queueing theory this situation is referred to as impatient customers in the queue.

In the past few decades, many authors paid attention to understanding the server vacations in

queueing systems with customer impatience. Altman and Yechiali [2] studied the behaviour of impa-

tient customers when server is in a vacation for an M/M/1, M/G/1 and M/M/c queues. Further,

Altman and Yechiali [3] studied the infinite capacity queue by considering server vacations and cus-

tomer impatience. The explicit expression for system size probabilities was derived by making use of

probability generating function methods. Perel and Yechiali [22] derived the transient result for multi-

server queueing models in a 2-phase (fast and slow) Markovian random environment with impatient

customers. Yue et al. [34] analyzed the single server queueing systems with customer impatience and

working vacation. The authors paid attention to time dependent solution for different jobs in a queue-

ing system and used the probability generating function techniques to obtain desired results. Ammar

[4] obtained time-dependent solution for single server queue with customer impatience by adding

multiple vacation policy and the mean and variance were derived as the performance measures.

Practically in the real world, the server may not be ready to go for a vacation just as the system

is empty of customers. It is a common situation in real life and when we consider the human be-

haviour as a server, it waits some time duration in the system although no customers are to be served

in the queue such as in the counters of libraries, banks, super markets. In our present model, the

waiting server corresponds to idle time duration of BS. Boxma et al. [9] analyzed M/G/1 queue

with a waiting server timer and vacations. In extending the above research, Yechiali [33] derived the

expressions for Mx/G/1 queue with a waiting server and vacations. An M/M/1 queue with server

vacations and a waiting server was considered by Kalidass and Ramanath [16] and they obtained the

time dependent results. Steady state results for the vacation queues with impatient customers and a

waiting server were derived by Padmavathy et al. [21]. Ammar [5] analyzed the explicit solutions for

an M/M/1 vacation queue with impatient customers and a waiting server which is allowed to take a

vacation when the system is empty after waiting for a sufficient time period.

It was found that no researchers attempted to derive transient solution for an M/M/1 queueing

system subjected to multiple differentiated vacations with customer impatience and a waiting server.

The most important part of this research is that a new concept named Multiple Differentiated Vaca-

tion was introduced. In this research, the transient solution of an M/M/1 queue subjected to mul-
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tiple differentiated vacations with impatience customers and a waiting server were derived. Laplace

transform, probability generating function technique, continued fractions and properties of confluent

hyper-geometric function were used to obtain the transient solution. Accordingly, this can be taken

as a further improvement of the model derived by Vijayashree and Janani [30].

This paper is organized in several major sections. Section 2 explains the model. The explicit ex-

pressions for the time-dependent system size probabilities are discussed in 3. Section 4 introduces the

expressions for time-dependent expected system size and variance. Section 5 presents the numerical

results of the system and conclusions are discussed under 6.

2. MODEL DESCRIPTION

A single server queueing model with multiple-differentiated vacations, waiting server and customers’

impatience is considered. The assumptions of the system are built up as follows.

1. Arrivals to the system occur in accordance with Poisson process with rate λ and service takes

place according to an exponential distribution with rate µ.

2. When the busy period is ended, the server waits a random duration of time before beginning a

vacation. It is assumed that waiting time duration follows the exponential distribution with rate

η.

3. The server begins a vacation (Type-I) after finishing the waiting time duration and returns back

when at least one customer is found to be waiting for service. When the server finds an empty

system upon his returns, it takes another vacation of shorter duration (Type-II). And again, the

server is allowed to take the first type of vacation, if there are no customers in the system after

completing the second type of vacation. If there are zero customers in the waiting queue after

finishing any type of vacation the server is allowed to continuously follow this vacation process

(this process is named as multiple differentiated vacations). As before, the vacation times of the

server are assumed to follow exponential distribution with parameter γ1 and γ2 respectively.

4. Customers arriving while the system being in vacation state become impatient. That is, each

customer, upon arrival, activates an individual timer, exponentially distributed with parameter

ξ1 and ξ2 for Type-I and Type-II vacations respectively if the customer’s service has not been

started before the customer’s timer expires, he abandons the system never to return.

5. It is assumed that inter-arrival times, service times, waiting times and vacation times are mutu-

ally independent and the service discipline is First-In, First-Out (FIFO).
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Let {X(t), t ≥ 0} denotes the total number of customers in the system at time t and let J(t)

represents the state of the system at time t, which is defined as follows.

J(t) =





0, if the server being in functional state at time t

1, if the server being in type-1 vacation at time t

2, if the server being in type-2 vacation at time t.

Then {J(t), X(t), t ≥ 0} is a two-dimensional continuous time Markov process on the state

space S = {(j, n); j = 0, 1, 2;n = 0, 1, 2, ...}. Let Pj,n(t) be the time dependent probabilities for

the system to be in the state j with n customers at time t. Let

P0,n(t) = Prob{J(t) = 0, X(t) = n}, n = 0, 1, 2, ....

P1,n(t) = Prob{J(t) = 1, X(t) = n}, n = 0, 1, 2, ....

P2,n(t) = Prob{J(t) = 2, X(t) = n}, n = 0, 1, 2, ....

Then, the set of forward Kolmogorov differential difference equations governing the process are

given by

P
′
0,0(t) = −(λ + η)P0,0(t) + µP0,1(t) (1)

P
′
0,n(t) = λP0,n−1(t)− (λ + µ)P0,n(t) + µP0,n+1(t) + γ1P1,n(t)

+γ2P2,n(t); 1 ≤ n (2)

P
′
1,0(t) = −(λ + γ1)P1,0(t) + ηP0,0(t) + ξP1,1(t) + γ2P2,0(t) (3)

P
′
1,n(t) = λP1,n−1(t)− (λ + nξ + γ1)P1,n(t)

+(n + 1)ξP1,n+1(t); 1 ≤ n (4)

P
′
2,0(t) = −(λ + γ2)P2,0(t) + ξP2,1(t) + γ1P1,0(t) (5)

P
′
2,n(t) = λP2,n−1(t)− (λ + nξ + γ2)P2,n(t)

+(n + 1)ξP2,n+1(t); 1 ≤ n. (6)

Initially, it is assumed that there are no customers in the queueing system and the server is in

Type-I vacation, i.e., P1,0(0) = 1, P2,0(0) = 0 and Pj,n(0) = 0 for n ≥ 1 and j = 0, 1, 2.

3. TRANSIENT PROBABILITIES

In this section, the transient solution of the above described model is derived by using generating

functions, Laplace transform, continued fractions and some properties of confluent hypergeometric

function.
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3.1 Evaluation of P0,n(t)

Define the generating function as follows, for |z| ≤ 1

P (z, t) =
∞∑

n=0

P0,n(t)zn,

with initial condition P (z, 0) = 0.

Multiplying the equations (1) and (2) by appropriate powers of z and summing over n ≥ 1, we

can obtain

P (z, t) = γ1

∫ t

0

( ∞∑

m=1

P1,m(u)zm

)
e−[λ(1−z)+µ(1−z−1)](t−u)du

+γ2

∫ t

0

( ∞∑

m=1

P2,m(u)zm

)
e−[λ(1−z)+µ(1−z−1)](t−u)du

+
[
(µ− η)− µ

z

] ∫ t

0
P0,0(u)e−[λ(1−z)+µ(1−z−1)](t−u)du. (7)

It is well known that if α = 2
√

λµ and β =
√

λ
µ , then

exp
[(

λz +
µ

z

)
t
]

=
∞∑

n=−∞
(βz)n In (αt)

where In(·) is the modified Bessel function of the first kind.

Comparing the coefficients of zn in the equation (7) for n = 1, 2, 3, .... leads to

P0,n(t) = γ1

∫ t

0

∞∑

m=1

P1,m(u)βn−mIn−m (α(t− u)) e−(λ+µ)(t−u)du

+γ2

∫ t

0

∞∑

m=1

P2,m(u)βn−mIn−m (α(t− u)) e−(λ+µ)(t−u)du

+(µ− η)
∫ t

0
P0,0(u)βnIn (α(t− u)) e−(λ+µ)(t−u)du

−µ

∫ t

0
P0,0(u)βn+1In+1 (α(t− u)) e−(λ+µ)(t−u)du. (8)

Using the fact that I−n(·) = In(·) and comparing the coefficients of z−n in the equation (7) yields
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0 = γ1

∫ t

0

∞∑

m=1

P1,m(u)βn−mIn+m (α(t− u)) e−(λ+µ)(t−u)du

+γ2

∫ t

0

∞∑

m=1

P2,m(u)βn−mIn+m (α(t− u)) e−(λ+µ)(t−u)du

+(µ− η)
∫ t

0
P0,0(u)βnIn (α(t− u)) e[−(λ+µ)(t−u)]du

−µ

∫ t

0
P0,0(u)βn+1In−1 (α(t− u)) e[−(λ+µ)(t−u)]du. (9)

Subtracting the equation (8) from the equation (9) for n = 1, 2, 3, ..., we have

P0,n(t) = γ1

∫ t

0

∞∑

m=1

P1,m(u)βn−m [In−m (α(t− u))

−In+m (α(t− u))] e−(λ+µ)(t−u)du

+γ2

∫ t

0

∞∑

m=1

P2,m(u)βn−m [In−m (α(t− u))

−In+m (α(t− u))] e−(λ+µ)(t−u)du

+2µnβn+1

∫ t

0
P0,0(u)

In (α(t− u))
α(t− u)

e−(λ+µ)(t−u)du. (10)

It is clear that P0,n(t) are expressed in terms of P1,n(t), P2,n(t) and P0,0(t).

3.2 Evaluation of P1,n(t) and P2,n(t)

Let P̂j,n(s) be the Laplace transform of Pj,n(t); n = 1, 2, 3..... On taking Laplace transform of

equations (4) and (6), we have

sP̂1,n(s)− P1,n(0) = λP̂1,n−1(s)− (λ + nξ + γ1)P̂1,n(s)

+(n + 1)ξP̂1,n+1(s) (11)

sP̂2,n(s)− P2,n(0) = λP̂2,n−1(s)− (λ + nξ + γ2)P̂2,n(s)

+(n + 1)ξP̂2,n+1(s). (12)

Applying boundary conditions to the equation (11), we have the expression

P̂1,n(s)
P̂1,n−1(s)

=
λ

(s + λ + nξ + γ1)− (n + 1) ξ
P̂1,n+1(s)

P̂1,n(s)

.

This equation can be rearranged using the identity (27) of confluent hyper-geometric function.
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Then it becomes the following form

P̂1,n(s)
P̂1,n−1(s)

=
λ

ξ
(

s+γ1

ξ + n
) 1F1

(
n + 1; s+γ1

ξ + n + 1;−λ
ξ

)

1F1

(
n; s+γ1

ξ + n;−λ
ξ

) .

For n = 1, 2, 3, ... invoking the above equation, we will have:

P̂1,n(s) =
(

λ

ξ

)n 1
∏n

i=1

(
s+γ1

ξ + i
) 1F1

(
n + 1; s+γ1

ξ + n + 1;−λ
ξ

)

1F1

(
1; s+γ1

ξ + 1;−λ
ξ

) P̂1,0(s)

let

φ̂n(s) =
(

λ

ξ

)n 1
∏n

i=1

(
s+γ1

ξ + i
) 1F1

(
n + 1; s+γ1

ξ + n + 1;−λ
ξ

)

1F1

(
1; s+γ1

ξ + 1;−λ
ξ

) .

Then

P1,n(t) = φn(t) ∗ P1,0(t) (13)

where φn(t) is the inverse Laplace transform of φ̂n(s) and ‘*’ denotes convolution.

Applying boundary conditions to the equation (12) and by using the same procedure which has

been used to evaluate P1,n(t), we can find P2,n(t) as follows

P2,n(t) = ψn(t) ∗ P2,0(t) (14)

where ψn(t) is the inverse Laplace transform of ψ̂n(s) and ‘*’ denotes convolution. Where

ψ̂n(s) =
(

λ

ξ

)n 1
∏n

i=1

(
s+γ2

ξ + i
) 1F1

(
n + 1; s+γ2

ξ + n + 1;−λ
ξ

)

1F1

(
1; s+γ2

ξ + 1;−λ
ξ

) .

Taking the Laplace transform of the (5), we will have

sP̂2,0(s)− P2,0(0) = −(λ + γ2)P̂2,0(s) + γ1P̂1,0(s) + ξP̂2,1(s).

Substituting n = 1 to the equation (14) and after some algebra, we have

P̂2,0(s) = γ1C(s)P̂1,0(s) (15)

where

C(s) =
∞∑

r=0

ξr ψr
1(s)

(s + λ + γ2)
r+1 .
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Taking the inverse Laplace transform of the equation (15), we can get

P2,0(t) = γ1C(t) ∗ P1,0(t)

where

C(t) =
∞∑

r=0

ξrψr
1(t) ∗ e−(λ+γ2)t t

r

r!
.

It is clear that P2,0(t) is expressed in terms of P1,0(t).

Taking the Laplace transform of the (3), we will have

sP̂1,0(s)− P1,0(0) = −(λ + γ1)P̂1,0(s) + ηP̂0,0(s) + γ2P̂2,0(s) + ξP̂1,1(s).

Substituting n = 1 to the equations (13) and (14) and after some algebra, we have

P̂1,0(s) =
(
1 + ηP̂0,0(s)

)
G(s) (16)

where

G(s) =
∞∑

r=0

r∑

n=0

n∑

m=0

(−1)m

(
r

n

)(
n

m

)
ξr+m−nγn

1 γn
2 φ̂r−n

1 (s)

×ψ̂m
1 (s)

1
(s + λ + γ1)r+1

1
(s + λ + γ12)r+m

.

Taking the inverse Laplace transform of the equation (16), we can get

P1,0(t) =
(
δ(t) + ηP̂0,0(s)

)
∗G(t) (17)

where δ(t) is the Derac-Delta function and

G(t) =
∞∑

r=0

r∑

n=0

n∑

m=0

(−1)m

(
r

n

)(
n

m

)
ξr+m−nγn

1 γn
2 φr−n

1 (t)

∗ψm
1 (t) ∗ e−(λ+γ1)t t

r

r!
∗ e−(λ+γ2)t tr+m−1

(r + m− 1)!
.

It is clear that P1,0(t) is expressed in terms of P0,0(t). Where “*” denotes convolution.

3.3 Evaluation of P0,0(t)
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Using the fact that I−n(·) = In(·) and comparing the coefficients of z−1 in the equation (7), we will

have

0 = γ1

∫ t

0

∞∑

m=1

P1,m(u)β−(m+1)Im+1 (α(t− u)) e−(λ+µ)(t−u)du

+γ2

∫ t

0

∞∑

m=1

P2,m(u)β−(m+1)Im+1 (α(t− u)) e−(λ+µ)(t−u)du

+
(µ− η)

β

∫ t

0
I1 (α(t− u)) e−(λ+µ)(t−u)P0,0(u)du

−µ

∫ t

0
I0 (α(t− u)) e−(λ+µ)(t−u)P0,0(u)du.

Taking the inversion of the above equation and after some algebra, we will have

P̂0,0(s) =
1

2λµ

∞∑

r=0

(
µ− η

2λµ

)r (
p−

√
p2 − α2

)r+1
{ ∞∑

m=1

[
γ1P̂1,m(s)

+γ2P̂2,m(s)
] (

p−
√

p2 − α2

αβ

)m}

where p = s + λ + µ. Again, substituting the values for P̂1,n(s) and P̂2,n(s) and after some mathe-

matical calculations, we can derive

P̂0,0(s) =
∞∑

k=0

ηk [G(s)]K+1 [F (s)]K+1 (18)

where

F (s) =
γ1

2λµ

∞∑

r=0

(
µ− η

2λµ

)r (
p−

√
p2 − α2

)r+1
{ ∞∑

m=1

[
φ̂m(s)

+γ2ψ̂m(s)C(s)
](

p−
√

p2 − α2

αβ

)m}
.

Taking the inversion of the equation (18), we have

P0,0(t) =
∞∑

k=0

ηk [G(t)]∗(k+1) ∗ [F (t)]∗(k+1) (19)

where

F (t) =
αγ1

2

∞∑

r=0

[(
µ− η

2λµ

)
α

]r

[Ir(αt)− Ir+2(αt)] e−(λ+µ)t

∗
{ ∞∑

m=1

β−m [φm(t) + γ2ψm(t) ∗ C(t)]

∗ [Im−1(αt)− Im+1(αt)] e−(λ+µ)t
}
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where “*” denotes convolution while “*(k + 1)” represents the (k + 1)-fold convolution.

All the time-dependent probabilities are explicitly obtained in terms of modified Bessel function

of the first kind by making use of Laplace transform and probability generating function techniques

along with continued fractions and some properties of the confluent hypergeometric function.

3.4 Expression for φn(t) and ψn(t)

We know that

φ̂n(s) =
(

λ

ξ

)n 1
∏n

i=1

(
s+γ1

ξ + i
) 1F1

(
n + 1; s+γ1

ξ + n + 1;−λ
ξ

)

1F1

(
1; s+γ1

ξ + 1;−λ
ξ

) . (20)

Using the definition of confluent hypergeometric function, we can derive

1F1

(
n + 1; s+γ1

ξ + n + 1;−λ
ξ

)

∏n
i=1

(
s+γ1

ξ + i
) = ξn

∞∑

k=o

(
n+k

k

)
∏n+k

i=1 (s + γ1 + iξ)
(−λ)k .

Taking the partial fractions, we will have

1F1

(
n + 1; s+γ1

ξ + n + 1;−λ
ξ

)

∏n
i=1

(
s+γ1

ξ + i
) = ξn

∞∑

k=0

(
n + k

k

)
(−λ)k

ξn+k−1

n+k∑

i=1

(−1)i−1

(i− 1)!(n + k − i)!
1

(s + γ1 + iξ)
(21)

when n = 0,

1F1

(
1;

s + γ1

ξ
+ 1;−λ

ξ

)
=

∞∑

k=0

(−λ)k

∏k
i=1(s + γ1 + iξ)

=
∞∑

k=0

(−λ)kak(s)

where

ak(s) =
1∏k

i=1(s + γ1 + iξ)

=
1

ξk−1

k∑

r=1

(−1)r−1

(r − 1)!(k − r)!
1

(s + γ1 + rξ)
, k = 1, 2, 3...

and a0(s) = 1.

Using the identity given in [12]

[
1F1

(
1;

s + γ1

ξ
+ 1;−λ

ξ

)]−1

=
∞∑

k=0

bk(s)λk (22)
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where b0(s) = 1 and for k = 1, 2, 3, ...

bk(s) =

a1(s) 1 ...

a2(s) a1(s) 1 ...

a3(s) a3(s) a1(s) ...

... ... ... ...

ak−1(s) ak−2(s) ak−1(s) ... a1(s) 1

ak(s) ak−1(s) ak−2(s) ... a2 a1(s).

bk(s) =
k∑

i=1

(−1)i−1ai(s)bk−i(s).

By substituting the equations (21) and (22) to the equation (20), we can obtain

φ̂n(s) = λn
∞∑

j=0

(−λ)j

(
n + j

j

)
an+j(s)

∞∑

k=1

bk(s)λk.

Taking inverse Laplace transform of the above equation, we have

φn(t) = λn
∞∑

j=0

(−λ)j

(
n + j

j

)
an+j(t) ∗

∞∑

k=1

bk(t)λk

where

ak(t) =
1

ξk−1

k∑

r=1

(−1)r−1

(r − 1)!(k − r)!
e−(γ1+rξ)t, k = 1, 2, 3, ....

bk(t) =
k∑

i=1

(−1)i−1ai(t) ∗ bk−i(t), k = 2, 3, 4, ....; b1(t) = a1(t)

By using the same procedure which has been used to evaluate φn(t), we can find ψn(t) as follows,

ψn(t) = λn
∞∑

i=0

(−λ)i

(
n + i

i

)
dn+i(t) ∗

∞∑

m=1

gm(t)λm

where

dk(t) =
1

ξk−1

k∑

r=1

(−1)r−1

(r − 1)!(k − r)!
e−(γ2+rξ)t, k = 1, 2, 3, ....

gk(t) =
k∑

i=1

(−1)i−1di(t) ∗ gk−i(t), k = 2, 3, 4, ....; g1(t) = d1(t)
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4. TIME DEPENDENT MEAN AND VARIANCE

In this section, time-dependent expected system size and variance are derived.

4.1 Mean

Let X(t) denotes the number of jobs in the system at time t. The average number of jobs in the

system at time t is given by

m(t) = E(X(t)) =
∞∑

n=1

n (P0,n(t) + P1,n(t) + P2,n(t))

m(0) =
∞∑

n=1

n (P0,n(0) + P1,n(0) + P2,0(t)) = 0

m
′
(t) =

∞∑

n=1

n
(
P
′
0,n(t) + P

′
1,n(t) + P

′
2,n(t)

)
.

By equations (2), (4) and (6) and after some algebra, we have the following equation

m
′
(t) = λ− µ

∞∑

n=1

P0,n(t)− ξ

[ ∞∑

n=1

n (P1,n(t) + P2,n(t))

]
.

By using the initial condition m(0) = 0 and integrating it by t, the solution of the above equation

can be obtained as follows;

m(t) = λt− µ
∞∑

n=1

∫ t

0
P0,n(u)du

−ξ
∞∑

n=1

n

[∫ t

0
P1,n(u)du +

∫ t

0
P2,n(u)du

]
(23)

where P0,n(t), P1,n(t) and P2,n(t) are given by the equations (10), (13) and (14) respectively.

4.2 Variance

Let X(t) denotes the number of jobs in the system at time t. The variance of jobs in the system at

time t is given by

V ar(X(t)) = E(X2(t))− [E(X(t))]2 ,

V ar(X(t)) = k(t)− [m(t)]2 (24)

where

k(t) = E(X2(t)) =
∞∑

n=1

n2 (P0,n(t) + P1,n(t) + P2,n(t)) .



TRANSIENT ANALYSIS OF AN M/M/1 QUEUEING SYSTEM 311

Also,

k(0) =
∞∑

n=1

n2 (P0,n(0) + P1,n(0) + P2,n(0)) = 0

and

k
′
(t) =

∞∑

n=1

n2
(
P
′
0,n(t) + P

′
1,n(t) + P

′
2,n(t)

)
.

By equations (2), (4) and (6) and after some algebra, we have the following equation

k
′
(t) = 2λm(t) + λ− µ

∞∑

n=1

(2n− 1)P0,n(t)

−ξ
∞∑

n=1

n(2n− 1) [P1,n(t) + P2,n(t)] .

By using the initial condition k(0) = 0 and integrating it by t, the solution of the above equation

can be obtained as follows;

k(t) = 2λ
∫ t

0
m(u)du + λt− µ

∞∑

n=1

(2n− 1)
∫ t

0
P0,n(u)du

−ξ
∞∑

n=1

n(2n− 1)
[∫ t

0
P1,n(u)du +

∫ t

0
P2,n(u)du

]
.

Substituting above equation into the equation (25), we will have

V ar(X(t)) = 2λ
∫ t

0
m(u)du + λt− µ

∞∑

n=1

(2n− 1)
∫ t

0
P0,n(u)du

−ξ
∞∑

n=1

n(2n− 1)
[∫ t

0
P1,n(u)du +

∫ t

0
P2,n(u)du

]

− [m(t)]2 (25)

where P0,n(t), P1,n(t), P2,n(t) and m(t) are given by the equations (10), (13), (14) and (23) respec-

tively.

5. NUMERICAL ILLUSTRATIONS

In this section, the numerical example is presented to show the behaviour of the transient probabilities

of the system, when the server being in busy period and vacation states against time. The variations

of the time-dependent mean and variance against time t are presented. Even though, this queueing

system is infinite, it is restricted to 20 considering the purpose of numerical solutions.
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Figure 1: Behaviour of the P0,n(t) against t for varying values of n

Figure 1 is plotted to show the behaviour of P0,n(t) against time t for varying values of n with

parameters µ = 1.5, γ1 = 0.03, γ2 = 0.05, ξ1 = 0.02, ξ2 = 0.01 and λ = 0.3. It can be seen that all

the probabilities for P0,n(t) start at 0 and finally, settle at steady-state.

Figure 2 also is used to plot the graph of P1,n(t) against time t for varying values of n with same

parameter values. All the values for P1,n(t) start at 0 and reach to the steady-state except P1,0(t).

Since, we assumed that there are no customers at initial state and system is in vacation Type-I, P1,0(t)

starts at 1 and it settles at the steady state when time progresses..

Figure 3 shows the behaviour of P2,n(t) against time t for varying values of n with same parameter

values. The values of P2,n(t) are equal to 0 at the initial state. They become the steady-state when

time progresses.

Figure 4 shows the possibility of having zero customers in the queue when server is in the func-

tional state against time t for µ = 1.5, γ1 = 0.03, γ2 = 0.05, ξ1 = 0.02, ξ2 = 0.01 and varying

values of λ (0.3, 0.5, 0.75, 1, 1.25, 1.5). It can be seen that the possibility of having zero customers

in the system increases with the increase of the arrival rate.

Figures 5 illustrates the behaviour of P1,0(t) against time t for same parameter values and varying

values of λ. It is observed that the possibility of having zero customers in the system when server is

in Type-I vacation decreases when arrival rate increases.
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Figure 2: Behaviour of the P1,n(t) against t for varying values of n

Figure 3: Behaviour of the P2,n(t) against t for varying values of n

Figure 6 also depicts the behaviour of P1,0(t) against time t for same parameter values and varying

values of λ. P2,0(t) also behave same as P1,0(t) when arrival rate increases.

Figure 7 shows the variation of the mean number of the customers in the system against time t
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Figure 4: Behaviour of P0,0(t) against t for varying values of λ

Figure 5: Behaviour of P1,0(t) against t for varying values of λ

for all values of λ. The mean number of the customers in the system rapidly increases when time

progresses and finally, it arrives at steady-state. Figure 8 also depicts the behaviour of the variance

of the system size against time t where when λ increases, the variance of the number of customers in

the system also increases.
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Figure 6: Behaviour of P2,0(t) against t for varying values of λ

Figure 7: Behaviour of the mean against t for varying values of λ

6. CONCLUSIONS

A single server queueing system subjected to multiple differentiated vacations with customers’ impa-

tience and waiting server is studied in transient regime. The time-dependent expressions for system
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Figure 8: Behaviour of the variance against t for varying values of λ

size probabilities are derived in terms of the modified Bessel function of first kind. Additionally,

mean and variance of the system size are obtained as the performance measures. Finally, their nu-

merical result is illustrated. It can be seen that when time progresses the time-dependent probabilities

converge to the corresponding steady-state probabilities.
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A CONFLUENT HYPERGEOMETRIC FUNCTION

In this section, the definition of confluent hypergeometric function and some properties of this func-

tion is expressed.

The confluent hypergeometric function is denoted by 1F1(a; c; z) and is defined by the power
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series

1F1(a; c; z) = 1 +
a

c

z

1 !
+

a

c

(a + 1)
(c + 1)

z2

2 !
+ .....

=
∞∑

k=0

(a)(k)

(c)(k)

zk

k !
(26)

provided that 1F1(a; c; z) does not exist when c is a negative integer. Here (α)(k) is the rising factorial

function (the Pochhammer symbol) which is defined as

(α)(0) = 1

(α)(n) = α(α + 1)(α + 2)........(α + n− 1)

the Pochhammer symbol has following characteristic

(α)(k)

k!
=

(
α + k

k

)

It is observed that

1F1(0; c; z) = 1

The recurrence relation for the confluent hypergeometric function is given by

c(c− 1)1F1(a− 1; c− 1; z)− az1F1(a + 1; c + 1; z) = c(c− 1− z)1F1(a; c; z)

The quotient of two hypergeometric functions may be expressed as continued fractions. The

following identity has been developed by Lorentzen and Waadeland [20].

1F1(a + 1; c + 1; z)
1F1(a; c; z)

=
c

c− z

(a + 1)z
+c− z + 1

(a + 2)z
+c− z + 2

.......,

which can be rewritten as

c
1F1(a; c; z)

1F1(a + 1; c + 1; z)
− (c− z) =

(a + 1)z
c− z + 1

(a + 2)z
+c− z + 2

....... (27)

and

∞∑

k=0

(a)(k)

(c)(k)

yk

k!
×1 F1(a + k; c + k; x) = 1F1(a; c; x + y) (28)
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