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Bellaterra, Barcelona, Catalonia, Spain

e-mails: toni.ferragut@unir.net; jllibre@mat.uab.cat

(Received 14 February 2017; after final revision 10 January 2019;

accepted 18 January 2019)
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1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

The study of given solutions (as polynomial or rational solutions) of differential equations is of main

interest for understanding the set of solutions of a differential equation. Rainville [15] in 1936 char-

acterized all the Riccati differential equations of the form y′ = a0(x) + a1(x)y + y2, where a0 and

a1 are polynomials in x, having polynomial solutions. He also gave an algebraic method for studying

these polynomial solutions.

In 1954 Campbell and Golomb [7] gave an algorithm for computing all the polynomial solutions

of the differential equation a(x)y′ = a0(x) + a1(x)y + a2(x)y2, where a, a0, a1, a2 are polynomials

in x. In 2006 Behloul and Cheng [3] provided another algorithm for finding all the rational solutions

of the equation a(x)y′ =
∑n

i=0 ai(x)yi, where a, ai are polynomials in x.
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The differential equations y′ = a0(x) + a1(x)y + a2(x)y2 + a3(x)y3 are the Abel differential

equations, which have been studied widely, either computing their periodic orbits (see for instance [9,

12]), or studying their centers (see [4, 6]). More recently in [10] the authors studied the polynomial

solutions of the differential equation y′ =
∑n

i=0 ai(x)yi.

Also polynomial solutions of non-autonomous differential equations, or polynomial solutions of

matrix differential equations have been studied, see for instance the articles [16] or [2] respectively,

and the references quoted therein.

The Riccati-Abel equation (a(x)+ y(x))y′(x) = a0(x) + a1(x) y + a2(x) y2 is studied in [17].

Moreover, in [11] (p. 28) the differential equation (a(x) + b(x)y(x))y′(x) = a0(x) + a1(x) y +

a2(x) y2 + a3(x) y3 is considered. We deal in this paper with the generalization to degree n of these

two equations with the restrictions a(x) ≡ 0 and b(x) ≡ 1. Indeed, we consider ordinary differential

equations of the form

y
dy

dx
= a0(x) + a1(x) y + a2(x) y2 + . . . + an(x) yn, (1)

where x and y are complex variables, ai(x) are polynomials inC[x] for i = 0, 1, 2, . . . , n and an(x) 6≡
0, with n a nonnegative integer. We denote the derivative of y with respect to x by dy/dx or y′. We

assume that a0 6≡ 0, otherwise this differential equation becomes the one studied in [10]. We note that

while the solutions of linear differential equations with constant coefficients admit relatively easily

methods for solving them see for instance [13, 14], the solutions of nonlinear equations as equations

(1) require special investigations.

Differential equation (1) can be also written as the planar polynomial differential system

ẋ = y, ẏ = a0(x) + a1(x) y + a2(x) y2 + . . . + an(x) yn, (2)

where the dot denotes derivative with respect to an independent variable t.

We are interested in the polynomial solutions y = p(x) of the differential equation (1), i.e. the

solutions y = p(x) of (1) where p(x) ∈ C[x]. Notice that we can also consider the algebraic curves

p(x)− y = 0 as invariant solutions of system (2).

Let N = max{2, n}. Our four main results are the following.

Theorem 1 — Consider the differential equation (1). Then:

1. It has at most N2deg a0 polynomials solutions.

2. When deg a0 = 0, there are examples of the differential equation (1) having exactly N polyno-

mial solutions.
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The next two results concern special families of differential equations (1).

Theorem 2 — If the differential equation (1), with n ≥ 2 and ai(x) ≡ 0 for all i = 1, . . . , n− 1,

has more than one polynomial solution, then either it has exactly n solutions, all constant, or it has

exactly two polynomial solutions y = ±p(x), for some polynomial p(x) ∈ C[x], and in this last case

n is even.

Theorem 3 — If the differential equation (1), with n even and a2i−1(x) ≡ 0 for i = 1, . . . , n/2,

with a2i(x) 6≡ 0 for some i, has more than one polynomial solution, then it has exactly two polynomial

solutions y = ±p(x), for some polynomial p(x) ∈ C[x].

The next theorem deals with the differential equation (1) for several small values of n.

Theorem 4 — Consider the differential equation (1). Then the following statements hold.

(a) If n = 0, then either equation (1) has no polynomial solutions, or it has two non-constant

polynomial solutions of the form y = ±p(x), p(x) ∈ C[x].

(b) If n = 1, then two polynomial solutions y = pi(x), i = 0, 1, of (1) always have a non-constant

common factor. Moreover every factor of p0(x)− p1(x) divides both p0(x) and p1(x).

(c) If n = 2 and there exist three polynomial solutions y = pi(x), i = 0, 1, 2, then pi(x)/pj(x) is

not a constant function, for i 6= j.

(d) If n = 3 and there exist four polynomial solutions y = pi(x), i = 0, 1, 2, 3, then pi(x)/pj(x)

is not a constant function, for i 6= j. Moreover, if y = p(x) is a polynomial solution of

(1), then a0(x)/p(x) is a polynomial solution of the Abel differential equation a0y
′ = −a2

0a3

+ (a′0 − a0a2)y − a1y
2 − y3.

We shall provide examples of all these situations after their proofs.

The paper is organized as follows. In section 2 we prove Theorem 1. Theorem 2 is proved in

section 3. Section 4 is devoted to the proof of Theorem 1. Finally in section 5 we prove Theorem 4.

We must mention that all the algebraic computations that appear in this paper have been done

with the help of the algebraic manipulator Mathematica.

2. AN UPPER BOUND FOR THE NUMBER OF POLYNOMIAL SOLUTIONS OF (1)

The following lemma, despite that it has a trivial proof, provides important information on the poly-

nomial solutions of the differential equation (1).
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Lemma 5 — If y = p(x) is a polynomial solution of the differential equation (1), then p(x)|a0(x).

The next lemma is a key-point in the proof of Theorem 1.

Lemma 6 — If y = p(x) is a polynomial solution of (1), then there exist at most N complex

solutions of (1) of the form y = κp(x), with κ ∈ C.

PROOF : Let y = p(x) be a polynomial solution of (1). Suppose that y = κp(x), with

κ ∈ C \ {0, 1}, is another polynomial solution of (1). Then

κ2
n∑

i=0

ai(x)p(x)i = κ2p(x)p′(x) =
n∑

i=0

κiai(x)p(x)i.

Here the first equality holds because y = p(x) is a solution of (1) and the second one because

y = κp(x) also is a solution. Hence we get

n∑

i=0

(κi − κ2)ai(x)p(x)i = 0. (3)

This is a polynomial equation of degree exactly N in the variable κ for all x fixed, except perhaps

for a finite number of values. Therefore this equation, for almost all fixed x, has exactly N complex

solutions for κ, and of course this set of solutions includes κ = 1. 2

Next we provide some definitions concerning integrability. They will be used later no. If ẋ =

P (x, y), ẏ = Q(x, y) is a differential system, a non-constant C1-function H(x, y) is a first integral of

this system if it is constant on the solutions of the system; i.e., if it satisfies the equation

P (x, y)
∂H

∂x
+ Q(x, y)

∂H

∂y
= 0. (4)

An algebraic curve f = 0 is invariant under the flow of the differential system ẋ = P (x, y), ẏ =

Q(x, y) if there exists a polynomial k ∈ C[x, y], called the cofactor, such that

P (x, y)
∂f

∂x
+ Q(x, y)

∂f

∂y
= kf.

The Darboux Theory of Integrability relates the number of invariant algebraic curves of a differ-

ential system with the existence of a (Darboux) first integral, see [8]. The key point in the existence

of such a Darboux first integral is whether a linear combination of the cofactors of such curves is

identically zero.

Example 1 : Consider the following differential equation (1) with n = 1:

yy′ = −2x(2x2 − 1) + 6xy. (5)
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This equation has four polynomial solutions given by p0(x) = x2 − 1/2, p1(x) = 2x2 − 1 and

y(x) =
√

2x(
√

2x ± 1). Notice that all of them divide a0 and have common factors. Moreover, we

have p1(x) = 2p0(x), hence equation (3) in this case and for p(x) = p0(x) has the maximum number

of solutions κ, which is N = max{1, 2} = 2.

Finally we note that the differential system associated to the differential equation (5) has the

rational first integral

H(x, y) =
(y − 2p0(x))2

y − p0(x)
,

as is easy to check using (4). 2

PROOF OF THEOREM 1 : We recall from Lemma 5 that a polynomial solution y = p(x) must

divide a0(x). This means that, up to a multiplicative constant, we can obtain at most 2deg a0 different

polynomial solutions of (1). Now from Lemma 6 the first part of the theorem follows.

The differential equation yy′ =
∏n

i=1(y − ci), with n ≥ 2 and ci 6= 0 for all i, has n polynomial

solutions given by y = pi(x) = ci, i = 1, . . . , n. This is an example where the upper bound given by

Theorem 1 is sharp, since it is N2deg a0 = n · 20 = n. This completes the proof of the theorem. 2

3. PROOF OF THEOREM 2

We consider in this section the subfamily of (1) given by the differential equation

y
dy

dx
= a0(x) + an(x) yn. (6)

The case n = 1 will be studied in Section 5. We assume here that n ≥ 2.

PROOF OF THEOREM 2 : Suppose first that the differential equation (6) has two polynomial

solutions y = p(x) and y = q(x) such that p(x)n 6≡ q(x)n. Substituting p(x) and q(x) into (6) we

obtain two linear equations with unknowns a0(x), an(x), from which

a0(x) =
p(x)nq(x)q′(x)− q(x)np(x)p′(x)

p(x)n − q(x)n
, an(x) =

p(x)p′(x)− q(x)q′(x)
p(x)n − q(x)n

.

Note that, since n ≥ 2, an(x) is not in general a polynomial because the degree of its denominator

is larger than the degree of its numerator. There are two exceptions to this: the case when pn − qn

is a constant and the case when p and q are constant. The first case is not possible (see the proof of

Proposition 14 for a similar argument of the proof in the case n = 2).

When p is a constant solution, then 0 = pp′ = a0 + anpn, and hence equation (6) becomes

y
dy

dx
= an(x)(yn − pn).
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This equation has the constant solutions y(x) such that yn = pn. If we consider solutions different

from these, we can write the previous equation as

an(x) =
y(x)y′(x)
yn(x)− pn

.

Integrating with respect to x, we get

∫
an(x) dx =

∫
yy′

yn − pn
dx = −y2(x)

2pn 2F1

(
1,

2
n

, 1 +
2
n

,
yn(x)

pn

)
,

where 2F1 is the hypergeometric function (see [1]); but this is not possible when n ≥ 2 because the

left hand side is a polynomial and the right hand side is not.

We next consider the case p(x)n ≡ q(x)n. Then

pp′ − a0

an
= pn = qn =

qq′ − a0

an
.

Hence pp′ = qq′. We distinguish two cases. If p′ = q′ = 0 then p and q are constant, and

therefore

pn = qn = −a0

an

is a constant, meaning that we have n constant solutions given by yn = −a0/an.

If p′, q′ 6= 0 then from pn = qn we get |p| = eC |q|, for some constant C, because

pn = qn ⇒ npn−1p′ = nqn−1q′ ⇒ npnp′ = npqn−1q′ ⇒ qnp′ = pqn−1q′ ⇒ p′q = pq′

⇒ p′

p
=

q′

q
⇒ log |p| = log |q|+ C ⇒ |p| = eC |q|.

Now p = ±eCq, hence pn = (−1)neCnqn. Since pn = qn we have (−1)neCn = 1, which means

that q = ±eikπp, with k ∈ Z. If n is odd, then k must be even, and then q = p. So we need n to be

even in order to have more than one solution, and in this case we have q = ±p.

Example 2 : The differential equation

yy′ = x(1− x)(3x− 4) + (3x− 1)y

has the polynomial solutions y = ±(x− 1). 2

Example 3 : The differential equation yy′ = 1− y4 has four constant solutions: The fourth roots

of unity. 2
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4. PROOF OF THEOREM 3

We consider in this section the subfamily of (1) given by the differential equation

y
dy

dx
=

m∑

i=0

a2i(x)y2i, (7)

with m = n/2 ∈ N, with a0, a2j , a2m 6≡ 0, for some 0 < j < m.

Set z = y2/2. Then z′ = yy′, and hence the differential equation (7) can be written, in terms of

z, as
dz

dx
=

m∑

i=0

b2i(x)zi, (8)

where b2i = 2ia2i. The following result appears in [10].

Theorem 7 — The differential equation (8) has at most m polynomial solutions. The difference

between two such polynomial solutions is a constant.

PROOF OF THEOREM 3 : Let z = r(x)/2 be a solution of (8). Then y = ±
√

r(x) are two

solutions of (7). They are polynomial if and only if r(x) is a perfect square; that is, if there exists

p(x) ∈ C[x] such that r(x) = p(x)2. In such a case, y = ±p(x) are two polynomial solutions of (7).

From Theorem 7, this implies that we have at most n = 2m polynomial solutions for (7).

Now suppose that indeed r(x) = p(x)2 is a perfect square. Suppose also that z = s(x)/2 is

another polynomial solution of (8). Again from Theorem 7, we know that there exists a non-zero

constant C such that s(x) = p(x)2 + C, for all x. Hence y = ±
√

p(x)2 + C are two solutions

of (7). If s(x) is a perfect square, that is s(x) = q(x)2, then from the proof of Proposition 8 and

from q(x)2 − p(x)2 = C we get that C = 0, and therefore r(x) = s(x). Thus only two polynomial

solutions can exist for the differential equation (7), which are y = ±p(x), and the theorem follows.2

5. PROOF OF THEOREM 4

5.1 The differential equation (1) with n = 0.

The following proposition proves statement (a) of Theorem 4.

Proposition 8 — The differential equation (1) with n = 0,

y
dy

dx
= a0(x), (9)

has either zero or two distinct polynomial solutions. They have the form y = ±p(x), p(x) ∈ C[x].
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PROOF : Equation (9) can be directly solved, providing the solutions

y(x) = ±
√

K + 2
∫

a0(x) dx,

where K is an arbitrary constant. Now we must prove that, if there exists K ∈ C such that y = p(x) is

a polynomial solution, then this K is unique and y = −p(x) is another polynomial solution. Indeed,

if y = q(x) is a solution of (9) different from y = p(x), then p2 − q2 is a constant. We need to prove

that this constant is zero, and hence q(x) = −p(x).

Let p(x) =
∑

pix
i and q(x) =

∑
qix

i. It is clear that deg p = deg q. Let m ∈ N be this degree.

Thus

p2 − q2 = (p2
m − q2

m)x2m

+ 2(pmpm−1 − qmqm−1)x2m−1 + (p2
m−1 − q2

m−1 + 2(pmpm−2 − qmqm−2))x2m−2 + · · · .

Since p2− q2 is a constant, all the monomials of the previous polynomial except the constant one

must be zero. In particular, p2
m = q2

m. If pm = qm 6= 0, then from the monomial of x2m−1 we have

pm−1 = qm−1. Otherwise pm = −qm 6= 0 and then pm−1 = −qm−1. From the next monomial,

x2m−2, we get either pm−2 = qm−2 (in case pm = qm), or pm−2 = −qm−2 (in case pm = −qm).

We can continue this argument by using the induction principle to have either pi = qi or pi = −qi,

for all i = m, . . . , 0 from the monomials from x2m to xm: the coefficient of the monomial xm+i is

the sum of non-zero multiples of the expressions pmpi − qmqi and pjpk − qjqk, with j + k = m + i,

i < j, k < m. Since pjpk = qjqk, we have pmpi = qmqi. So again if pm = qm 6= 0, then pi = qi,

and if pm = −qm 6= 0 then pi = −qi.

Hence we obtain either p(x) = q(x) or p(x) = −q(x), and the proposition follows. 2

Example 4 : The equation yy′ = 1 has no polynomial solutions. 2

Example 5 : The only polynomial solutions y = p(x) of the differential equation (9) with a0(x) =

2(x− 1)(x + 1)(x− 3) are y(x) = ±(x− 3)(x + 1). 2

5.2 The differential equation (1) with n = 1

We recall that a polynomial is square-free if it has no multiple factors in this factorization.

PROPOSITION 9 — Consider the differential equation (1) with n = 1:

y
dy

dx
= a0(x) + a1(x)y. (10)
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Then two polynomial solutions of (10) have a square-free common factor.

PROOF : Let y = p(x) a polynomial solution of (10). Then, by Lemma 5, p(x)|a0(x), that is

a0(x) = p(x)ã0(x), for some ã0(x) ∈ C[x]. Hence p(x) satisfies

p′(x) = ã0(x) + a1(x).

Then a1(x) = p′(x)− ã0(x). Substituting the expressions of a0(x) and a1(x) into (10), we have

y
dy

dx
= p(x)ã0(x) + (p′(x)− ã0(x))y.

Let y = q(x) be another solution of (10). Then

q(x)q′(x) = p(x)ã0(x) + (p′(x)− ã0(x))q(x),

and consequently

ã0(x) = −q(x)
p′(x)− q′(x)
p(x)− q(x)

.

This must be a non-zero polynomial. Since deg(p − q) > deg(p′ − q′), the polynomials q and

p− q have a square-free common factor dividing also p. Therefore the proposition follows. 2

We prove that the existence of n+1 solutions determines completely the differential equation (1).

We shall use this result later on.

Proposition 10 — Let y = pi(x), for i = 0, . . . , n, be n+1 distinct C1-solutions of the differential

equation (1). Then, for all i ∈ {0, . . . , n}, ai(x) can be written as a function of p0(x), . . . , pn(x) and

their first derivatives.

PROOF : For j = 0, . . . , n, since y = pj(x) is a solution of (1), we have

pj(x)p′j(x) =
n∑

i=0

ai(x)pj(x)i.

These n + 1 equations can be written altogether as a linear system of equations with unknowns

the ai: 


1 p0 p2
0 · · · pn

0

1 p1 p2
1 · · · pn

1
...

...
...

. . .
...

1 pn p2
n · · · pn

n







a0

a1

...

an




=




p0p
′
0

p1p
′
1

...

pnp′n




. (11)
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The square matrix has non-zero determinant, since it is a Vandermonde matrix. Then there exist

unique a0, . . . , an that satisfy this linear system. In particular, the solutions ai depend on the pj’s and

their first derivatives.

Remark 1 : When the pi’s are polynomials, the linear system (11) provides rational solutions

a0, . . . , an with denominator
∏

0≤i<j≤n(pi − pj). Since ai(x) is assumed to be polynomial for all i,

some relations among the pj may appear. See Proposition 9 for the case n = 1.

Remark 2 : If equation (10) has two solutions y = p(x) and y = q(x), then by Proposition 10

a0(x) = −p(x)q(x)(p′(x)− q′(x))
p(x)− q(x)

, a1(x) =
p(x)p′(x)− q(x)q′(x)

p(x)− q(x)
. (12)

We recall that if y = p(x) is a polynomial solution of (1), then p(x) − y = 0 is a polynomial

solution of system 2. In such a case, there exists a polynomial k(x, y), called the cofactor, such that

p′(x)y −
n∑

i=0

ai(x)yi = k(x, y)(p(x)− y). (13)

This cofactor has degree at most n− 1 in y. We note that equation (1) follows from equation (13)

with y = p(x).

Proposition 11 — The following statements hold for the differential equation (10).

(a) If (C + 1)a0(x) + Cp(x)a1(x) ≡ 0 for some polynomial p(x) and some constant C ∈ C \
{−1, 0, 1}, then the differential equation has y = p(x) and y = Cp(x) as polynomial solutions.

(b) If the differential equation has two polynomial solutions given by y = p(x) and y = Cp(x),

with C ∈ C \ {−1, 0, 1}, then a0(x) = −Cp(x)p′(x) and a1(x) = (C + 1)p′(x). Moreover

the associated differential system (2) has the first integral

H(x, y) =
y − p(x)

(y − Cp(x))C
.

PROOF : The proof about the polynomial solutions and their relation with the differential equation

follows directly after substituting q(x) by Cp(x) in the expressions of a0 and a1 provided in (12).

Concerning the first integral, we just need to note that the cofactor of the invariant algebraic curve

f1(x, y) = p(x) − y = 0 for the associated system (2) is k1(x, y) = Cp′(x) and the cofactor of

f2(x, y) = Cp(x) − y = 0 is k2(x, y) = p′(x). Hence k1(x, y) − Ck2(x, y) ≡ 0. Applying the

Darboux Theory of Integrability the (Darboux) first integral f1/fC
2 is obtained, for more details see

Theorem 8.7 of [8]. 2
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Proposition12 — If y = pi(x), i = 0, 1, are polynomial solutions of (1) with n = 1, then the

factors of p0(x)− p1(x) divide to p0(x) and p1(x).

PROOF : We have

p0p
′
0 = a0 + a1p0, p1p

′
1 = a0 + a1p1.

The difference of these equations is

p0p
′
0 − p1p

′
1 = a1(p0 − p1).

Let ω be a factor of p0 − p1. Then p0 − p1 = ωkγ, for some k ∈ N and some polynomial γ such

that ω - γ. Thus p′0 − p′1 = kωk−1ω′γ + ωkγ′. Substituting p0 and p′0 from these equalities in the

previous equation we obtain

(p1 + ωkγ)(p′1 + kωk−1ω′γ + ωkγ′)− p1p
′
1 = a1ω

kγ.

After some simplifications we have

kp1ω
′γ + ω(p1γ

′ + p′1γ − a1γ) = 0.

Hence ω|p1. From p0 − p1 = ωkγ we also have that ω|p0. 2

Note that Propositions 9, 11 and 12 prove statement (b) of Theorem 4. We needed to omit the

case C = −1 in Proposition 11 because in that case we have a1 ≡ 0, which is not possible because

we are working with n = 1.

Remark 3 : Statement (b) of Proposition 11 shows that, given a polynomial p(x) and a constant

C, we can construct a differential equation (10) having the polynomial solutions y = p(x) and

y = Cp(x).

Remark 4 : Regarding equation (3) for n = 1, we note that it has degree 2 in κ. So if (C +

1)a0(x) + Ca1(x)p(x) = 0, then it writes always as κ2 − (C + 1)κ + C = 0 and has the solutions

κ = 1, C.

The next lemma provides some information about the degrees of a0 and a1 when the differential

equation (10) has a polynomial solution. Its proof is trivial and we omit it.

Lemma 13 — Consider the differential equation (10) having a polynomial solution y = p(x).

Then

(a) If deg p < (deg a0 + 1)/2, then deg a1 = deg a0 − deg p.
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(b) If deg p = (deg a0 + 1)/2, then deg a1 ≤ deg a0 − deg p.

(c) If deg p > (deg a0 + 1)/2, then deg a1 = deg p− 1.

Example 6 : Let a0 = x(x + 1) and a1 = −x. Then the only polynomial solution of equation (9)

is y = p(x) = x. 2

Example 7 : Let a0 = −x2(x + 1) and a1 = 3x + 1. Then equation (9) has the polynomial

solutions y = x2 and y = x(x + 1). Moreover these are the only polynomial solutions of the

equation. 2

5.3 The differential equation (1) with n = 2

When n = 2, the proof of Proposition 10 gives

a0(x) =
p0p1p2

[
p′0(p1 − p2) + p′1(p2 − p0) + p′2(p0 − p1)

]
∏

i<j(pi − pj)
,

a1(x) =
p0p

′
0(p

2
2 − p2

1) + p1p
′
1(p

2
0 − p2

2) + p2p
′
2(p

2
1 − p2

0)∏
i<j(pi − pj)

,

a2(x) =
p0p

′
0(p1 − p2) + p1p

′
1(p2 − p0) + p2p

′
2(p0 − p1)∏

i<j(pi − pj)
,

if y = pi(x), for i = 0, 1, 2, are solutions of the differential equation (1) with n = 2.

Next we provide an example of the differential equation (1) with n = 2 having three polynomial

solutions.

Example 8 : The differential equation yy′ = x2(x2 − 1) − (2x2 − 2x − 1)y + y2 has three

polynomial solutions p0(x) = x2; p1(x) = x2 − 1; and p2(x) = x(x + 1). 2

Proposition 14 — Suppose that the differential equation (1) with n = 2 has three distinct solutions

y = pi(x), i = 0, 1, 2. Then there does not exist C1 ∈ C \ {0, 1} such that p1(x) = C1p0(x).

PROOF : Suppose that we can write p1(x) = C1p0(x), for some C1 ∈ C \ {0, 1}. The associated

differential system (2) has a first integral given by

H(x, y) =
(y − p0(x))(C1p0(x)− p2(x))C1

(y − C1p0(x))C1(p0(x)− p2(x))
.

Since the curves pi(x)− p2(x) = 0, i = 0, 1, are not invariant by the system because they do not

divide ẋ = y, the quotient (C1p0 − p2)C1/(p0 − p2) must be a constant, say 1/(C(1 − C1)). If we

let q(x) = C1p0(x)− p2(x), then

q(x)C1 =
p0(x)

C
+

q(x)
C(1− C1)

,
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or

p0(x) = Cq(x)C1 − q(x)
1− C1

, p2(x) = CC1q(x)C1 − q(x)
1− C1

.

Substituting p0(x) and p2(x) into the expression of a2 we get a2 ≡ 0, which contradicts the initial

hypotheses on (1). Hence no such C1 may exist. 2

Remark 5 : If, besides p1(x) = kp0(x), we have p2(x) = C2p0(x), then direct computations

show that a0(x) ≡ 0.

Proposition 14 proves statement (c) of Theorem 4.

5.4 The differential equation (1) with n = 3

If y = pi(x), for i = 0, 1, 2, 3, are solutions of the differential equation (1), then from Proposition 10

with n = 3 we can write ai as functions of these pj . We do not write the expression of the ai because

they are too long.

Statement (d) of Theorem 4 follows from the next two propositions.

Proposition 15 — Suppose that the differential equation (1) with n = 3 has four distinct solutions

y = pi(x), i = 0, 1, 2, 3. Then there do not exist C1, C2 ∈ C \ {0, 1} such that pi(x) = Cip0(x),

i = 1, 2.

PROOF : Suppose that we can write pi(x) = Cip0(x), i = 1, 2, for some Ci ∈ C \ {0, 1},

C1 6= C2. From Proposition 10 we can compute ai(x) in terms of pj(x). We note that it is not

possible to have, in addition, p3(x) = C3p0(x), otherwise a0 ≡ 0. From the expression of a0 and a1

we have the relation

(C1 + C2 + C1C2)a0(x) + C1C2p0(x)a1(x) = 0.

Moreover it is easy to check that the associated system (2) has a first integral given by

H(x, y) =
(y − p0(x))C1−C2(y − C1p0(x))C1(C2−1)(C2p0(x)− p3(x))C2(C1−1)

(y − C2p0(x))C2(C1−1)(C1p0(x)− p3(x))C1(C2−1)(p0(x)− p3(x))C1−C2
.

Since the curves pi(x) − p3(x) = 0, i = 0, 1, 2, are not invariant by the system because they do

not divide ẋ = y, it must happen that

(C2p0(x)− p3(x))C2(C1−1)

(C1p0(x)− p3(x))C1(C2−1)(p0(x)− p3(x))C1−C2

is a constant. Let q(x) = C2p0(x)− p3(x). Thus

q(x)C2(C1−1)

((C1 − C2)p0(x) + q(x))C1(C2−1)((1− C2)p0(x) + q(x))C1−C2
= C ∈ C. (14)
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We claim that q(x)/p0(x) = Cq is a constant. Assuming the claim, we obtain p3(x) = (C2 −
Cq)p0(x), and thus as before a0 ≡ 0. Hence no such C1, C2 exist and the proposition will follow

once the claim is proved.

So it remains to prove the claim. From (14) we have

q(x)C2(C1−1) = C
(
(C1 − C2)p0(x) + q(x)

)C1(C2−1)((1− C2)p0(x) + q(x)
)C1−C2 .

Or, equivalently,

1 = C

(
(C1 − C2)

p0(x)
q(x)

+ 1
)C1(C2−1) (

(1− C2)
p0(x)
q(x)

+ 1
)C1−C2

.

Thus (
(1− C2)

p0(x)
q(x)

+ 1
)

= C̃

(
(C1 − C2)

p0(x)
q(x)

+ 1
)C1(C2−1)

C2−C1

,

where C̃ is another constant. From this last equality we get that either p0/q is a constant, or C1(C2 − 1) =

C2 − C1. In the second case we get C1 = 1, which is a contradiction. Therefore the claim is proved.2

Proposition 16 — We have that y = p(x) is a polynomial solution of the differential system (1)

with n = 3 if and only if y = q(x) = a0(x)/p(x) is a polynomial solution of the Abel differential

equation

a0y
′ = −a2

0a3 + (a′0 − a0a2)y − a1y
2 − y3. (15)

PROOF : It is clear from Lemma 5 that if y = p(x) is a polynomial solution of (1) then q(x) is a

polynomial. If y = q(x) is a polynomial solution of (15), then we have

a0
a′0p− a0p

′

p2
= −a2

0a3 + (a′0 − a0a2)
a0

p
− a1

a2
0

p2
− a3

0

p3
.

This is equivalent to have

a0a
′
0p

2 − a0pp′ = −a2
0a3p

3 + a0(a′0 − a0a2)p2 − a2
0a1p− a3

0,

which is equivalent to

pp′ = a3p
3 + a2p

2 + a1p + a0.

And this last equation means that the polynomial y = p(x) is a solution of (1). 2

Example 9 : The differential equation

yy′ = 5(x− 2)(x− 3)(3x2 − 9x + 5)− (17x3 − 97x2 + 168x− 80)y + x2y2 + (x− 1)y3
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has the polynomial solutions y = x− 2 and y = −5(x− 2). Direct computations show that it has no

more polynomial solutions. 2

Example 10 : The equation

y(x)y′(x) = −1
2

3
√−1(2 + x(x(6x4 + (−3− 3i

√
3)x2 − 6x + i

√
3− 1) + 2i

√
3 + 2))x3

− (9(
√

3− i)x7 − 18ix6 − 6(
√

3 + i)x5 − 12(
√

3− i)x4 + 10ix3 + 3(
√

3− i)x− 2i)
2ix +

√
3 + i

y(x)

+
(3(
√

3− i)x2 − 3(
√

3 + i)x + 4i)(3x(x + 1) + 2)
2ix +

√
3 + i

y(x)2

+
3
2
i(
√

3− i)y(x)3

has the polynomial solutions given by y = x3, y = x3 − 1 and

y = x3 − i√
3
x− 1

2
− i

2
√

3
, y = x3 −

(
1
2

+
i

2
√

3

)
x− 1

2
+

i

2
√

3
.2
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10. J. Giné, M. Grau, and J. Llibre, On the polynomial limit cycles of polynomial differential equations,

Israel J. Math., 181 (2011), 461-475.

11. E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen, Springer 1977.
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