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In this paper, we introduce a viscosity extragradient method with Armijo linesearch rule to find

a common element of solution set of a pseudomonotone equilibrium problem and fixed point set

of a nonexpansive nonself-mapping in Hilbert space. The strong convergence of the algorithm

is proved. As the application, a common fixed point theorem for two nonexpansive nonself-

mappings is proved. Finally, some numerical examples are given to illustrate the effectiveness of

the algorithm. Our result improves the ones of others in the literature.
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1. INTRODUCTION

Let H be a real Hilbert space and C be a nonempty closed and convex subset of H . Let f : C×C → R
be a bifunction with f(x, x) = 0 for all x ∈ C. The equilibrium problem due to Blum and Oettli [5]

is to find z ∈ C such that

f(z, y) ≥ 0, ∀y ∈ C. (1.1)
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The set of solutions of (1.1) is denoted by EP (f). Numerous problems in optimization, economics,

information and communication technology reduce to find a solution of (1.1); see, for example, [9,

10, 14, 15] and the references quoted therein.

The equilibrium problem is pseudomonotone if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C.

Recently, the algorithms of approximating the solutions of pseudomonotone equilibrium problems

are investigated by many authors. In 2008, Tran et al. [18] introduced an extragradient method to

solve a pseudomonotone equilibrium problem in Rn by the following manner: x0 ∈ C and





yn = argminy∈C{λnf(xn, y) +
1
2
‖y − xn‖2},

xn+1 = argminy∈C{λnf(yn, y) +
1
2
‖y − xn‖2}, ∀n ∈ N,

(1.2)

where {λn} ⊂ (0, 1] and f satisfies a Lipschitz-type property. The authors proved that the iterative

scheme {xn} generated by (1.2) converges to some x∗ ∈ EP (f) under some certain conditions on f

and {λn}.

In 2013, Vuong et al. [19] constructed a hybrid projection algorithm for finding a common ele-

ment of fixed point set of a pseudo-contraction S and solution set of a pseudomonotone equilibrium

problem by the following manner: x0 ∈ C and





yn = argminy∈C{λnf(xn, y) +
1
2
‖y − xn‖2},

zn = argminy∈C{λnf(yn, y) +
1
2
‖y − xn‖2},

tn = αnxn + (1− αn)[βnzn + (1− βn)Szn],

Cn = {z ∈ C : ‖tn − z‖ ≤ ‖xn − z‖},
Dn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Dnx0, ∀n ∈ N,

(1.3)

where {αn}, {βn}, {λn} ⊂ (0, 1), and f satisfies a Lipschitz-type property. The authors proved the

strong convergence of {xn} generated by (1.3).

In the literature, most authors use the hybrid methods like (1.3) to find the solution of a pseu-

domonotone equilibrium problem. Recently, Wang et al. [20] considered a viscosity extragradient

method to find a common element of solution set of a pseudomonotone equilibrium problem and fixed
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point set of a nonexpansive mapping as follows: x0 ∈ C and





yn = argmin{1
2
‖y − xn‖2 + λnf(xn, y) : y ∈ C},

tn = argmin{1
2
‖t− xn‖2 + λnf(yn, t) : t ∈ C},

xn+1 = αnp(xn) + (1− αn)(βnxn + (1− βn)Ttn, ∀n ∈ N,

(1.4)

where {αn}, {βn}, {λn} ⊂ (0, 1), f is a bifunction on C × C satisfying a Lipschitz-type property,

T is a nonexpansive mapping on C and p is a ρ-contraction on C. The authors proved the strong

convergence of {xn} generated by (1.4).

On the other algorithms for finding the solution of pseudomontone equilibrium problem in which

the bifunction f has Lipschitz-type property, the readers may refer to [1, 2, 11, 12].

However, it is sometimes difficult to check the Lipschitz-type property on the bifunction f . Hence

some authors investigate the algorithms approximating the solution of pseudomonotone equilibrium

problem without the restriction of Lipschitz-type property. In [4], Anh and Thi gave the following

projection method with Armijo linesearch rule to find the solution of pseudomonotone equilibrium

problem in which the bifunction f is not required to be Lipschitz-type continuous: x0 ∈ C and




yk = argminy∈C{f(xn, y) +
β

2
‖y − xn‖2},

find the smallest nonnegative integer mn such that

f((1− γmn)xn + γmnyn, yn) ≤ −σ‖xn − yn‖2,

Cn = {z ∈ C : f((1− γmn)xn + γmnyn, x) ≤ 0},
Hn = {z ∈ C : 〈x− xn, x0 − xn〉 ≤ 0〉},
xn+1 = PCk∩Hnx0, ∀n ∈ N,

(1.5)

where β > 0, γ ∈ (0, 1) and σ ∈ (0, β/2). The authors proved that {xn} generated by (1.5) converges

to some x∗ ∈ EP (f).

On the more algorithms with Armijo linesearch rule for the pseudomonotone equilibrium problem

without Lipschitz-type property, the readers may refer to [7, 8, 17].

In [4, 7, 8, 17], at each step xn is obtained by PCn∩Hnx0, which is actually an optimization

problem. It may be difficult to solve such an optimization problem when the subset C has the complex

structure. In [3], the authors gave a weak convergent algorithm with Armijo linesearch rule in which

the subsets Cn and Hn are not constructed to approximating the solution of the pseudomonotone

equilibrium problem without Lipschitz-type property. In this paper, motivated by the results of Wang
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et al. [20] and Anh and Hien [3], we introduce a viscosity extragradient method to find a common

element of solution set of a pseudomonotone equilibrium problem without the restriction of Lipschitz-

type property and fixed point set of a nonexpansive nonself-mapping in Hilbert space. The strong

convergence of the algorithm is proved. As the application, a common fixed point theorem for two

nonexpansive nonself-mappings is proved. Finally, the first numerical example is given to illustrate

the effectiveness of the algorithm and the second numerical example from the literature is used to

compare the result with the one of other authors. Our result improves the ones of [20], Anh [1] and

Anh and Thi [4] and others in the literature.

2. PRELIMINARIES

Let H be a Hilbert space and C be a nonempty closed and convex subset of H . A mapping T : C →
H is said to be nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C.

Denote the set of fixed points of T by Fix(T ), i.e., Fix(T ) = {x ∈ C : x = Tx}. It is known that

if Fix(T ) 6= ∅, then Fix(PCT ) = Fix(T ); see [22].

Let E ⊂ H be a nonempty closed and convex subset and set d(x,E) = inf{‖x− y‖ : y ∈ E}. If

E = {y ∈ H : 〈w, y − z〉 ≤ 0} for some w, z ∈ H with w 6= θ, where θ denotes the zero element in

H , then

d(x,E) =





|〈w, x− z〉|
‖w‖ , if x 6∈ E,

0, if x ∈ E.

Lemma 2.1 — For each point x ∈ H , there exists a unique nearest point of C, denoted by PCx,

such that ‖x−PCx‖ ≤ ‖x−y‖ for all y ∈ C. Such a PC is called the metric projection from H onto

C. Then

(1) for x ∈ H and z ∈ C, z = PCx if and only if

〈x− z, z − y〉 ≥ 0, ∀y ∈ C;

(2) for all x, y ∈ H and z ∈ C, it holds

‖PCx− z‖2 ≤ ‖x− z‖2 − ‖PCx− x‖2.

Lemma 2.2 — Let H be a real Hilbert space. For all x, y ∈ H , the following hold:

(1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
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(2) ‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2, for all t ∈ [0, 1].

Lemma 2.3 — [16]. Let f : C × C → R be a bifunction satisfying the conditions that f(x, ·) is

convex on C for each x ∈ C and f is jointly weakly continuous on C × C. Let {xn} and {yn} in C

converge weakly to x̄ and ȳ, respectively. Then for any ε > 0, there exist η > 0 and nε ∈ N such that

∂2f(xn, yn) ⊂ ∂2f(x̄, ȳ) +
ε

η
B

for each n ∈ N with ≥ nε, where B denotes the closed unit ball in H .

Lemma 2.4 — [7]. Let f : C × C → R be a bifunction satisfying the conditions that f(x, ·) is

convex on C for each x ∈ C and f is jointly weakly continuous on C × C. Let {xn} ⊂ C be a

bounded sequence, β > 0, and yn be a sequence such that

yn = argmin
{
f(xn, y) +

β

2
‖y − xn‖2 : y ∈ C

}
.

Then {yn} is bounded.

Lemma 2.5 — Let T : C → C be a nonexpansive mapping. Assume that {xn} ⊂ C weakly

converges to x ∈ C and ‖xn − Txn‖ → 0, then x ∈ Fix(T ).

Lemma 2.6 — [21]. Let {an} be a sequence of nonnegative real numbers. Suppose that

an+1 ≤ (1− γn)an + γnδn, ∀n ∈ N,

where {γn} ⊂ (0, 1) and {δn} ⊂ R satisfy the conditions:

lim
n→∞ γn = 0,

∞∑

n=1

γn = ∞, lim sup
n→∞

δn ≤ 0.

Then limn→∞ an = 0.

Lemma 2.7 — [13]. Let {an} be a sequence of real numbers such that there exists a subsequence

{ni} of {n} such that ani < ani+1 for all i ∈ N. Then there exists a nondecreasing sequence

{mk} ⊂ N such that mk →∞ as k →∞ and the following properties are satisfied by all (sufficiently

large) numbers k ∈ N:

amk
≤ amk+1, ak ≤ amk+1.

In fact, mk = max{j ≤ k : aj < aj+1}.



908 GAOBO LI, YANXIA LU AND YEOL JE CHO

3. MAIN RESULT

In this section, let H be a Hilbert space and C be a nonempty closed and convex subset of H . Let

T : C → H be a nonexpansive mapping, g : C → C be a ρ-contraction with ρ ∈ (0, 1) and

f : C × C → R be a bifunction satisfying the following conditions:

(A1) f(x, x) = 0 for all x ∈ C and f is pseudomonotone;

(A2) f is jointly weakly continuous on C × C;

(A3) for each x ∈ C, y 7→ f(x, ·) is convex and subdifferentiable.

Assume that EP (f) ∩ Fix(T ) 6= ∅. We are in position to give the iterative algorithm as follows.

Algorithm : Initialization. Choose x1 ∈ C, γ ∈ (0, 1), β > 0, σ ∈ (0, β/2) and two sequences

{αn}, {βn} ⊂ (0, 1). Set n = 1.

Step 1 : Solve the strongly convex problems:




yn = argmin{β

2
‖y − xn‖2 + f(xn, y) : y ∈ C},

r(xn) = xn − yn.

If r(xn) = 0 and xn = Txn for some n ∈ N, stop. Otherwise, go to Step 2.

Step 2 : Find the smallest mn ∈ N such that

f(xn − γmnr(xn), yn) ≤ −σ‖r(xn)‖2.

Set zn = xn − γmnr(xn).

Step 3. Compute

xn+1 = βng(xn) + (1− βn)
(
αnxn + (1− αn)PCTun

)
,

where un = PCnxn and Cn = {x ∈ C : f(zn, x) ≤ 0}. Set n = n + 1.

Remark 3.1 : (1) From Lemma 3.1 of [11] it follows that if r(xn) = 0 for some n ∈ N, then

xn ∈ EP (f). Therefore, if r(xn) = 0 and xn = Txn for some n ∈ N, then xn ∈ EP (f)∩ Fix(T );

(2) From Lemma 1 of [4] it follows that EP (f) ⊂ Cn and xn 6∈ Cn for all n ∈ N and Step 2 is

well defined, i.e., there exists the smallest mn ∈ N such that

f(xn − γmnr(xn), yn) ≤ −σ‖r(xn)‖2.
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In the rest of the paper, for showing the convergence of algorithm, assume that r(xn) 6= 0 and

xn 6= Txn for all n ∈ N.

Lemma 3.1 — The sequence {xn} is bounded.

PROOF : Since Fix(T ) ∩ EP (f) ⊂ EP (f) ⊂ Cn, from Lemma 2.1 it follows that

‖un − z‖2 ≤ ‖xn − z‖2 − ‖xn − un‖2 ≤ ‖xn − z‖2, ∀z ∈ Fix(T ) ∩ EP (f). (3.1)

Since {αn} is strictly decreasing, by (3.1) and Lemma 2.2 we have

‖xn+1 − z‖ ≤ βn‖g(xn)− z‖+ (1− βn)‖αnxn + (1− αn)PCTun‖
≤ βn‖g(xn)− g(z)‖+ βn‖g(z)− z‖+ (1− βn)

[
αn‖xn − z‖

+ (1− αn)‖PCTun − z‖]

≤ βn‖g(xn)− g(z)‖+ βn‖g(z)− z‖+ (1− βn)
[
αn‖xn − z‖

+ (1− αn)‖xn − z‖]

= βn‖g(xn)− g(z)‖+ βn‖g(z)− z‖+ (1− βn)‖xn − z‖
≤ βnρ‖xn − z‖+ βn‖g(z)− z‖+ (1− βn)‖xn − z‖
= (1− βn(1− ρ))‖xn − z‖+ βn‖g(z)− z‖
≤ max{‖xn − z‖, ‖g(z)− z‖/(1− ρ)}
≤ · · · ≤ max{‖x1 − z‖, ‖g(z)− z‖/(1− ρ)}, ∀z ∈ Fix(T ) ∩ EP (f),∀n ∈ N.

So, {xn} is bounded. This completes the proof. 2

Lemma 3.2 — If limn→∞ ‖PCTun − un‖ = 0 and limn→∞ ‖xn − un‖ = 0, then

lim inf
n→∞ 〈x∗ − g(x∗), xn − x∗〉 ≥ 0,

where x∗ = PFix(T )∩EP (f)g(x∗).

PROOF : To show this inequality, we choose a subsequence {xnk
} of {xn} such that

lim inf
n→∞ 〈x∗ − g(x∗), xn − x∗〉 = lim

k→∞
〈x∗ − g(x∗), xnk

− x∗〉. (3.2)

Since {xnk
} is also bounded, there exists a subsequence {xnki

} of {xnk
} which converges weakly to

w ∈ C. Without loss of generality, we can assume that xnk
⇀ w as k → ∞, where ⇀ denotes the

weak convergence.
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From the boundedness of {xn} and Lemma 2.4 it follows that {yn} is bounded. Hence {zn} is also

bounded. For each wn ∈ ∂2f(zn, zn), set

Hn = {y ∈ C : 〈wn, y − zn〉 ≤ 0}.

Since {wn} is bounded by Lemma 2.3, then there exists L > 0 such that ‖wn‖ ≤ L for all n ∈ N.

From wn ∈ ∂2f(zn, zn) and f(zn, zn) = 0, we have

〈wn, y − zn〉 ≤ f(zn, y), ∀y ∈ C. (3.3)

In particular, 〈wn, yn − zn〉 ≤ f(zn, yn). Since f(zn, yn) ≤ −σ‖r(xn)‖2, it follows that

〈wn, zn − yn〉 ≥ σ‖r(xn)‖2 > 0. (3.4)

By (3.4) and xn − zn = γmn
n

1−γmn (zn − yn), we have

〈wn, xn − zn〉 =
γmn

n

1− γmn
〈wn, zn − yn〉 ≥ γmn

n σ

1− γmn
‖r(xn)‖2 > 0.

Hence xn 6∈ Hn for all n ∈ N. Note that (3.3) implies that Cn ⊂ Hn for all n ∈ N. By un =

PCnxn ∈ Cn ⊂ Hn, we have

‖un − xn‖ = d(xn, Cn) ≥ d(xn,Hn) =
|〈wn, xn − zn〉|

‖wn‖

≥ γmnσ‖xn − yn‖2

L
, ∀n ∈ N.

Since γ ∈ (0, 1), it follows that

lim
n→∞ γmn‖xn − yn‖2 = 0.

In particular,

lim
k→∞

γmnk‖xnk
− ynk

‖2 = 0. (3.5)

Now we prove that w ∈ EP (f) by the following cases:

Case 1 : lim supk→∞ γmnk > 0. Then there exists γ̄ > 0 and a subsequence {γmnki }
⊂ {γmnk} such that γ

mnki > γ̄ for all i ∈ N. By (3.5) we have

lim
i→∞

‖xnki
− ynki

‖ = 0. (3.6)
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Hence ynki
⇀ w as i →∞. By the definition of ynki

, we have

0 ∈ ∂2f(xnki
, ynki

) + β(ynki
− xnki

) + NC(ynki
).

Hence there exists vnki
∈ ∂2f(xnki

, ynki
) such that

〈vnki
, y − ynki

〉+ β〈ynki
− xnki

, y − ynki
〉 ≥ 0, ∀y ∈ C.

Combining with

f(xnki
, y)− f(xnki

, ynki
) ≥ 〈vnki

, y − ynki
〉, ∀y ∈ C,

yields

f(xnki
, y)− f(xnki

, ynki
) + β〈ynki

− xnki
, y − ynki

〉 ≥ 0, ∀y ∈ C. (3.7)

Hence

f(xnki
, y)− f(xnki

, ynki
) + β‖ynki

− xnki
‖‖y − ynki

‖ ≥ 0, ∀y ∈ C.

Letting i →∞, by the jointly weak continuity of f and (3.6), we obtain

f(w, y) ≥ 0, ∀y ∈ C.

It follows that w ∈ EP (f).

Case 2 : limk→∞ γmnk = 0.

Since {ynk
} is bounded. It deduces that there exists {ynki

} ⊂ {ynk
} such that ynki

⇀ y as i →∞.

Replacing y by xnki
in (3.7), we get

f(xnki
, ynki

) + β‖ynki
− xnki

‖2 ≤ 0. (3.8)

In the other hand, by the Armijo linesearch rule, for mnki
− 1, it follows that

f(xnki
− γ

mnki
−1

r(xnki
), ynki

) > −σ‖ynki
− xnki

‖2. (3.9)

Letting i →∞ in (3.8) and (3.9), by (i), we get

1
β

f(w, ȳ) ≤ − lim
i→∞

‖ynki
− xnki

‖2 ≤ 1
σ

f(w, ȳ).

It follows that f(w, ȳ) = 0 and hence limi→∞ ‖ynki
− xnki

‖2 = 0. By the Case 1, it is immediate

that w ∈ EP (f).
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Since ‖un−xn‖ → 0 and ‖PCTun−un‖ → 0 as n →∞, by Lemma 2.5, we have w ∈ Fix(PCT ),

which implies that w ∈ Fix(T ) by [22]. Therefore, w ∈ EP (f) ∩ Fix(T ).

Finally, by (3.2) and Lemma 2.1, we obtain

lim inf
n→∞ 〈x∗ − g(x∗), xn − x∗〉 = 〈x∗ − g(x∗), w − x∗〉 ≥ 0.

This completes the proof. 2

Theorem 3.1 — Assume that the sequence {αn} and {βn} satisfy the following conditions:

lim inf
n→∞ αn(1− αn) > 0, lim

n→∞βn = 0 and
∞∑

n=0

βn = ∞.

Then {xn} converges strongly to the element x∗ = PEP (f)∩Fix(T )g(x∗), which is also the solution of

the following variational inequality:

〈x∗ − g(x∗), y − x∗〉 ≥ 0, ∀y ∈ EP (f) ∩ Fix(T ).

PROOF : We show the proof process by the following two parts:

Case 1 : Suppose that there exists n0 ∈ N such that {‖xn − x∗‖}∞n=n0
is nonincreasing. In this

situation, {‖xn − x∗‖} is convergent.

By Lemma 2.2, we have

‖xn+1 − x∗‖2 ≤ βn‖g(xn)− x∗‖2 + (1− βn)
[
αn‖xn − x∗‖2 + (1− αn)‖PCTun − x∗‖2

− αn(1− αn)‖xn − PCTun‖2
]

≤ βn‖g(xn)− x∗‖2 + (1− βn)
[
αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2

− αn(1− αn)‖xn − PCTun‖2
]

= βn‖g(xn)− x∗‖2 + (1− βn)
[‖xn − x∗‖2 − αn(1− αn)‖xn − PCTun‖2

]
.

Hence

αn(1− αn)‖xn − PCTun‖2 ≤ βn

(‖g(xn)− x∗‖2 + ‖xn − PCTun‖2
)

+ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ βnM + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2, ∀n ∈ N,

(3.10)

where M = supn∈N{‖g(xn)− x∗‖2 + ‖xn − PCTun‖2}. Since the limit of {‖xn − x∗‖} exists, by

the hypothesis on {αn} and {βn}, we have

lim
n→∞ ‖xn − PCTun‖2 = 0. (3.11)
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On the other hand, by (3.1) we have

‖xn+1 − x∗‖2 ≤ βn‖g(xn)− x∗‖2 + (1− βn)
[
αn‖xn − x∗‖2 + (1− αn)‖PCTun − x∗‖2

]

≤ βn‖g(xn)− x∗‖2 + (1− βn)
[
αn‖xn − x∗‖2 + (1− αn)‖un − x∗‖2

]

≤ βn‖g(xn)− x∗‖2 + (1− βn)
[
αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2

− (1− αn)‖xn − un‖2
]

= βn‖g(xn)− x∗‖2 + (1− βn)
[‖xn − x∗‖2 − (1− αn)‖xn − un‖2

]
.

It follows that

(1− αn)‖xn − un‖2 ≤ βnM0 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2, ∀n ∈ N, (3.12)

where M0 = supn∈N{‖g(xn)− x∗‖2 + ‖xn − un‖2}. Since the limit of {‖xn − x∗‖} exists, by the

hypothesis on {αn} and {βn}, we have

lim
n→∞ ‖xn − un‖2 = 0. (3.13)

Combining (3.12) with (3.13) we get

lim
n→∞ ‖un − PCTun‖ = 0. (3.14)

From (3.13), (3.14) and Lemma 3.2 it follows that

lim inf
n→∞ 〈x∗ − g(x∗), xn − x∗〉 ≥ 0. (3.15)

By (3.1) again and Lemma 2.1 we have

‖xn+1 − x∗‖2 ≤ (1− βn)
∥∥αn(xn − x∗) + (1− αn)(PCTun − x∗)

∥∥2

+ 2βn〈g(xn)− x∗, xn+1 − x∗〉
≤ (1− βn)

[
αn‖xn − x∗‖2 + (1− αn)‖PCTun − x∗‖2

]

+ 2βn〈g(xn)− x∗, xn+1 − x∗〉
≤ (1− βn)

[
αn‖xn − x∗‖2 + (1− αn)‖xn − x∗‖2

]

+ 2βn〈g(xn)− x∗, xn+1 − x∗〉
= (1− βn)‖xn − x∗‖2 + 2βn〈g(xn)− x∗, xn+1 − x∗〉.

(3.16)

Since limn→∞ βn = 0 and
∑∞

n=1 βn = ∞, the desired conclusion is from (3.15), (3.16) and Lemma

2.6.
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Case 2 : Suppose that there exists a subsequence {ni} of {n} such that

‖xni − x∗‖ < ‖xni+1 − x∗‖, ∀i ∈ N.

Then, by Lemma 2.7 there exists a nondecreasing sequence {mk} ⊂ N such that mk →∞,

‖xmk
− x∗‖ ≤ ‖xmk+1 − x∗‖ and ‖xk − x∗‖ ≤ ‖xmk+1 − x∗‖, ∀k ∈ N.

This with (3.10) gives

αmk
(1− αmk

)‖xmk
− PCTumk

‖2 ≤ ‖xmk
− x∗‖2 − ‖xmk+1 − x∗‖2 + βmk

M

≤ βmk
M → 0, as k →∞.

By the hypothesis on {αn} and {βn}, we have

lim
k→∞

‖xmk
− PCTumk

‖ = 0. (3.17)

By (3.12) we have

(1− αmk
)‖xmk

− umk
‖2 ≤ ‖xmk

− x∗‖2 − ‖xmk+1 − x∗‖2 + βmk
M0

≤ βmk
M0

→ 0, as k →∞.

By the hypothesis on {αn} and {βn}, we get

lim
k→∞

‖xmk
− umk

‖ = 0. (3.18)

By (3.17), (3.18) and Lemma 2.2 we get

lim sup
k→∞

〈g(x∗)− x∗, xmk+1 − x∗〉 ≤ 0. (3.19)

Note that (3.16) implies

‖xmk+1 − x∗‖2 ≤ (1− βmk
)‖xmk

− x∗‖2 + 2βmk
〈g(x∗)− x∗, xmk+1 − x∗〉. (3.20)

Since ‖xmk
− x∗‖ ≤ ‖xmk+1 − x∗‖, we have

βmk
‖xmk

− x∗‖2 ≤ ‖xmk
− x∗‖2 − ‖xmk+1 − x∗‖2 + 2βmk

〈g(x∗)− x∗, xmk+1 − x∗〉
≤ 2βmk

〈g(x∗)− x∗, xmk+1 − x∗〉.
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Since βmk
> 0, we get

‖xmk
− x∗‖2 ≤ 2〈g(x∗)− x∗, xmk+1 − x∗〉.

It follows from (3.19) that ‖xmk
− x∗‖ → 0 as k →∞. This with (3.19) and (3.20) gives

‖xmk+1 − x∗‖ → 0, as k →∞.

But ‖xk − x∗‖ ≤ ‖xmk+1 − x∗‖ for all k ∈ N, we conclude that xk → x∗ as k → ∞. The proof is

complete. 2

Corollary 3.1 — Let H be a Hilbert space and C be a nonempty closed and convex subset of H .

Let g be a ρ-contraction on C and f : C×C → R be a bifunction satisfying the conditions (A1)-(A3)

with EP (f) 6= ∅. Define the sequence {xn} by the manner: x1 ∈ C and





yn = argmin{β

2
‖y − xn‖2 + f(xn, y) : y ∈ C},

put r(xn) = xn − yn and find the smallest mn ∈ N such that

f(xn − γmnr(xn), yn) ≤ −σ‖r(xn)‖2,

set zn = xn − γmnr(xn),

Cn = {x ∈ C : f(zn, x) ≤ 0},
xn+1 = βng(xn) + (1− βn)

(
αnxn + (1− αn)PCnxn

)
, ∀ n ∈ N,

(3.21)

where {αn}, {βn} ⊂ (0, 1), γ ∈ (0, 1), β > 0, σ ∈ (0, β/2). If the following conditions hold:

lim inf
n→∞ αn(1− αn) > 0, lim

n→∞βn = 0,

∞∑

n=0

βn = ∞.

Then {xn} generated by (3.21) converges strongly to the element x∗ = PEP (f)g(x∗), which is also

the solution of the following variational inequality:

〈x∗ − g(x∗), y − x∗〉 ≥ 0, ∀y ∈ EP (f).

Remark 3.2 : Our result improve the ones of Wang et al. [20] by removing the Lipschitz-type

property on bifunction, Anh [1] and Anh and Thi [4] from nonexpansive self-mapping to nonexpan-

sive nonself-mapping.
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4. APPLICATION

Let S, T : C → H be two nonexpansive mappings. In this section we find a common fixed point of

the mappings S and T by the result in Section 3.

Define the function f : C × C → R by

f(x, y) = 〈x− PCSx, y − x〉, ∀x, y ∈ C.

Obviously, EP (f) = Fix(PCS). Since Fix(PCS) = Fix(S) [22], it follows that EP (f) =

Fix(S).

We show that f is monotone. In fact, for all x, y ∈ C, we have

f(x, y) + f(y, x) = 〈x− PCSx, y − x〉+ 〈y − PCSy, x− y〉
= 〈x− y − PCSx + PCSy, y − x〉
= −‖x− y‖2 + 〈PCSy − PCSx, y − x〉
≤ −‖x− y‖2 + ‖y − x‖2

= 0.

So, f is monotone, which implies that f is pseudomonotone. It is easy to see that f satisfies the

conditions (A1)-(A2).

Note that for each x ∈ C, we have

argmin{β

2
‖y − x‖2 + f(x, y) : y ∈ C}

= argmin{β

2
‖y − x‖2 + 〈x− PCSx, y − x〉 : y ∈ C}

= argmin
{

β

2
‖y − x +

1
β

(x− PCSx)‖2 − ‖x− PCSx‖2

2β
: y ∈ C

}

= argmin{‖y − x +
1
β

(x− PCSx)‖2 : y ∈ C}

= PC

(
(1− 1

β
)x +

1
β

PCSx
)
.

Now, by the result in Section 3, we give the follows common fixed point theorem:

Theorem 4.1 — Let H be a Hilbert space and C be a nonempty closed and convex subset of H .

Let S, T : C → H be two nonexpansive mappings, g : C → C be a ρ-contraction. Set γ ∈ (0, 1),
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β > 0, σ ∈ (0, β/2). Take x1 ∈ C and define the sequence {xn} by the following manner:




yn = PC

(
(1− 1

β
)xn +

1
β

PCSxn

)
,

put r(xn) = xn − yn,

find the smallest mn ∈ N such that

〈vn − PCSvn, yn − vn〉 ≤ −σ‖r(xn)‖2,

where vn = xn − (1− γmn)r(xn),

set zn = xn − γmnr(xn) and Cn = {x ∈ C : 〈zn − PCSzn, x− zn〉 ≤ 0},
xn+1 = βng(xn) + (1− βn)

(
αnxn + (1− αn)PCTPCnxn

)
, ∀n ∈ N,

(4.1)

where {βn}, {αn} ⊂ (0, 1). If {αn} and {βn} satisfy the following conditions:

lim inf
n→∞ αn(1− αn) > 0, lim

n→∞βn = 0,

∞∑

n=0

βn = ∞,

then {xn} generated by (4.1) converges strongly to the element x∗ = PFix(S)∩Fix(T )g(x∗), which is

also the solution of the following variational inequality:

〈x∗ − g(x∗), y − x∗〉 ≥ 0, ∀y ∈ Fix(S) ∩ Fix(T ).

5. NUMERICAL EXAMPLES

The programs for the following examples are performed by Matlab R2008a running on a PC Desk-

top with Core(TM) i3CPU M550 3.20GHz and 4GB Ram. The first example is used to show the

effectiveness of the algorithm in Section 3.

Example 5.1 : Let H = Rm and C = {(x1, x2, · · · , xm) : x1 ∈ [0, 1], xi ≥ 0, i = 2, · · · ,m}.

Let g(x) = (x1/2, x2/3, · · · , xm/(m + 1)) and Tx = (−x1,−x2/2, · · · ,−xm/m) for all x =

(x1, x2, · · · , xm) ∈ C. Define the bifunction f on C × C by

f(x, y) =
(

x1 − x2
1 sinx1

3

)
(y1 − x1) +

m∑

i=2

(yi − xi)

for all x = (x1, · · · , xm), y = (y1, · · · , ym) ∈ C. It is easy to check that f satisfies the conditions

(A1)-(A3). Obviously, Fix(T ) ∩ EP (f) = {(0, · · · , 0)}.

The program will stop if max{‖xn − yn‖, ‖xn − Txn‖} < 10−5.

Table 1 gives the results for {xn} with the initial point x1 = (2, 2, 2, 2, 2) under the control

sequences {αn} and {βn} and parameters γ, σ, β. From Table 1 we see that the program stops after

12 iterations.
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Table 1 Results on {xn} and cpu times with m = 5, αn = 1+n
4n , βn = 1

4n ,

γ = 0.5, β = 2 and σ = 0.7

Iterations x1
n x2

n x3
n x4

n x5
n

1 2.000000 2.000000 2.000000 2.000000 2.000000

2 1.000000 0.916666 0.875000 0.850000 0.833333

3 0.390625 0.338975 0.314453 0.300156 0.290798

4 0.135633 0.112991 0.102634 0.096717 0.092894

5 0.043974 0.035457 0.031672 0.029544 0.028182

6 0.013632 0.010696 0.009422 0.008715 0.008266

7 0.004094 0.003138 0.002731 0.002508 0.002368

8 0.001201 0.000901 0.000777 0.000709 0.000666

9 0.000346 0.000255 0.000217 0.000197 0.000185

10 0.000098 0.000071 0.000060 0.000054 0.000050

11 0.000027 0.000019 0.000016 0.000014 0.000013

12 0.000007 0.000005 0.000004 0.000004 0.000003

CPU times (s) 1.037073

Table 2 gives the cpu times and iteration steps of performing the program with the different initial

point and the different m under the same {αn}, {βn}, γ, σ and β.

Table 2 Results with αn = 1+n
4n , βn = 1

4n , γ = 0.5,

β = 2 and σ = 0.7

x1 = (1, · · · , 1) x1 = (7, · · · , 7)

Dimensions CPU times (s) No. iterations CPU times (s) No. iterations

m = 10 1.937971 12 1.923657 13

m = 20 5.978498 12 6.127072 12

m = 40 23.232948 12 19.364022 14

m = 60 47.219360 12 45.813779 14

Example 5.1 shows the effectiveness of algorithm in Section 3. Next, we use the the following

example which is performed by the iterative scheme (3.21) to compare the computed results with the

ones of others in the literature.
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Example 5.2 : We consider the following bifunction used by Anh and Thi [4] and Bnouhachem

[6]:

f(x, y) = 〈d, arctan(x− y)〉+ 〈q, x− y〉,

where H = R5, d = (1, 3, 5, 7, 9)T , q = (2, 4, 6, 8, 1)T , arctan(x) = (arctan(x1), · · · , arctan(x5))T

and

C =





x ∈ R5
+,

x1 + x2 ≥ 1.5,

x1 + x2 + x3 + 2x4 + x5 ≥ 5,

3x1 + 2x2 + x3 + 3x4 + 4x5 ≤ 12.

For performing the iterative scheme (3.21), we take the ρ-contraction g(x) = PC(ρx) with ρ ∈ (0, 1)

for all x ∈ C. The program will stop if ‖xn − yn‖ ≤ ε.

For comparing the results with the ones in [4], we take the same initial point x1 = (1, 1, 1, 2, 0)T and

parameters for ε, β, σ, γ with the ones in [4].

Table 3 contains the results of performing the iteration (3.21) with βn = 1
40n , αn = 1+n

4n for all

n ∈ N.

Table 3 Results of the performing iteration (3.21) with ε = 10−4, ρ = 0.99

Case β σ γ No. iterations CPU times (s)

1 2.5 1 0.7 23 1.752649

2 4 1.5 0.7 24 2.318744

3 3.5 1.5 0.8 23 1.839678

4 6 2 0.5 46 3.440802

5 5 1 0.7 29 2.593558

6 5 2 0.7 29 2.551811

7 5 2 0.9 27 2.496499

From Table 3 we see that the computed results are near with the ones of [4].

Table 4 gives the cpu times and iterations for the different ρ with ε = 10−4, β = 4, σ = 1.5, γ =

0.7, βn = 1
40n , αn = 1+n

4n for all n ∈ N.
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Table 4 Results of the performing iteration (3.21) with different ρ

Case ρ No. iterations CPU times (s)

1 0.95 31 2.276954

2 0.85 85 5.440439

3 0.75 140 7.972300

4 0.65 195 10.611033

5 0.55 250 13.693944

6 0.45 305 16.199490

7 0.35 351 17.630689

8 0.25 384 19.763450

9 0.15 417 20.286794

10 0.1 433 20.483081

11 0.05 450 19.545507

12 0.01 463 20.699576

13 0.005 465 22.107884

14 0.001 466 21.313802

15 0.0008 466 20.507393

16 0.0006 466 22.082778

From Table 4, we see that the cpu times and iteration steps have the closed relation with the value of

ρ and have been stable when ρ < 0.001.
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