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The main objective of the present paper is to investigate a sufficient condition for which a rec-

tifying curve on a smooth surface remains invariant under isometry of surfaces, and also it is

shown that under such an isometry the component of the position vector of a rectifying curve on

a smooth surface along the normal to the surface is invariant.
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1. INTRODUCTION

In 2003, Chen [3] introduced the notion of the rectifying curve in the Euclidean space R3 as a curve

whose position vector lies in the rectifying plane and such a curve classified by an unit speed curve in

an unit sphere S2 and also obtained some of its characterization. For further properties of rectifying

curves we refer the reader to see [4] and [5]. By motivating the above studies, the main goal of this

paper is to investigate the nature of rectifying curves on a smooth surface S under an isometry to

another smooth surface S̄. Then we obtain a sufficient condition for which a rectifying curve on S

remains invariant under isometry F : S → S̄. We also note that under isometry of R3, a rectifying

curve on R3 is not necessarily transformed to a rectifying curve on R3. It is also shown that the

component of the position vector of a rectifying curve on a smooth surface along the normal to the

surface is invariant under the rectifying curve preserving isometry of surfaces.

The structure of the paper is as follows. Section 2 deals with the discussion of some rudimentary

facts of Frenet-Serret equations and rectifying curves. Section 3 is devoted to the study of rectifying
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curves on a smooth surface and deduced the components of position vectors of such a curve along the

normal to the surface. The last section is concerned with the main results (see Theorem 4.1, Theorem

4.2).

2. PRELIMINARIES

In this section, we recall some rudimentary facts of rectifying curves, isometry of surfaces and first

fundamental form (for details see, [1, 2]) which will be used throughout the paper.

Let γ(s) : I → R3, where I = (α, β) ⊂ R, be an unit speed parametrized curve having at

least fourth order continuous derivatives. Let the tangent vector of the curve γ(s) be denoted by

~t. We consider ~t′(s) 6= 0, so that there is an unit normal vector ~n along ~t′(s) and also a positive

function κ(s) such that ~t′(s) = κ(s)~n(s), where ~t′ denote the derivative with respect to the arc length

parameter s. The binormal vector field is defined by ~b = ~t × ~n. There is another curvature function

τ(s), called torsion, and is given by the equation ~b′(s) = τ(s)~n(s). At each point on γ(s), {~t, ~n,~b}
forms an orthonormal frame. At every point of the curve γ(s), the planes generating by {~t, ~n},{~n,~b}
and {~b,~t} are called osculating plane, normal plane and rectifying plane respectively. The quantity

‖~b′(s)‖ measures the rate of change of the neighbouring osculating plane with the osculating plane at

s. The Frenet-Serret equations are given by

~t′ = κ~n,

~n′ = −κ~t + τ~b,

~b′ = −τ~n.

A curve in R3 is called rectifying [3] if its position vector always lies in the rectifying plane of

that curve. The position vector γ(s) satisfies the equation

γ(s) = λ(s)~t(s) + µ(s)~b(s),

for some functions λ(s) and µ(s).

Let γ(t) = φ(u(t), v(t)), where t ∈ (a, b) ⊂ R, be a curve in a surface patch φ. Then {φu, φv}
are linearly independent, and hence generates the tangent space Tpφ at a point p ∈ φ. Thus we have

‖ ˙γ(t)‖2 = (φuu̇ + φvv̇) · (φuu̇ + φvv̇),

= (φu · φu)u̇2 + 2(φu · φv)u̇v̇ + (φv · φv)v̇2,

= Eu̇2 + 2Fu̇v̇ + Gv̇2,
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where γ̇(t) denotes the derivative with respect to the parameter t.

A surface S is said to be regular if, for each p ∈ S there exists a neighbourhood V ⊂ R3 and

a map ψ : U → V ∩ S of an open set U ⊂ R2 onto V ∩ S ⊂ R3 such that ψ is differentiable,

homeomorphism and the differential dψq is one to one for all q ∈ U .

Definition 2.1 — The first fundamental form of a regular surface S at a point p is a quadratic form

Ip : TpS → R given by

Ip(γ̇(t)) =< γ̇(t), γ̇(t) >= ‖γ̇(t)‖2.

Definition 2.2 — A diffeomorphism F : S → S̄, where S and S̄ are smooth surfaces in R3, is an

isometry if F takes a curve from S to a curve of same length on S̄.

Isometry of R3 is uniquely described as an orthogonal transformation followed by a translation.

If we rotate the rectifying curve γ(s) by fixing a point γ(s0) then at γ(s0), the Frenet-Serret frame

transforms into another frame. Hence at γ(s0) the corresponding rectifying plane transforms into

another rectifying plane. But the position vector of the curve γ(s) does not change before and after

the rotation. Therefore, generally, rectifying curves are not invariant under the isometry of R3.

3. RECTIFYING CURVES ON SMOOTH SURFACES

Let φ : U → S be the coordinate chart for a smooth surface S and the unit speed parametrized curve

γ(s) : (α, β) → S, where(α, β) ⊂ R, contained in the image of a surface patch φ in the atlas of S.

Then γ(s) is given by

(α, β) → U, s ½ (u(s), v(s)),

γ(s) = φ(u(s), v(s)). (1)

Differentiating (1) with respect to s, we get

γ′(s) = φuu′ + φvv
′, (2)

i.e., ~t(s) = γ′(s) = φuu′ + φvv
′,

hence, ~t′(s) = u′′φu + v′′φv + u′2φuu + 2u′v′φuv + v′2φvv.

If k(s) is the curvature of γ(s) and ~N is normal to S then the normal ~n(s) is given by

~n(s) =
1

κ(s)
(u′′φu + v′′φv + u′2φuu + 2u′v′φuv + v′2φvv).

~b(s) = ~t(s)× ~n(s) = ~t(s)×
~t′(s)
κ(s)

,

=
1

k(s)

[
(φuu′ + φvv

′)× (u′′φu + v′′φv + u′2φuu + 2u′v′φuv + v′2φvv)
]
,
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=
1

k(s)

[
u′v′′ ~N + u′3φu × φuu + 2u′2v′φu × φuv + u′v′2φu × φvv

−u′′v′ ~N + u′2v′φv × φuu + 2u′v′2φv × φuv + v′3φv × φvv

]
,

=
1

k(s)

[
{u′v′′ − u′′v′} ~N + u′3φu × φuu + 2u′2v′φu × φuv

+u′v′2φu × φvv + u′2v′φv × φuu + 2u′v′2φv × φuv + v′3φv × φvv

]
.

So, γ(s) in S will be rectifying curve if γ(s) = λ(s)t(s)+µ(s)b(s), for some functions λ(s) and

µ(s). i.e.,

γ(s) = λ(s)(φuu′ + φvv
′) +

µ(s)
k(s)

[
{u′v′′ − u′′v′} ~N + u′3φu × φuu + 2u′2v′φu × φuv

+u′v′2φu × φvv + u′2v′φv × φuu + 2u′v′2φv × φuv + v′3φv × φvv

]

for some functions λ(s) and µ(s).

Now we find component of the position vector of the curve γ(s) along the normal ~N to the surface

S at a point γ(s) and obtain

γ(s) · ~N = λ(s)(φuu′ + φvv
′) +

µ(s)
k(s)

[
{u′v′′ − u′′v′} ~N + u′3φu × φuu + 2u′2v′φu × φuv

+u′v′2φu × φvv + u′2v′φv × φuu + 2u′v′2φv × φuv + v′3φv × φvv

]
· ~N,

=
µ(s)
k(s)

[
(u′v′′ − u′′v)(EG− F2) + u′3(φu × φuu) · ~N + 2u′2v′(φu × φuv) · ~N

+u′v′2(φu × φvv) · ~N + u′2v′(φv × φuu) · ~N + 2u′v′2(φv × φuv) · ~N

+v′3(φv × φvv) · ~N
]
,

=
µ(s)
k(s)

[
(u′v′′ − u′′v)(EG− F2) + u′3{E(φuu · φv)− F(φuu · φu)} (3)

+2u′2v′{E(φuv · φv)− F(φuv · φu)}+ u′v′2{E(φvv · φv)− F(φvv · φu)}
+u′2v′{F(φuu · φv)−G(φuu · φu)}+ 2u′v′2{F(φuv · φv)−G(φuv · φu)}
+v′3{F(φvv · φv)−G(φvv · φu)}

]
.

4. MAIN RESULTS

In the following theorem we consider the expression F∗(γ(s)) as a product of a 3× 3 matrix F∗ and

a 3× 1 matrix γ(s).
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Theorem 4.1 — Let F : S → S̄ be an isometry, where S and S̄ are smooth surfaces and γ(s) be

a rectifying curve on S. Then γ̄(s) is a rectifying curve on S̄ if

γ̄(s) − F∗(γ(s)) =
µ(s)
k(s)

[
u′3

(
F∗φu × ∂F∗

∂u
φu

)
+ 2u′2v′

(
F∗φu × ∂F∗

∂u
φv

)

+u′v′2
(
F∗φu × ∂F∗

∂v
φv

)
+ u′2v′

(
F∗φv × ∂F∗

∂u
φu

)
+ 2u′v′2

(
F∗φv × ∂F∗

∂u
φv

)

+v′3
(
F∗φv × ∂F∗

∂v
φv

)]
. (4)

PROOF : Let φ and φ̄ be the coordinate charts for S and S̄ respectively, where

φ̄ = F ◦ φ.

The tangent plane at a point p on S is generated by two vectors φu and φv. Since F is an isometry

between S and S̄, the differential map F∗ of F is a 3 × 3 orthogonal matrix. Therefore F∗ takes

linearly independent vectors φu and φv of TpS to φ̄u and φ̄v of TF (p)S. Also ~N and ~̄N are normals

to S and S̄ respectively.

φ̄u(u, v) = F∗φu = F∗(φ(u, v))φu, (5)

φ̄v(u, v) = F∗φv = F∗(φ(u, v))φv. (6)

Again differentiating (5) and (6) partially with respect to both u and v respectively, we get





φ̄uu = ∂F∗
∂u φu + F∗φuu,

φ̄vv = ∂F∗
∂v φv + F∗φvv, (∗)

φ̄uv = ∂F∗
∂u φv + F∗φuv,

= ∂F∗
∂v φu + F∗φuv.

Now

F∗φu× ∂F∗
∂u

φu = F∗φu×
(∂F∗

∂u
φu + F ∗φuu

)
−F∗(φu×φuu) = φ̄u× φ̄uu−F∗(φu×φuu). (7)

Similarly




F∗φu × ∂F∗
∂u φv = φ̄u × φ̄uv − F∗(φu × φuv),

F∗φu × ∂F∗
∂v φv = φ̄u × φ̄vv − F∗(φu × φvv),

F∗φv × ∂F∗
∂u φu = φ̄v × φ̄uu − F∗(φv × φuu), (∗∗)

F∗φv × ∂F∗
∂u φv = φ̄v × φ̄uv − F∗(φv × φuv),

F∗φv × ∂F∗
∂v φv = φ̄v × φ̄vv − F∗(φv × φvv).



888 ABSOS ALI SHAIKH AND PINAKI RANJAN GHOSH

In view of (4), (7) and (**) we get

γ̄(s) = λ(s)(u′F∗φu + v′F∗φv) +
µ(s)
k(s)

[
{u′v′′ − u′′v′}F∗ ~N + u′3F∗(φu × φuu)

+2u′2v′F∗(φu × φuv) + u′v′2F∗(φu × φvv) + u′2v′F∗(φv × φuu) + 2u′v′2F∗(φv × φuv)

+v′3F∗(φv × φvv) + u′3
(
F∗φu × ∂F∗

∂u
φu

)
+ 2u′2v′

(
F∗φu × ∂F∗

∂u
φv

)

+u′v′2
(
F∗φu × ∂F∗

∂v
φv

)
+ u′2v′

(
F∗φv × ∂F∗

∂u
φu

)
+ 2u′v′2

(
F∗φv × ∂F∗

∂u
φv

)

+v′3
(
F∗φv × ∂F∗

∂v
φv

)]
,

which can be written as

γ̄(s) = λ(s)
(
u′φ̄u + v′φ̄v

)
+

µ(s)
k(s)

[
{u′v′′ − u′′v′} ~̄N + u′3φ̄u × φ̄uu + 2u′2v′φ̄u × φ̄uv

+u′v′2φ̄u × φ̄vv + u′2v̇φ̄v × φ̄uu + 2u′v′2φ̄v × φ̄uv + v′3φ̄v × φ̄vv

]
,

and hence

γ̄(s) = λ̄(s)~̄t(s) +
µ̄(s)
k̄(s)

~̄b(s),

for some functions λ̄(s) and µ̄(s). Therefore γ̄(s) is a rectifying curve on S̄. 2

Note : In the above theorem we see that the functions λ(s) and λ̄(s) for the rectifying curves

γ(s) and ¯γ(s) on S and S̄ respectively does not change while taking an isometry on S to S̄. Also
µ̄(s)

k̄(s)
= µ(s)

k(s) , i.e., µ(s) and µ̄(s) for the rectifying curves γ(s) and ¯γ(s) respectively are related by the

curvature functions k(s) and k̄(s).

Theorem 4.2 — Let F be an isometry of two smooth surfaces S and S̄. For the rectifying curves

γ(s) and γ̄(s) on S and S̄ respectively the component of the position vector of the rectifying curve

along normal to the surface is invariant under the isometry F , i.e., γ(s) · ~N = γ̄(s) · ~̄N .

PROOF : Since F : S → S̄ is an isometry and γ(s), γ̄(s) are rectifying curves on S and S̄

respectively, the relations (5), (6) and (∗) hold. Since S and S̄ are isometric, we have

E = Ē, F = F̄, G = Ḡ, (8)

and hence

E = Ē = φ̄u · φ̄u = (F∗φu) · (F∗φu),

i.e., (F∗φu) · (F∗φu) = φu · φu. (9)

Differentiating (9) partially with respect to u we get

2
(∂F∗

∂u
φu + F∗φuu

)
· (F∗φu) = 2φuu · φu,
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i.e., ¯φuu · φ̄u = φuu · φu. (10)

Again differentiating (9) partially with respect to v we get

2
(∂F∗

∂v
φu + F∗φuv

)
· (F∗φu) = 2φuv · φu,

i.e., φ̄uv · φ̄u = φuv · φu. (11)

Again

G = Ḡ = φ̄v · φ̄v = (F∗φv) · (F∗φv),

i.e., (F∗φv) · (F∗φv) = φv · φv. (12)

Similarly differentiating (12) partially with respect to u and v we get

φ̄uv · φ̄v = φuv · φv, (13)

and

φ̄vv · φ̄v = φvv · φv. (14)

Again also

F = F̄ = φ̄u · φ̄v = (F∗φu) · (F∗φv),

i.e., (F∗φu) · (F∗φv) = φu · φv. (15)

Differentiating (15) partially with respect to u we get

(∂F∗
∂u

φu + F∗φuu

)
· (F∗φv) + (F∗φu) ·

(∂F∗
∂u

φv + F∗φuv

)
= φuu · φu + φu · φuv,

i.e., ¯φuu · φ̄v + φ̄u · φ̄uv = φuu · φv + φu · φuv. (16)

Using equation (11) we can write equation (16) as

¯φuu · φ̄v = φuu · φv. (17)

Differentiating (17) partially with respect to v we get

(∂F∗
∂v

φu + F∗φuv

)
· (F∗φv) + (F∗φu) ·

(∂F∗
∂v

φv + F∗φvv

)
= φuv · φv + φu · φvv,

i.e., φ̄uv · φ̄v + φ̄u · φ̄vv = φuv · φv + φu · φvv. (18)

Using equation (13) we can write equation (18) as

φ̄vv · φ̄u = φvv · φu. (19)
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Equation (3) for the rectifying curve γ̄(s) can be written as

γ̄(s) · ~̄N =
µ̄(s)
k̄(s)

[
(u′v′′ − u′′v)(ĒḠ− F̄2) + u′3{Ē(φ̄uu · φ̄v)− F̄(φ̄uu · φ̄u)}

+2u′2v′{Ē(φ̄uv · φ̄v)− F̄(φ̄uv · φ̄u)}+ u′v′2{Ē(φ̄vv · φ̄v)− F̄(φ̄vv · φ̄u)}
+u′2v′{F̄(φ̄uu · φ̄v)− Ḡ(φ̄uu · φ̄u)}+ 2u′v′2{F̄(φ̄uv · φ̄v)− Ḡ(φ̄uv · φ̄u)}
+v′3{F̄(φ̄vv · φ̄v)− Ḡ(φ̄vv · φ̄u)}

]
.

By virtue of (8), (10), (11), (13), (14), (17) and (19), the last relation yields

γ̄(s) · ~̄N = γ(s) · ~N.

Therefore the component of a rectifying curve γ(s) along normal to the surface S is invariant

under the rectifying curve preserving isomerty of surfaces. 2
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