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Difference sets are subsets of a group satisfying certain combinatorial property with respect to the

group operation. They can be characterized using an equality in the group ring of the correspond-

ing group. In this paper, we exploit the special structure of the group ring of an Abelian group

to establish a one-to one correspondence of the class of difference sets with specific parameters

in that group with the set of all complex solutions of a specified system of polynomial equations.

The correspondence also develops some tests for a Boolean function to be a bent function.
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1. INTRODUCTION

For a finite group G of order v and nonnegative integers k, λ, a subset D of G is called a (v, k, λ)

difference set in G if for every g ∈ G \ {e},

|{(d1, d2) ∈ D ×D : g = d1d
−1
2 }| = λ and |D| = k,

where e is the identity of G. Moreover, if G is abelian then D is called an abelian difference set.

The notion of a difference set was introduced independently by Singer [10] and Bose [2] while

investigating finite geometries and (statistical) design of experiments respectively. Later the ideas

were found fruitful having several relations to areas such as coding theory and cryptography. Bent

functions, which are cryptographically significant, are characterized on page 95 of [11] in terms
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of difference sets as follows. For an even positive integer t > 2, a Boolean function of t vari-

ables
(
that is, a function from (Z/2Z)t to (Z/2Z)

)
is a bent function if and only if its support is

a
(
2t, 2(t−1) ± 2(t−2)/2, 2(t−2) ± 2(t−2)/2

)
difference set in (Z/2Z)t(where signs are chosen consis-

tently). Hence the construction, characterization, equivalence of difference sets is a useful exercise

having applications for the analysis of bent functions.

Among the different tools used to study difference sets are symmetric designs and group rings.

In this paper, we will be concerned with the characterization of a difference set using an equality in a

group ring, which we now describe.

Let G be a finite group and R be a commutative ring with unit element 1 different from its additive

identity 0. The group ring RG of G over R is the ring

RG = {
∑

g∈G

rgg : rg ∈ R}

where
∑

g∈G rgg =
∑

g∈G r∗gg ⇐⇒ rg = r∗g for all g ∈ G, with the addition defined by
∑

g∈G rgg+
∑

g∈G r∗gg =
∑

g∈G(rg+r∗g)g and the multiplication defined by
(∑

g∈G rgg
)(∑

g∈G r∗gg
)

=
∑

g∈G(
∑

xy=g rxr∗y)g.

For any D ⊂ G, we denote
∑

g∈D g ∈ RG by D again and
∑

g∈D g−1 ∈ RG by D(−1). The

following is a characterization of a difference set in a finite group G.

Group Ring Criterion : Let G be a finite group of order v and k, λ be nonnegative integers with

k ≤ v. Then D ⊂ G is a (v, k, λ) difference set in G if and only if as elements of CG, we have

DD(−1) = λG + (k − λ)e, where e is the identity element of G.

(In most of the literature, for instance [1], the characterization is proved under extra assumption

that |D| = k. This assumption can be seen to be superfluous, as it is implied by either of the above two

conditions. It is enough to note that if DD(−1) = λG + (k − λ)e, then by comparing the coefficient

of e on both sides, we get |D| = k.)

In this paper, we exploit the structure of the group ring of an abelian finite group G as an affine

C-algebra to obtain two algebraic criteria for a subset of G to be a (v, k, λ) difference set. The

first criterion, Theorem 2.2 of Section 2, is in terms of an ideal membership problem. The second,

Theorem 3.2 of Section 3, is via verification of some polynomial equations. These processes can also

be crystalised to give tests for a subset of an abelian group to be a (v, k, λ) difference set. The first test

is verifiable using ideal theory or algebra softwares like Macaulay 2, while the second test is verifiable

by explicit computations with complex numbers, especially the roots of unity. Section 4 deals with

generalization of these criteria to generalized difference sets. We illustrate the use of the criteria for
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difference sets through some examples in Section 5. The first two illustrate these tests for difference

sets. The third illustrates how the polynomial criterion can be used to prove that a quadratic Boolean

function is a bent function. In a future work we plan to explore the more of potential applications of

these methods to the theory of bent functions.

Ideal theoretic methods, in particular Gröbner basis methods, are being widely applied to several

problems in Science and Engineering, see [4]. More specifically, we can find their applications to

Combinatorics in [5-7, 9]. In this paper, we introduce these methods to study difference sets.

2. IDEAL MEMBERSHIP PROBLEM FOR ABELIAN DIFFERENCE SETS

Let G be a finite abelian group. Then G ∼= Cn1×Cn2×· · ·×Cnt where Cnl
= 〈gl〉 is a cyclic group of

order nl. Let R = C[X1, . . . , Xt], I be ideal (Xn1
1 − 1, . . . , Xnt

t − 1) of R and S = {(i1, . . . , it) ∈
Zt : 0 ≤ il ≤ nl − 1 for all 1 ≤ l ≤ t}. Regarding the structure of CG, we have the following:

Theorem 2.1 — Let G ∼= Cn1 ×Cn2 × · · · ×Cnt where Cnl
= 〈gl〉 is a cyclic group of order nl.

Then the map φG : R
I → CG defined by

φG(f(X1, . . . , Xt) + I) = f(g1, . . . , gt)

is an isomorphism of R
I onto CG, where

f(g1, . . . , gt) =
∑

(i1,...,it)∈Zt

ci1···itg
i1
1 · · · git

t

for f(X1, . . . , Xt) =
∑

(i1,...,it)∈Zt

ci1···itX
i1
1 · · ·Xit

t

with ci1···it ∈ C for all (i1, . . . , it) ∈ Zt.

PROOF : First we show that φG is well defined. Assume f1(X1, . . . , Xt)+I = f2(X1, . . . , Xt)+I

for f1 = f1(X1, . . . , Xt) and f2 = f2(X1, . . . , Xt) ∈ R. Then f1 − f2 ∈ I and hence

f1(X1, . . . , Xt)− f2(X1, . . . , Xt) =
t∑

l=1

(Xnl
l − 1)ul(X1, . . . , Xt)

for u1(X1, . . . , Xt), . . . , ut(X1, . . . , Xt) ∈ R. This, in turn, implies that

f1(g1, . . . , gt)− f2(g1, . . . , gt) =
t∑

l=1

(gnl
l − 1)ul(g1, . . . , gt) = 0

as gnl
l − 1 = 0 for all 1 ≤ l ≤ t. Hence φG(f1 + I) = φG(f2 + I), therefore φG is well defined.
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Next, φG is clearly C−algebra homomorphism onto CG.

Now CG has dimension n1 · · ·nt as C−vector space, as {gi1
1 · · · git

t : 0 ≤ il ≤ nl − 1 for all 1 ≤
l ≤ t} is a basis forCG. Also R

I has dimension n1 · · ·nt as {Xi1
1 · · ·Xit

t : 0 ≤ il ≤ nl−1 for all 1 ≤
l ≤ t} is a basis for R

I . This shows that φG is an isomorphism. 2

As a consequence of Theorem 2.1, we can make several identifications. First, the group ring

CG can be identified with the affine space Cn1···nt by identifying
∑

(i1,...,it)∈S αi1···itg
i1
1 · · · git

t with

(αi1···it : (i1, . . . , it) ∈ S) in a fixed order on S, say lexicographic order. Second, any subset T

of G can be identified with the point in Cn1···nt corresponding to
∑

g∈T g ∈ CG; it will be called

the point representation (or characteristic point) of T and it is a vertex of the unit hypercube of

Cn1···nt . Third, T can also be represented by the unique polynomial f = f(X1, . . . , Xt) ∈ R such

that φG(f + I) =
(∑

g∈T g
)

and either f = 0 or degXl
(f) < nl for all 1 ≤ l ≤ t. We call f the

polynomial representation of T and denote it by ρG(T ) or ρG(T )(X1, . . . , Xt).

Here onwards, by using the isomorphism of G with Cn1 × · · · × Cnt and fixed isomorphisms of

Cnl
with

(
Z

nlZ

)
for all 1 ≤ l ≤ t, we will identify G with

∏t
l=1

(
Z

nlZ

)
. Moreover for any T ⊂ G,

we let T ∗ = {(i1, . . . it) ∈ S : (i1 + n1Z, . . . , it + ntZ) ∈ T}.

The above relationships can be captured by the following equalities :

For any T ⊂ G

ρG(T ) =
∑

(i1,...,it)∈T ∗
Xi1

1 · · ·Xit
t (2.1∗)

=
∑

(i1,...,it)∈S

αi1···itX
i1
1 · · ·Xit

t

where (αi1···it : (i1, . . . , it) ∈ S) is a point representation of T.

Using these representations, Group Ring Criterion of Section 1 can be rephrased as an ideal

membership problem (refer p. 94 of [4]) in C [X1, . . . , Xt] as follows.

Theorem 2.2 — Let κD = κD(X1, . . . , Xt) ∈ C[X1, . . . , Xt] be defined by

κD =


 ∑

(i1,...,it)∈D∗
Xi1

1 · · ·Xit
t





 ∑

(i1,...,it)∈D∗
Xn1−i1

1 · · ·Xnt−it
t




− λ


 ∑

(i1,...,it)∈S

Xi1
1 · · ·Xit

t


− (k − λ).

Then a subset D ⊂ G is a (v, k, λ) difference set in G if and only if κD ∈ I .
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PROOF :

φG(κD + I) =


 ∑

(i1,...,it)∈D∗
gi1
1 · · · git

t





 ∑

(i1,...,it)∈D∗
gn1−i1
1 · · · gnt−it

t




− λ


 ∑

(i1,...,it)∈S

gi1
1 · · · git

t


− (k − λ)

=


 ∑

(i1,...,it)∈D∗
gi1
1 · · · git

t





 ∑

(i1,...,it)∈D∗
g−i1
1 · · · g−it

t




− λ


 ∑

(i1,...,it)∈S

gi1
1 · · · git

t


− (k − λ)

=DD(−1) − λG− (k − λ).

Now

D is a (v, k, λ) difference set in G

⇔ DD(−1) − λG− (k − λ) = 0

⇔ φG(κD + I) = 0 ⇔ κD + I = 0

⇔ κD ∈ I.2

Note : Alternatively we can write

κD =


 ∑

(i1,...,it)∈S

αi1...itX
i1
1 . . . Xit

t





 ∑

(i1,...,it)∈S

αi1...itX
n1−i1
1 . . . Xnt−it

t




− λ


 ∑

(i1,··· ,it)∈S

Xi1
1 · · ·Xit

t


− (k − λ).

where α = (αi1...it : (i1, . . . , it) ∈ S) is the point representation of D.

3. SYSTEM OF POLYNOMIAL EQUATIONS FOR DIFFERENCE SETS IN AN ABELIAN GROUP

The results of Section 2 can be rephrased to provide a criterion for (v, k, λ) difference sets in an

abelian group of order v in terms of some polynomial equations. More specifically, we will find a set

of polynomials in C [{Ai1···it : (i1, . . . , it) ∈ S}] whose zero set in Cn1···nt is exactly the set of all the

point representations of all (v, k, λ) difference sets in G.



238 PRADIPKUMAR H. KESKAR AND PRIYANKA KUMARI

First some terminology and preparation. For any J ⊂ C [X1, . . . , Xt], let V (J) = {(x1, . . . , xt) ∈
Ct : f(x1, . . . , xt) = 0 for all f(X1, . . . , Xt) ∈ J}. For any W ⊂ Ct, let I(W ) = {f(X1, . . . , Xt) ∈
C [X1, . . . , Xt] : f(x1, . . . , xt) = 0 for all (x1, . . . , xt) ∈ W}. Then it can easily be seen that

I(W ) is an ideal in C [X1, . . . , Xt]. For any ideal J of C [X1, . . . , Xt], the radical of J is given by√
J = {f = f(X1, . . . , Xt) ∈ C [X1, . . . , Xt] : fn ∈ J for some positive integer n}. It can be seen

that for any ideal J ofC [X1, . . . , Xt],
√

J is an ideal ofC [X1, . . . , Xt]. An ideal J ofC [X1, . . . , Xt]

is called a radical ideal if
√

J = J . For the following famous theorem, see [4], p. 175.

Theorem 3.1 — (Hilbert Nullstellensatz). If J is any ideal of C [X1, . . . , Xt] then I(V (J)) =√
J .

We will use the following corollary of Hilbert Nullstellensatz.

Corollary 3.1 — Let f = f(X1, . . . , Xt) ∈ C [X1, . . . , Xt] and J be a radical ideal ofC [X1, . . . , Xt].

Then f ∈ J if and only if f(x1, . . . , xt) = 0 for all (x1, . . . , xt) ∈ V (J).

In order to use Corollary 3.1, we prove the following:

Lemma 3.1 — The ideal I = (Xn1
1 − 1, . . . , Xnt

t − 1) of C [X1, . . . , Xt] is a radical ideal.

PROOF : Clearly I ⊂ √
I . Now let f(X1, . . . , Xt) ∈

√
I be any element. We want to show that

f = f(X1, . . . , Xt) ∈ I . We can write

f(X1, . . . , Xt) = g(X1, . . . , Xt) + r(X1, . . . , Xt)

such that g(X1, . . . , Xt) ∈ I and r(X1, . . . , Xt) ∈ C [X1, . . . , Xt] satisfies r(X1, . . . , Xt) = 0 or

degXi
r(X1, . . . , Xt) < ni for all i = 1, 2, . . . , t.

It is enough to show that r(X1, . . . , Xt) = 0. We can write

r(X1, . . . , Xt) =
nt−1∑

j=0

rj(X1, . . . , Xt−1)X
j
t

with rj(X1, . . . , Xt−1) ∈ C [X1, . . . , Xt−1] such that for any 0 ≤ j < nt, we have rj(X1, . . . , Xt−1) =

0 or degXi
rj(X1, . . . , Xt−1) < ni for all 1 ≤ i ≤ t − 1. Consider any (ξ1, . . . , ξt−1) ∈ Ct−1

with ξni
i = 1 for all 1 ≤ i ≤ t − 1. Since f ∈ √

I = I(V (I)) and for all 0 ≤ l ≤ nt −
1,

(
ξ1, . . . , ξt−1, e

2πil
nt

)
∈ V (I), we have f

(
ξ1, . . . , ξt−1, e

2πil
nt

)
= 0. Moreover, since g ∈ I ,

g
(
ξ1, . . . , ξt−1, e

2πil
nt

)
= 0 for all 0 ≤ l ≤ nt − 1. Thus r

(
ξ1, . . . , ξt−1, e

2πil
nt

)
= 0 for all

l = 0, 1, . . . , nt − 1. Assume r(ξ1, . . . , ξt−1, Xt) 6= 0. Since degXt
r(ξ1, . . . , ξt−1, Xt) < nt and

it has nt distinct roots, we get a contradiction. Hence r(ξ1, . . . , ξt−1, Xt) = 0 and therefore for any
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0 ≤ j < nt, we have rj(ξ1, . . . , ξt−1) = 0 for any (ξ1, . . . , ξt−1) ∈ Ct−1 with ξni
i = 1 for all

i = 1, 2, . . . , t− 1. Iterating the argument with r replaced by rj etc, we get that r = 0. 2

Now we are prepared to discuss the main result of this paper. Let ∆ denote the polynomial ring

C [X1, . . . , Xt] [{Ai1···it : (i1, . . . , it) ∈ S}] in n1 · · ·nt independent variables Ai1···it : (i1, . . . , it) ∈
S over C [X1, . . . , Xt] and let U = {(ξ1, . . . , ξt) ∈ Ct : ξni

i = 1 for all 1 ≤ i ≤ t}. To simplify

the notation, let A = (Ai1···it : (i1, . . . , it) ∈ S), X = (X1, . . . , Xt). Also if αi1···it ∈ C for all

(i1, . . . , it) ∈ S, we let α = (αi1···it : (i1, . . . , it) ∈ S) ∈ Cn1···nt . Then we have the following:

Theorem 3.2 — Let Ψ = Ψ(X,A) ∈ ∆ be defined by

Ψ =


 ∑

(i1,...,it)∈S

Ai1···itX
i1
1 · · ·Xit

t





 ∑

(i1,...,it)∈S

Ai1···itX
n1−i1
1 · · ·Xnt−it

t




− λ


 ∑

(i1,...,it)∈S

Xi1
1 · · ·Xit

t


− (k − λ)

Then we have the following :

(1) For α = (αi1···it : (i1, . . . , it) ∈ S) ∈ Cn1···nt , α is a point representation of a subset of G

if and only if α satisfies the system Pi1···it(A) = 0, (i1, . . . , it) ∈ S of polynomial equations

where for (i1, . . . , it) ∈ S, Pi1···it(A) = A2
i1···it −Ai1···it .

(2) For α = (αi1···it : (i1, . . . , it) ∈ S) ∈ Cn1···nt , α is a point representation of a (v, k, λ) differ-

ence set in G if and only if α satisfies the equations Pi1···it(A) = 0 for all (i1, . . . , it) ∈ S, and

Ψ(ξ, A) = 0 for all ξ = (ξ1, . . . , ξt) ∈ U .

PROOF : Note that (1) follows, as for any α = (αi1···it : (i1, . . . , it) ∈ S) ∈ Cn1···nt ,

Pi1···it(α) = 0 for all (i1, . . . , it) ∈ S

⇔ αi1···it ∈ {0, 1} for all (i1, . . . , it) ∈ S

⇔ α is a point representation of D ⊂ G where

D = {(i1 + n1Z, . . . , it + ntZ) : (i1, . . . , it) ∈ S and αi1···it = 1}.

To prove (2), first note that κD(X1, . . . , Xt) = Ψ(X, α) where α is the point representation of
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D ⊂ G. Thus, for any α ∈ Cn1···nt ,

α is a point representation of a (v, k, λ) difference set D in G

Theorem 2.2⇐⇒ α is a point representation of D ⊂ G and

κD(X1, . . . , Xt) ∈ I

⇐⇒ α is a point representation of D ⊂ G and

Ψ(X, α) ∈ I

by Theorem 3.2 (1)⇐⇒ Pi1···it(α) = 0 for all (i1, . . . , it) ∈ S and

Ψ(X, α) ∈ I

Theorem 3.1, Lemma 3.1⇐⇒ Pi1···it(α) = 0 for all (i1, . . . , it) ∈ S and

Ψ(X, α) ∈ I(V (I))
since U=V (I)⇐⇒ Pi1···it(α) = 0 for all (i1, . . . , it) ∈ S and

Ψ(ξ, α) = 0 for all ξ ∈ U.2

Note : The ideas of this section are analogous to interpolation of polynomials, in the sense that

every postulation of a zero of a polynomial puts a condition on the parameters occurring in its coeffi-

cients.

Remark on C-algebra homomorphisms

For any ξ = (ξ1, . . . , ξt) ∈ U , let θ(ξ1,...,ξt) : C [X1, . . . , Xt] → C be a C-algebra homomorphism

defined by θ(ξ1,...,ξt) (f(X1, . . . , Xt)) = f(ξ1, . . . , ξt) and let θ∆
(ξ1,...,ξt)

: ∆ → ∆ be the unique

extension of θ(ξ1,...,ξt) to a C-algebra homomorphism such that θ∆
(ξ1,...,ξt)

(Ai1···it) = Ai1···it for all

(i1, . . . , it) ∈ S. That is, for any Ω(X, A) ∈ ∆,

θ∆
(ξ1,...,ξt)

(Ω(X, A) = Ω(ξ,A).

Moreover, for any α ∈ Cn1...nt , let τα : ∆ → C [X1, . . . , Xt] be a ring homomorphism defined by

τα (Ω(X, A)) = Ω(X, α) for all Ω(X, A) ∈ ∆. Note that if α is the point representation of D ⊂ G

and ξ = (ξ1, . . . , ξt) ∈ U ,

κD(X1, . . . , Xt) = τα(Ψ(X, A)),

Ψ(ξ,A) = θ∆
(ξ1,...,ξt)

(Ψ(X, A)),

Ψ(ξ, α) = θ(ξ1,...,ξt) (τα(Ψ(X,A))) = θ(ξ1,...,ξt) (κD(X1, . . . , Xt))

Ψ(ξ, α) = τα

(
θ∆
(ξ1,...,ξt)

(Ψ(X,A)
)

= τα (Ψ(ξ, A)) .
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Hence, in view of (2.1∗), it follows that if α is the point representation of D ⊂ G and ξ =

(ξ1, . . . , ξt) ∈ U , then

Ψ(ξ, α) =θ(ξ1,...,ξt)(τα(Ψ(X, A)))

=θ(ξ1,...,ξt) (ρG(D)) θ(ξ1,...,ξt)

(
ρG(D(−1))

)

− λ θ(ξ1,...,ξt) (ρG(G))− (k − λ). (3.1∗)

Alternatively, as a consequence of the conclusions of Theorem 3.2, for a subset D of G, D is a

(v, k, λ) difference set if and only if

ρG(D)(ξ1, . . . , ξt)ρG(D−1)(ξ1, . . . , ξt)− λρG(G)(ξ1, . . . , ξt)− (k − λ) = 0

for all (ξ1, . . . , ξt) ∈ U. (3.2∗)

Sharpening of Ryser Condition : A necessary condition for the existence of (v, k, λ) difference set is

λ(v−1) = k(k−1), as discovered by Ryser. Note that this condition is nothing but θ∆
(ξ1,...,ξt)

(Ψ)(α) =

0 for (ξ1, . . . , ξt) = (1, . . . , 1), where α is the point representation of some set D ⊂ G of size k.

The condition is clearly not sufficient. However, when an abelian group G of order v is given as a

direct sum of cyclic groups, the necessary as well as sufficient condition for existence of a (v, k, λ)

difference set in G is the consistency of the system of equations Pi1···it(A) = 0 for all (i1, . . . , it) ∈ S

and θ∆
(ξ1,...,ξt)

(Ψ)(A) = 0 for all (ξ1, . . . , ξt) ∈ U in the variables A = (Ai1···it : (i1, . . . , it) ∈ S). In

the parlance of Gröbner bases (see page 171 of [4]), the condition be reformulated as:

Gröbner Basis Version of Existence Problem : There exists a (v, k, λ) difference set in G if and only if

the reduced Gröbner basis (in any monomial order) of the ideal generated by Pi1···it(A) for all (i1, . . . , it) ∈
S and θ∆

(ξ1,...,ξt)
(Ψ)(A) for all (ξ1, . . . , ξt) ∈ U in C [{Ai1···it : (i1, . . . , it) ∈ S}] is not equal to {1}.

4. GENERALIZATION OF THE CRITERIA

The criteria developed in Sections 2 and 3 can be generalized to generalized difference sets in finite

abelian groups. Following [3], we proceed to define a generalized difference set thus. For a finite

group G0 of order v, let D0,M0 ⊂ G0 be such that |D0| = k > 1, |M0| > 0. For any g ∈ G0,

let λg = |{(d1, d2) ∈ D0 × D0 : g = d1d
−1
2 }|. If λ1, λ2 are nonnegative integers, D0 is called

a (v, |M0|, k, λ1, λ2)-generalized difference set of G0 related to M0 if for any nonidentity element

g ∈ G0

λg =

{
λ1, if g ∈ M0;

λ2, if g 6∈ M0.
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This is a generalization of a difference set in the following sense. If M0 = {e} for the identity

element e of G0 and λ1 = 0 then any (v, |M0|, k, λ1, λ2)-generalized difference set of G0 related to

M0 is exactly a (v, k, λ2) difference set of G0. Other special cases of generalized difference set give

several important variations of a difference set in G0. For instance, if M0 is a subgroup of G0 and

λ1 = 0, then D0 is called a (v, |M0|, k, λ2) relative difference set of G0 with relative to M0. We say

D0 is a (v, k, λ1, λ2) partial difference set in G0 if M0 = D0. Generalized difference sets are helpful

in computation of autocorrelation of certain arrays, see [3]. Partial difference sets have connections

with strongly regular graphs, see [8]. With this in mind, we state the polynomial criterion for the

generalized difference sets as a consequence of the group ring criterion ([3], Theorem 2), the proof is

analogous to Theorem 3.2.

Theorem 4.1 — Let M ⊂ G and let Ψ∗ = Ψ∗(X,A) ∈ ∆ be defined by

Ψ∗ =






 ∑

(i1,...,it)∈S

Ai1···itX
i1
1 · · ·Xit

t





 ∑

(i1,...,it)∈S

Ai1···itX
n1−i1
1 · · ·Xnt−it

t




−λ1


 ∑

(i1,...,it)∈M∗
Xi1

1 · · ·Xit
t




−λ2


 ∑

(i1,...,it)∈S\M∗
Xi1

1 · · ·Xit
t


− (k − λ1), if e ∈ M ;


 ∑

(i1,...,it)∈S

Ai1···itX
i1
1 · · ·Xit

t





 ∑

(i1,...,it)∈S

Ai1···itX
n1−i1
1 · · ·Xnt−it

t




−λ1


 ∑

(i1,...,it)∈M∗
Xi1

1 · · ·Xit
t




−λ2


 ∑

(i1,...,it)∈S\M∗
Xi1

1 · · ·Xit
t


− (k − λ2), if e 6∈ M.

Then we have the following :

For α = (αi1...it : (i1, . . . , it) ∈ S) ∈ Cn1···nt , α is a point representation of a (v, |M |, k, λ1, λ2)

generalized difference set in G related to M if and only if Pi1···it(α) = 0 for all (i1, . . . , it) ∈ S and

Ψ∗(ξ, α) = 0 for all ξ = (ξ1, . . . , ξt) ∈ U .

5. ILLUSTRATIONS OF THE CRITERIA

In this section, we illustrate the use of the criteria developed in Sections 2 and 3. The purpose of

the illustrations is just to show how the ideas developed in previous sections can potentially be used.
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As the outcomes of these illustrations are well known or can be proved by other means, some of the

arguments, which are repetitive in nature, are left to the reader.

Illustration 1 :

Let G =
( Z

4Z
)× ( Z

4Z
)
. We verify that the subset D = {(0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0)} of G

is a (16, 6, 2) difference set in G.

Method 1 (Ideal Membership Problem) : By Theorem 2.2, we need to see that κD(X1, X2) ∈ I =

(X4
1 − 1, X4

2 − 1). This can be done by verifying that the remainder of κD(X1, X2) mod I is 0. The

following Macaulay 2 code does this.

R= CC[x_1,x_2, MonomialOrder=> Lex]

I=ideal(x_1ˆ4-1,x_2ˆ4-1)

G=(x_1ˆ3+x_1ˆ2+x_1+1)*(x_2ˆ3+x_2ˆ2+x_2+1)

D=x_1ˆ3+x_1ˆ2+x_1+x_2ˆ3+x_2ˆ2+x_2

D1=(x_1ˆ3*x_2ˆ4+x_1ˆ2*x_2ˆ4+x_1*x_2ˆ4+x_1ˆ4*x_2ˆ3

+x_1ˆ4*x_2ˆ2+x_1ˆ4*x_2)

v=16

k=6

lambda=2

D*D1-(k-lambda)-lambda*G

oo%I

Method 2 (Polynomial Criterion) : The point representation α = (αij : (i, j) ∈ S) of D is given by

α01 = α02 = α03 = α10 = α20 = α30 = 1

αij = 0 elsewhere.

As αij ∈ {0, 1}, Pij(α) = 0, (i, j) ∈ S.

Next, we verify that θ∆
(ξ1,ξ2)(Ψ)(α) = 0 for all (ξ1, ξ2) ∈ U , where U = {±1,±i}2.

For sake of brevity, we verify one of the equations of Theorem 3.2 when (ξ1, ξ2) = (i,−i) ∈ U .

The equations corresponding to the remaining 15 elements of U can be verified to establish that D is

a (16, 6, 2) difference set in G.
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Note that θ∆
(ξ1,ξ2)(Ψ)(α) = Ψ(i,−i, α). Also

Ψ(u, v, α) =
(
u0v1 + u0v2 + u0v3 + u1v0 + u2v0 + u3v0

)

× (
u4v3 + u4v2 + u4v1 + u3v4 + u2v4 + u1v4

)

− 2


 ∑

0≤i≤3,0≤j≤3

uivj


− (6− 2).

In particular, when (u, v) = (i,−i), since

∑

0≤r≤3,0≤s≤3

ir(−i)s =

(
3∑

r=0

ir

)(
3∑

s=0

(−i)s

)
= (0)(0),

we get

Ψ(i,−i, α) =(−i− 1 + i + i− 1− i)(i− 1− i + i− 1− i)

− 2(0)− (6− 2)

=0.

The reader may also verify directly by definition that D is a (16, 6, 2) difference set in G.

Illustration 2

Let D = {(0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (1, 1)} ⊂ G =
( Z

4Z
)×( Z

4Z
)
. We can show that D is not a

(16, 6, 2) difference set in G just by verifying that Ψ(1,−1, α) = −4 6= 0 for the point representation

α of D.

Illustration 3 (An application to bent functions) :

This illustration provides the glimpse of the use of Theorem 3.2 to prove some results about bent

functions. Let t = 2m for a positive integer m and β : (Z/2Z)t → (Z/2Z) be a Boolean function

defined by β(x1, . . . , xm, y1, . . . , ym) =
∑m

i=1 xiyi where xi, yi ∈ (Z/2Z) are any elements for

any i = 1, . . . , m. We illustrate the proof, using Theorem 3.2, that β is a bent function with |D| =

2(t−1) − 2(t−2)/2 where D = support of β.

The proof can be given by induction on m. The cases m = 1, 2, 3 can be verified easily. For

the inductive step, let m ≥ 4. Then we can write m = m1 + m2 with min(m1,m2) ≥ 2. For any

i ∈ {1, 2}, let ti = 2mi, Gi = (Z/2Z)ti and let βi : Gi → (Z/2Z) be defined by

β1(g1) =
∑m1

i=1 xiyi for any g1 ∈ G1, where g1 = (x1, . . . , xm1 , y1, . . . , ym1); xi, yj ∈ (Z/2Z)

for all 1 ≤ i, j ≤ m1 and β2(g2) =
∑m2

i=1 xm1+iym1+i for any g2 = (xm1+1, . . . , xm, ym1+1, . . . , ym);
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xi, yj ∈ (Z/2Z) for all m1 + 1 ≤ i, j ≤ m. By induction hypothesis, β1, β2 are bent functions with

|Di| = 2(ti−1) − 2(ti−2)/2 where Di = support of βi.

Let G = G1 × G2. Identifying g = (g1, g2) ∈ G with (x1, . . . , xm, y1, . . . , ym) ∈ (Z/2Z)t, G

gets identified with (Z/2Z)t. Then β(g1, g2) = β1(g1)+β2(g2) for any g1 ∈ G1, g2 ∈ G2 . We need

to show that β is a bent function with domain G and |D| = 2(t−1) − 2(t−2)/2 for D = support of β.

We start the proof with:

Observations

(1) Let Hi ⊂ Gi = (Z/2Z)ri for i ∈ {1, 2} and let H = H1 ×H2 ⊂ G1 ×G2. Then

ρ(G1×G2) (H1 ×H2) = (ρG1(H1)) (ρG2(H2)) .

(2) Let ξ ∈ C be a primitive nth root of unity. Then
∑n−1

i=0 ξi = 0.

(3) By Observations (1) and (2), if (ξ1, . . . , ξt) ∈ {−1, 1}t\{(1, . . . , 1)}, then θ(ξ1,...,ξt) (ρG(G)) =
∑

(i1,··· ,it)∈S ξi1
1 · · · ξit

t = 0.

Now Di is a (2ti , 2(ti−1) − 2(ti−2)/2, 2(ti−2) − 2(ti−2)/2) difference set for i ∈ {1, 2}. In order

to show that β is a bent function, it is enough to show that D satisfies the conditions in Theorem

3.2 (2). Let α be the point representation of D. Then by Theorem 3.2 (1), Pi1...it(α) = 0 for all

(i1, . . . , it) ∈ S. Using (3.1∗), we will show that Ψ(ξ, α) = 0 for all ξ = (ξ1, . . . , ξt) ∈ U . Now

D = (D1×D2)∪ (D1×D2), where Di is the complement of Di in (Z/2Z)ti for all i ∈ {1, 2}, and

the union is disjoint. Hence by Observation (1)

θ(ξ1,...,ξt) (ρG(D)) =
(
θ(ξ1,...,ξt1 ) (ρG1(D1))

)(
θ(ξ(t1+1),...,ξ(t1+t2))

(
ρG2(D2)

) )

+
(
θ(ξ1,...,ξt1 )

(
ρG1(D1)

) )(
θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(D2))

)
.

Therefore,

(
θ(ξ1,...,ξt) (ρG(D))

)2

=
(
θ(ξ1,...,ξt1 ) (ρG1(D1))

)2(
θ(ξ(t1+1),...,ξ(t1+t2))

(
ρG2(D2)

) )2

+
(
θ(ξ1,...,ξt1 )

(
ρG1(D1)

) )2(
θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(D2))

)2

+ 2
(
θ(ξ1,...,ξt1 ) (ρG1(D1))

)(
θ(ξ(t1+1),...,ξ(t1+t2))

(
ρG2(D2)

) )

(
θ(ξ1,...,ξt1 )

(
ρG1(D1)

) )(
θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(D2))

)
(5.1)
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We make three cases.

Case (i):

(ξ1, . . . , ξt1) ∈ {−1, 1}t1 \ {(1, . . . , 1)} and

(ξ(t1+1), . . . , ξ(t1+t2)) ∈ {−1, 1}t2 \ {(1, . . . , 1)}.

In view of Observation (3), θ(ξ1,...,ξt1)(ρG1(D1)) = −θ(ξ1,...,ξt1 )(ρG1(D1)) and θ(ξ(t1+1),...,ξ(t1+t2))

(ρG2(D2)) = −θ(ξ(t1+1),...,ξ(t1+t2))(ρG2(D2)). Since ni = 2 for all i = 1, . . . , t1 in the equalities of

Theorem 3.2, it follows that θ(ξ1,...,ξt1 )(ρG1(D
(−1)
1 )) = θ(ξ1,...,ξt1 )(ρG1(D1)).

Similarly θ(ξ(t1+1),...,ξ(t1+t2))(ρG2(D
(−1)
2 )) = θ(ξ(t1+1),...,ξ(t1+t2))(ρG2(D2)) and θ(ξ1,...,ξt)

(ρG(D(−1))) = θ(ξ1,...,ξt)(ρG(D)). Since each Di is a (2ti , 2(ti−1) − 2(ti−2)/2, 2(ti−2) − 2(ti−2)/2)

difference set for i ∈ {1, 2}, as a consequence of (3.1∗) and Observation (3)

(θ(ξ1,...,ξt1 )(ρG1(D1)))2 = 2(t1−1) − 2(t1−2) and

(θ(ξ(t1+1),...,ξ(t1+t2))(ρG2(D2)))2 = 2(t2−1) − 2(t2−2).

Hence by (5.1),
(
θ(ξ1,...,ξt) (ρG(D))

)2
=4

(
θ(ξ1,...,ξt1 ) (ρG1(D1))

)2 (
θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(D2))

)2

=4
(
2(t1−1) − 2(t1−2)

)(
2(t2−1) − 2(t2−2)

)

=
(
2(t−1) − 2(t−2)

)
= k − λ

where k = 2t−1 − 2(t−2)/2, λ = 2t−2 − 2(t−2)/2. Since (ξ1, . . . , ξt) ∈ {−1, 1}t \ {(1, . . . , 1)},

θ(ξ1,...,ξt) (ρG(G)) = 0, and hence, by (3.1∗), Ψ(ξ, α) = 0 for the point representation α of D.

Case (ii) :

(ξ1, . . . , ξt1) = (1, . . . , 1) ∈ Ct1 and

(ξ(t1+1), . . . , ξ(t1+t2)) ∈ {−1, 1}t2 \ {(1, . . . , 1)}.

Then

θ(ξ1,...,ξt1 ) (ρG1(G1)) =2t1 ;

θ(ξ1,...,ξt1 )

(
ρG1(D1)

)
=2t1 − θ(ξ1,...,ξt1 ) (ρG1(D1)) ;

θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(G2)) =0;

θ(ξ(t1+1),...,ξ(t1+t2))

(
ρG2(D2)

)
=− θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(D2)) .
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Hence by (5.1),

(
θ(ξ1,...,ξt) (ρG(D))

)2

=
{

θ(ξ1,...,ξt1 ) (ρG1(D1))
2 +

(
2t1 − θ(ξ1,...,ξt1 ) (ρG1(D1))

)2

− 2θ(ξ1,...,ξt1 ) (ρG1(D1))
(
2t1 − θ(ξ1,...,ξt1) (ρG1(D1))

)}(
θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(D2))

)2
.

By (3.1*) and Observation (3), θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(D2))
2 = 2t2−1 − 2t2−2. Also θ(ξ1,...,ξt1 )

(ρG1(D1)) = |D1| = 2t1−1 − 2(t1−2)/2. By substituting these in the above expression and then

expanding, we get

(
θ(ξ1,...,ξt) (ρG(D))

)2

=
(
2t2−1 − 2t2−2

) [
4

(
2t1−1 − 2(t1−2)/2

)2
+ 22t1 − 4(2t1)

(
2t1−1 − 2(t1−2)/2

) ]

=
(
2t2−1 − 2t2−2

)
2t1 = (k − λ)

where k = 2t−1 − 2(t−2)/2 and λ = 2t−2 − 2(t−2)/2. Since (ξ1, . . . , ξt) 6= (1, . . . , 1), we see that

θ(ξ1,...,ξt) (ρG(G)) = 0 and hence by (3.1∗), Ψ(ξ, α) = 0 for the point representation α of D.

Similar argument works when (ξ1, . . . , ξt1) ∈ {−1, 1}t2\{(1, . . . , 1)} and (ξ(t1+1), . . . , ξ(t1+t2)) =

(1, . . . , 1) ∈ Ct2 .

Case (iii):

(ξ1, . . . , ξt1) = (1, . . . , 1) ∈ Ct1 and

(ξ(t1+1), . . . , ξ(t1+t2)) = (1, . . . , 1) ∈ Ct2 .

Then we have

θ(ξ1,...,ξt1) (ρG1(D1)) = |D1| = 2t1−1 − 2(t1−2)/2;

θ(ξ(t1+1),...,ξ(t1+t2)) (ρG2(D2)) = |D2| = 2t2−1 − 2(t2−2)/2;

θ(ξ1,...,ξt1)

(
ρG1(D1)

)
= |D1| = 2t1 − 2t1−1 + 2(t1−2)/2 = 2t1−1 + 2(t1−2)/2;

θ(ξ(t1+1),...,ξ(t1+t2))

(
ρG2(D2)

)
= |D2| = 2t2 − 2t2−1 + 2(t2−2)/2 = 2t2−1 + 2(t2−2)/2.

Substituting in (5.1), in view of (3.1∗), showing D is a (2t1+t2 , 2t1+t2−1−2(t1+t2−2)/2, 2t1+t2−2−
2(t1+t2−2)/2) difference set reduces to proving the following equality :
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If t1, t2 ≥ 4 are even integers then

(
2t2−1 + 2(t2−2)/2

)2 (
2t1−1 − 2(t1−2)/2

)2
+

(
2t1−1 + 2(t1−2)/2

)2 (
2t2−1 − 2(t2−2)/2

)2

+ 2
(
22t1−2 − 2t1−2

) (
22t2−2 − 2t2−2

)

= 2t1+t2
(
2t1+t2−2 − 2(t1+t2−2)/2

)
+

(
2t1+t2−1 − 2t1+t2−2

)
.

Now to prove this equality,

L.H.S. =
(
22t1−2 + 2t1−2 − 2

3t1
2
−1

)(
22t2−2 + 2t2−2 + 2

3t2
2
−1

)

+
(
22t1−2 + 2t1−2 − 2

3t1
2
−1 + 2 2

3t1
2
−1

)(
22t2−2 + 2t2−2 − 2

3t2
2
−1

)

+ 2
(
22t1+2t2−4 − 22t1+t2−4 − 2t1+2t2−4 + 2t1+t2−4

)
.

Simplifying further,

L.H.S. =
(
22t1−2 + 2t1−2 − 2

3t1
2
−1

)(
22t2−1 + 2t2−1

)
+ 2

3t1
2

+2t2−2

+ 2
3t1
2

+t2−2 − 2
3t1
2

+
3t2
2
−1 + 22t1+2t2−3 − 22t1+t2−3

− 2t1+2t2−3 + 2t1+t2−3.

More simplification gives

L.H.S. =22t1+2t2−3 + 22t1+t2−3 + 2t1+2t2−3 + 2t1+t2−3 − 2
3t1
2

+2t2−2

− 2
3t1
2

+t2−2 + 2
3t1
2

+2t2−2 + 2
3t1
2

+t2−2 − 2
3t1
2

+
3t2
2
−1

+ 22t1+2t2−3 − 22t1+t2−3 − 2t1+2t2−3 + 2t1+t2−3

=22t1+2t2−2 + 2t1+t2−2 − 2
3t1
2

+
3t2
2
−1

=R.H.S.

This proves that β is a bent function. 2

CONCLUSION

In this paper, we have proved two algebraic criteria for a (v, k, λ) difference set in a given abelian

group of order v. Illustrations are provided indicating how they can be applied. Further applications

are being planned.
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