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In this paper, we study the following Choquard equations with small perturbation f

−∆u + V (x)u = (Iα ∗ |u|p)|u|p−2u + f(x), x ∈ RN .

where N ≥ 3 and Iα denotes the Riesz potential. As is known that the above equation has a

ground state uα and a bound state vα by fibering maps (see [22] or [23]), our aim is to show that

for fixed p ∈ (1, N
N−2 ), uα and vα converge to a ground state and a bound state of the limiting

local problem respectively, as α → 0.
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1. INTRODUCTION

In this paper, we are concerned with the following nonlocal problem

−∆u + V (x)u = (Iα ∗ |u|p)|u|p−2u + f(x), x ∈ RN , (1.1)

where N ≥ 3, p ∈ (1, N
N−2), α ∈ (0, min{(p− 1)N,N}) is a parameter, Iα is Riesz potential given

by

Iα(x) =
Γ(N−α

2 )
Γ(α

2 )πN/22α|x|N−α
(1.2)
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and Γ denotes the Gamma function. We assume V (x) satisfies the following conditions.

(V) V ∈ C(RN ), V0 := inf
RN

V > 0 and there exists a constant r > 0 such that, for any M > 0,

meas{x ∈ RN : |x− y| ≤ r, V (x) ≤ M} → 0, as |y| → ∞,

where meas stands for Lebesgue measure. One can refer to [1, 2] for more details.

When N = 3, α = 2, p = 2 and f = 0, (1.1) arises in the study of nonlinear Choquard

equations describing an electron trapped in its own hole, in a certain approximation to Hartree-Fock

theory of one component plasma [10]. Recently, the existence and qualitative properties of Choquard

type equations (1.1) have been widely and intensively studied in literatures. The existence of ground

states, nodal solutions and multiple solutions to (1.1) is quite well known, see [4-8, 11, 13, 15, 16, 19,

20] and references therein. For the results about qualitative properties such as regularity, symmetry,

uniqueness and decay, one can refer to for instance [12, 13, 15, 17, 21].

As stated in [18], the following local equation

−∆u + V (x)u = |u|2p−2u + f(x), (1.3)

can be viewed as a limit equation of (1.1) as α → 0. Moreover, the existence of ground state and

bound state of (1.1) and (1.3) via fibering maps has been proved. One can refer to [3, 22, 23].

However, a natural interesting question arises whether both of the ground state and bound state of

(1.1) converge to those of limit equation (1.3) as α → 0, respectively. This paper gives a complete

answer.

We consider the Sobolev space H := {u ∈ H1(RN ) :
∫
RN V (x)u2dx < ∞} with the norm

‖u‖2 =
∫
RN (|∇u|2 + V (x)u2)dx. Under the assumption (V ), the embedding H ↪→ H1(RN ) is

continuous and H is a Hilbert space. Furthermore, the embedding from H into Ls(RN ) is compact

for s ∈ [2, 2N
N−2) (see [1]). Let H∗ be the dual space of H and the norm on H∗ is denoted by ‖ · ‖H∗ .

Our main result is as follows.

Theorem 1.1 — Assume N ≥ 3, p ∈ (1, N
N−2) and (V ) holds. Then there exists δ > 0 small

enough such that for any f ∈ H∗\{0} with ‖f‖H∗ < δ, equation (1.1) has a ground state uα and a

bound state vα that converge to a ground state and a bound state of (1.3) as α → 0, respectively.

Remark 1.1 : For fixed p ∈ (1, N
N−2), the energy functional Eα associated with (1.1) (see (2.1))

is well defined for every α ∈ (0, min{(p− 1)N, N}).

The remainder of this paper is organized as follows. In Section 2, some notations and preliminary

results are presented. In Section 3, we are devoted to the proof of Theorem 1.1.
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2. PRELIMINARIES

In this paper, we use the following notations.

• For 1 ≤ s < ∞, Ls(RN ) denotes the Lebesgue space with the norm |u|Ls =
(∫
RN |u|sdx

) 1
s .

• Let 〈·, ·〉 be duality pairing between H and H∗.

• C denotes different positive constants and C(α) denotes different positive constants dependent on

α.

Throughout the paper, we assume (V ) holds and f ∈ H∗\{0}. As usual, the corresponding

energy functional Eα : H → R associated with (1.1) is

Eα(u) =
1
2
‖u‖2 − 1

2p

∫

RN

(Iα ∗ |u|p)|u|pdx− 〈f, u〉. (2.1)

In view of Remark 1.1, we can see that Eα ∈ C1(H,R) whose Gateaux derivative is given by

〈E′
α(u), v〉 =

∫

RN

∇u∇v + V (x)uv −
∫

RN

(Iα ∗ |u|p)|u|p−2uvdx− 〈f, v〉

for any v ∈ H. Recall that the critical points of Eα are solutions of (1.1) in the weak sense. For

simplicity of notations, we denote D(u) =
∫
RN (Iα ∗ |u|p)|u|pdx. Similarly, for problem (1.3), the

energy functional is

E0(u) =
1
2
‖u‖2 − 1

2p

∫

RN

|u|2pdx− 〈f, u〉

which is well defined in H and of C1.

We consider the Nehari manifold Nα = {u ∈ H : 〈E′
α(u), u〉 = 0}. Let Jα(u) = 〈E′

α(u), u〉
and then 〈J ′α(u), u〉 = 2‖u‖2 − 2pD(u)− 〈f, u〉. As in [22] (or [23]), Nα is split into three parts:

N 0
α = {u ∈ Nα : 〈J ′α(u), u〉 = 0},

N+
α = {u ∈ Nα : 〈J ′α(u), u〉 > 0},

N−
α = {u ∈ Nα : 〈J ′α(u), u〉 < 0}.

(2.2)

Set θ+
α = inf

N+
α

Eα(u) and θ−α = inf
N−

α

Eα(u). Similarly, we define J0(u),N0,N 0
0 ,N+

0 ,N−
0 , θ+

0 , θ−0

by replacing D(u) by
∫
RN |u|2p as above.

In the following, we give some preliminary results which are necessary in proving our main result.

Lemma 2.1 — [9, Theorem 4.3]. Let s, t > 1 and 0 < α < N with 1
s + 1

t = 1 + α
N , f ∈ Ls(RN )

and h ∈ Lt(RN ). There exists a sharp constant C(N, α, s) independent of f, h, such that
∫

RN

∫

RN

f(x)h(y)
|x− y|N−α

dxdy ≤ C(N, α, s)|f |Ls |h|Lt .
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Here C(N, α, s) is a positive constant which depend only on N,α, s. When s = t, one has

lim sup
α→0

αC(N,α, s) ≤ 2
s(s− 1)

|SN−1|, (2.3)

where |SN−1| denotes the surface area of the N − 1 dimensional unit sphere SN−1.

Lemma 2.2 — [18, Proposition 2.1]. Let {αj} > 0 be a sequence converging to 0 and {uj} ⊂
H1(RN ) be a sequence converging to some u∗ ∈ H1(RN ) in Ls(RN ) for every s ∈ (2, 2N

N−2) as

j →∞. Then ∫

RN

(Iαj ∗ |uj |p)|uj |pdx →
∫

RN

|u∗|2pdx, as j →∞.

In addition, for any φ ∈ H1(RN ), one has
∫

RN

(Iαj ∗ |uj |p)|uj |p−2ujφdx →
∫

RN

|u∗|2p−2u∗φdx, as j →∞.

3. PROOF OF THEOREM 1.1

In this section, we are devoted to the proof of Theorem 1.1. First we list the following results that

show the existence of a ground state and a bound state of (1.1) and (1.3).

Proposition 3.1 — Assume N ≥ 3, p ∈ (1, N
N−2) and (V ) holds. Then there exists δ > 0

independent of α such that for any f ∈ H∗\{0} with ‖f‖H∗ < δ small enough, there hold

(i) N 0
α = {0} and N 0

0 = {0}.

(ii) for any u ∈ H\{0}, there exists a unique t− > 0 such that t−u ∈ N−
α ; for any u ∈ H with

〈f, u〉 > 0, there exists a unique t+ > 0 such that t+u ∈ N+
α .

(iii) (1.1) has a ground state uα ∈ N+
α and a bound state vα ∈ N−

α such that Eα(uα) = θ+
α < 0

and Eα(vα) = θ−α > 0. Furthermore, if f is positive, uα and vα are positive.

(iv) (1.3) has a ground state u0 ∈ N+
0 and a bound state v0 ∈ N−

0 such that E0(u0) = θ+
0 < 0 and

E0(v0) = θ−0 > 0. Moreover, if f is positive, u0 and v0 are positive.

PROOF : The proofs of (i)-(iv) can be found in [22] (or [23]) with slight modifications. Further-

more, in view of Lemma 2.1, we can deduce that δ is independent of α. 2

Now we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1 : First, by Proposition 3.1(iii), we obtain the existence of ground state uα

and bound state vα of (.1) when ‖f‖H∗ < δ for the α-uniformity. Now we prove the convergence of

uα and vα as α → 0, respectively.
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Step 1 : uα tends to a ground state of (1.3) as α → 0.

Recall that uα ∈ N+
α and Eα(uα) = θ+

α < 0. Then

Eα(uα) = Eα(uα)− 1
2p〈E′

α(uα), uα〉
= (1

2 − 1
2p)‖uα‖2 − (1− 1

2p)〈f, uα〉 < 0,
(3.1)

which implies that ‖uα‖ ≤ C‖f‖H∗ ≤ Cδ and so there exists a sequence {αj} > 0 with αj → 0 as

j →∞, such that {uαj} is bounded in H .

Up to a subsequence, uαj ⇀ ū in H and uαj → ū in L
2Np
N+α (RN ) as j →∞. For any v ∈ H, we

infer from Lemma 2.2 that 〈E′
αj

(uαj ), v〉 → 〈E′
0(ū), v〉. Thus E′

0(ū) = 0 and ū 6= 0 due to the fact

that f ∈ H∗\{0}. So ū is a nontrivial solution of (1.3).

In addition, by Lemma 2.2 again,

0 = 〈E′
αj

(uαj ), uαj 〉 − 〈E′
0(ū), ū〉

= ‖uαj‖2 − ∫
RN (Iαj ∗ |uαj |p|)|uαj |pdx− 〈f, uαj 〉

−(‖ū‖2 − ∫
RN |ū|2pdx− 〈f, ū〉)

= ‖uαj‖2 − ‖ū‖2 + o(1).

(3.2)

Here and in the following part, o(1) → 0 as j → ∞. Then we obtain ‖uαj‖ → ‖ū‖. This com-

bined with the fact uαj ⇀ ū, implies that uαj → ū in H. Since uαj ∈ N+
αj

, we have 〈J ′αj
(uαj ), uαj 〉 >

0. Then 〈J ′0(ū), ū〉 ≥ 0. Note that ū 6= 0 and N 0
0 = {0} in Proposition 3.1(i). Thus we conclude that

ū ∈ N+
0 .

Now, we are going to prove that ū is a ground state of (1.3). By Proposition 3.1(iv), we see

E0(u0) = inf
u∈N+

0

E0(u) = θ+
0 < 0. Then 〈f, u0〉 > 0. According to Proposition 3.1(ii), for each αj ,

there exists tαj > 0 such that tαju0 ∈ N+
αj

. In order to investigate the property of tαj , we define

J̃ : (0,∞)× (−α0, α0) → R by

J̃(t, α) =

{
t2‖u0‖2 − t2p

∫
RN |u0|2pdx− t〈f, u0〉, if α = 0,

t2‖u0‖2 − t2p
∫
RN (I|α| ∗ |u0|p|)|u0|pdx− t〈f, u0〉, if α 6= 0.

(3.3)

Here we can choose some α0 ∈ (0, min{(p − 1)N, N}). By Lebesgue dominated convergence

theorem, Lemmas 2.1 and 2.2, one can see that
∫
RN (I|α| ∗ |u0|p|)|u0|pdx is continuous with respect

to α, and so J̃ and ∂J̃
∂t are both continuous in (0,∞) × (−α0, α0). Note that J̃(1, 0) = 0 and

∂J̃
∂t |(1,0) > 0 due to the fact u0 ∈ N+

0 . Then by applying the implicit function theorem, we have

tαj → 1 as j →∞. Therefore, we deduce that

E0(u0) ≤ E0(ū) = lim
j→∞

Eαj (uαj ) ≤ lim
j→∞

Eαj (tαju0) = E0(u0).
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Hence E0(ū) = E0(u0) = inf
u∈N+

0

E0(u) < 0. This yields that ū is a ground state of (1.3).

Step 2 : vα tends to a bound state of (1.3) as α → 0.

Note that vα ∈ N−
α and Eα(vα) = θ−α > 0. Choose a cut-off function η ∈ C∞

c (RN ). Since∫
RN (Iα ∗ |η|p|)|η|pdx → ∫

RN |η|2pdx as α → 0, it holds that

1
2

∫

RN

|η|2pdx ≤
∫

RN

(Iα ∗ |η|p|)|η|pdx ≤ 3
2

∫

RN

|η|2pdx

for α close to 0. On the other hand, for each α, we can find tα > 0 such that tαη ∈ N−
α . Then

Eα(vα) ≤ Eα(tαη) ≤ t2α
2 ‖η‖2 − t2p

α
4p

∫
RN |η|2pdx− tα〈f, η〉

≤ sup
t≥0
{ t2

2 ‖η‖2 − t2p

4p

∫
RN |η|2pdx− t〈f, η〉}

= sup
t≥0
{at2 − bt2p − ct},

(3.4)

where a = 1
2‖η‖2, b = 1

4p

∫
RN |η|2pdx, c = 〈f, η〉. Now consider h(t) = at2 − bt2p − ct. Since

h(t) → −∞ as t → +∞ and h(t) → 0 as t → 0, there exists D > 0 independent of α such that

sup
t≥0

h(t) ≤ D. Thus Eα(vα) ≤ D.

Observe that for any u ∈ Nα,

Eα(u) = (
1
2
− 1

2p
)‖u‖2 − (1− 1

2p
)〈f, u〉 ≥ (

1
2
− 1

2p
)‖u‖2 − C‖u‖. (3.5)

Then Eα is coercive and bounded from below in Nα. Since vα ∈ N−
α and Eα(vα) ≤ D, we can

find a sequence {αj} with αj → 0 as j →∞, such that {vαj} is bounded in H .

Up to a subsequence, vαj ⇀ v̄ in H and vαj → v̄ in L
2Np
N+α (RN ) as j →∞. We can derive from

Lemma 2.2 that 〈E′
αj

(vαj ), w〉 → 〈E′
0(v̄), w〉 for any w ∈ H. Thus E′

0(v̄) = 0 and v̄ 6= 0, that is, v̄

is a nontrivial solution of (1.1).

Now we show that v̄ is a bound state. Similar to (3.2), we get

0 = 〈E′
αj

(vαj ), vαj 〉 − 〈E′
0(v̄), v̄〉 = ‖vαj‖2 − ‖v̄‖2 + o(1). (3.6)

Then ‖vαj‖ → ‖v̄‖. So we infer from vαj ⇀ v̄ that vαj → v̄ in H. Note that vαj ∈ N−
αj

and

〈J ′αj
(vαj ), vαj 〉 < 0. Then 〈J ′0(v̄), v̄〉 ≤ 0. Since v̄ 6= 0 and N 0

0 = {0} in Proposition 3.1(i), we

deduce that v̄ ∈ N−
0 .

By Proposition 3.1(iv), we see E0(v0) = inf
v∈N−

0

E0(v) = θ−0 > 0. According to Proposition

3.1(ii), for each αj , there exists sαj > 0 such that sαjv0 ∈ N−
αj

. We claim that sαj → 1 as j → ∞.
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Indeed, we define h̃ : (0,∞)× (−α0, α0) → R by

h̃(s, α) =

{
s2‖v0‖2 − s2p

∫
RN |v0|2pdx− s〈f, v0〉, if α = 0,

s2‖v0‖2 − s2p
∫
RN (I|α| ∗ |v0|p|)|v0|pdx− s〈f, v0〉, if α 6= 0.

(3.7)

In view of Lemmas 2.1 and 2.2, it follows from Lebesgue dominated convergence theorem that∫
RN (I|α| ∗ |v0|p|)|v0|pdx is continuous with respect to α. Furthermore, h̃ and ∂h̃

∂s are both continuous

in (0,∞)× (−α0, α0). Since v0 ∈ N−
0 , we have h̃(1, 0) = 0 and ∂h̃

∂s |(1,0) < 0. So the claim follows

from the implicit function theorem. Therefore,

E0(v0) ≤ E0(v̄) = lim
j→∞

Eαj (vαj ) ≤ lim
j→∞

Eαj (sαjv0) = E0(v0).

Hence E0(v̄) = E0(v0) = inf
v∈N−

0

E0(v) > 0. This yields that v̄ is a bound state of (1.3). The

proof is completed.

Remark 3.1 : In view of Theorem 1.1 and Proposition 3.1, we see that u0 and ū are both ground

states of (1.3) with E0(u0) = E0(ū) = θ+
0 while v0 and v̄ are both bound states of (1.3) with

E0(v0) = E0(v̄) = θ−0 . The solutions u0, v0 are obtained by fibering maps, and the solutions ū, v̄ are

the limits of solution sequences {uα} and {vα} of (1.1) as α → 0. But whether u0 equals to ū and so

as v0 and v̄ is still worth studying.
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