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There was a conference organised at the Institite of Mathematical Sciences, Chennai in 1997 on
the occasion of the 50th anniversary of India’s Independence to review contributions by Indians
to various branches of mathematics since Independence. This is a written account of the lecture
I gave then on some of the contributions by Indian mathematicians to Algebraic number theory
from India’s independence to late 90’s.

There has been a lot of work done in India during these years, and it will be impossible to report
on all of it in limited space. We have therefore chosen some of the representative works from
the vast literature reflecting to some extent the author’s taste. Since this was a report about
work done in the country, works of several very prominent mathematicians from India during
this period who worked for most of their scientific career outside India has been omitted. In
particular, we do not speak about the work of S. Chowla who has contributed so much to so many
areas of Algebraic number theory. We have also restricted ourselves to areas very closely related
to Algebraic number theory, and have therefore omitted topics in transcendental and analytic
number theory which was reported by others in the conference. We have also omitted from our
consideration the arithmetic theory of algebraic groups. In particular, we do not speak on the
work of K.G. Ramanathan who initiated the study of arithmetic groups in the country which
has flourished into a very strong area of research at the Tata Institute of Fundamental Research,
Mumbai.

We begin the report by listing the two major schools in the country where algebraic number
theory has been pursued, and in each case list some of the mathematicians from these schools.
Limitation of knowledge on the part of the author has prevented him from a more complete list. In
the list below, non-Indian mathematicians have been put in a bracket, and Y is on the immediate
right of X , if Y is a student of X .
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We now take up some specific topics in Algebraic number theory to which Indians have made a

significant contribution.

1. WARING’S PROBLEM

The Waring’s problem asks whether given any integer k ≥ 2, there exists an integer g(k) ≥ 1 such

that any integer n ≥ 1 is a sum of at most g(k) kth powers of non-negative integers. The most

classical result is for the exponent 2 in which case Lagrange proved that g(2) = 4.

Theorem 1 — (Lagrange). Any integer n ≥ 1 can be written as n = n2
1 + n2

2 + n2
3 + n2

4 with

integers ni ≥ 0.

Theorem 2 — (Hilbert). Waring’s problem has an affirmative answer for any exponent k, i.e., for

any integer k ≥ 2, there exists an integer g(k) such that any integer n ≥ 1 is a sum of at most g(k)

kth powers of non-negative integers.

Theorem 3 — (Pillai-Dickson as completed by Balasubramanian, Deshouillers and Dress in the

case k = 4 [2].

g(k) = 2k +

[(
3
2

)k
]
− 2 if 2k

{(
3
2

)k
}

+

[(
3
2

)k
]
≤ 2k,

Otherwise,

g(k) =





2k +
[(

3
2

)k
]

+
[(

4
3

)k
]
− 2,

Or,

2k +
[(

3
2

)k
]

+ +
[(

4
3

)k
]
− 3,

depending on whether

[(
4
3

)k
][(

3
2

)k
]

+

[(
4
3

)k
]

+

[(
3
2

)k
]

= 2k, or > 2k,

where {x} denotes the fractional part of x, and [x] the integral part of x.

Remark : It is expected but not known (amazing as such a lack of knowledge might seem) that

2k

{(
3
2

)k
}

+

[(
3
2

)k
]
≤ 2k, (∗)

and therefore only the first case in the statement of the theorem need be considered. Mahler has shown

that (∗) holds for all but finitely many k.
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1.1 Waring’s problem for number fields

One can ask if Waring’s problem has an affirmative answer in a number field too. However, one sees

immediately that the problem may not have an affirmative answer because of local conditions. If for

instance q is a power of prime and not itself a prime, then for any element x of F∗q , xq−1 = 1, and

therefore sum of (q − 1)-th powers of elements in F∗q is not all of F∗q . The following theorem of

Ramanujam [37] is therefore the best (except for the explicit number of mth powers needed) one can

hope for.

Theorem 4 — (C.P. Ramanujam). Any totally positive algebraic integer in any algebraic number

field belonging to the order generated by the mth powers of algebraic integers in that number field is

actually a sum of atmost max(2m + 1, 8m5) mth powers of totally positive integers.

REMARK ON THE PROOF : The proof depends on a theorem of Birch that local to global principle

holds in sufficiently large number of variables. Therefore it suffices to prove the above theorem for

p-adic fields which is what C.P. Ramanujam does.

Generalising Waring’s problem, one can ask about the set of values taken by a general form, or

about the zero set of a general form: whether local to global principle holds, or whether the weak

approximation holds. Both these questions are an active area of research. Here is a theorem due to

Ramanujam [38], together with refinements due to Pleasant [24] and Hooley [14].

Theorem 5 — (C.P. Ramanujam). Any cubic form over any algebraic number field in ≥ 54

variables has a non-trivial zero.

The strongest theorem in this direction is due to Pleasant obtained by refining the method of C.P.

Ramanujam.

Theorem 6 — (Pleasant). Any cubic form over any algebraic number field in ≥ 16 variables has

a non-trivial zero.

Assuming the non-singularity of the cubic form, one has a much better theorem due to Hooley

[14].

Theorem 7 — (Hooley). If f(X) is a non-singular cubic form in 9 variables over Q which has a

non-trivial zero in Qp for all p, then f(X) has a non-trivial zero.

Remarks : (a) The above theorem is due to Heath-Brown for 10 variables or more. In 10 variables,

there are no local conditions: every cubic form in ≥ 10 variables over a p-adic field has a non-trivial

zero.
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(b) The theorem of Hooley is not yet available for number fields.

(c) It is expected that the theorem of Hooley is true without the non-singularity assumption.

2. GEOMETRY OF NUMBERS

This area was inaugurated by Minkowski in his work on discriminants and class numbers of number

fields. R. P. Bambah and his school at Chandigarh have made several important contributions to this

area. We state below some of the questions in this subject in which this school has contributed. We

begin by recalling the following basic and elementary theorem of Minkowski.

Theorem 8 — Let S be a convex, symmetrical domain in Rn containing the origin. Then S

contains a point other than the origin from any lattice Λ whenever vol(S) ≥ 2n vol(Rn/Λ).

Before proceeding further, we need to introduce the following definition.

Definition — A lattice Λ ⊂ Rn is called a covering lattice for a subset S in Rn if Λ + S = Rn.

The covering constant c(S) of S is defined to be

c(S) = sup vol(Rn/Λ),

where the supremum is taken over all latices Λ which form a covering lattice for S.

One also defines θ(S), the density of best covering lattice to be

θ(S) =
vol(S)
c(S)

.

Clearly, θ(S) ≥ 1. The following theorem is due to Bambah and Roth [4].

Theorem 9 — For a closed convex symmetrical region S in Rn containing the origin,

θ(S) ≤ π

3
√

3
nn

n!
.

Remark : θ(Dn) even for the n-disc Dn = {x ∈ Rn||x| ≤ 1} in Rn is not known for n ≥ 6!

Minkowski’s Conjecture : Let L1, · · · , Ln be linearly independent linear forms on Rn with ∆ =

det(L1, · · · , Ln). Let α1, · · · , αn ∈ R. Then there exists x ∈ Zn such that

n∏

i=1

|Li(x) + αi| ≤ ∆
2n

.

Bambah has proved this conjecture for n = 4, 5 in a joint paper with Woods, cf. [5]. The

conjecture is unknown for n ≥ 6.
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Oppenheim Conjecture : Given an indefinite quadratic form Q on Rn (n ≥ 3) which is not a multiple

of a rational quadratic form, and given ε > 0, there exists v ∈ Zn, such that

0 < |Q(v)| < ε.

Much work on this conjecture was done by Bambah, Raghavan and Ramanathan, cf. [31], besides

Oppenheim, Davenport and Birch, and was finally proved by Margulis in 1986-87 who proved a

conjecture of M. S. Raghunathan on the closure of orbits of unipotent flows on Γ\G where G is a

Lie group, and Γ is an arithmetic subgroup. S.G. Dani and Gopal Prasad have also contributed to the

Oppenheim Conjecture, see the papers [8] and [10]. Oppenheim conjecture is open to generalisation

for forms of higher degree. Here we state the question in a rather crude form, cf. [30] for one case of

such a conjecture.

Generalised Oppenheim Conjecture : Given a form Q of degree d on Rn (n ≥ n(d)) which takes

both positive and negative values and is not a multiple of a rational form, and given ε > 0, there exists

v ∈ Zn, such that

0 < |Q(v)| < ε.

Here is another theorem relating to values of quadratic forms due to Blaney, cf. [6].

Theorem 10 — (Blaney, 1948). Let Q be an indefinite quadratic form in n variables and of

discriminant D 6= 0. Then there exists a constant Γr,s depending only on the signature (r, s) of Q at

infinity, and not on Q itself, such that for any real numbers c1, · · · , cn, there exists integers x1, · · · , xn

such that

0 < Q(x1 + c1, · · · , xn + cn) < (Γr,s|D|)1/n.

Much work has been done by Bambah, Hans-Gill, Dumir, Madhu Raka, Urmila Rani all from

Chandigarh, to find the optimum Γr,s. The values of Γr,s is now known for all r, s except (r, s) =

(1, 4). We refer to the survey paper [3] by Bambah, Dumir and Hans-Gill for a detailed account.

Examples :

(a) Γ1,1 = 4, due to Davenport and Heilbronn.

(b) Γ2,1 = 4, due to Blaney.

(c) Γ1,2 = 8,Γ3,1 = 16
3 , Γ2,2 = 16, due to Dumir.

(d) Γ1,3 = 16, due to Dumir and Hans-Gill.
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3. WORK ON ELLIPTIC CURVES AND CURVES OF HIGHER GENUS

There has been a large number of papers by A.R. Rajwade, M.K. Agrawal, J.C. Parnami, D. B.

Rishi, S.A. Katre, all from Chandigarh, cf. the bibliography at the end, and also by Padma and

Venkataraman, cf. [25], students of R. Balasubramanian from Institute of Mathematical Sciences,

Chennai, on the explicit determination of the number of points on an elliptic curve with complex

multiplication. Results have also been obtained for the number of points on curves of the form

y2 = xl + a.

Instead of stating various theorems obtained by the above mentioned mathematicians, we state one

classical result of this kind due to Davenport and Hasse to give a flavour for the kind of the result that

is obtained in this direction. The reader will easily notice that the problem one is really solving is one

of signs.

Theorem 11 — (Davenport-Hasse). For the curve y2 = x3 − dx,

Np =

{
p + 1 if p ≡ 3 mod 4

p + 1− π
(

d
π̄

)
4
− π̄

(
d
π

)
4

if p ≡ 1 mod 4.

Here p = ππ̄ in Q(i) such that π, π̄ are congruent to 1 modulo (2 + 2i);
(

d
π

)
4

is the 4th power

residue symbol, and is defined to be the unique element x ∈ {±1,±i} such that

d
p−1
4 ≡ x mod π.

4. SIEGEL-RAMACHANDRA-ROBERT UNITS

These are explicit units in abelian extensions of quadratic imaginary fields constructed using elliptic

functions. After the initial work by Siegel, they were constructed by Ramachandra in [39], and then

streamlined by Robert. These were called Siegel-Ramachandra-Robert units for some time, but are

now called elliptic units and play a fundamental role in many works dealing with arithmetic of elliptic

curves with complex multiplication as in the fundamental works of Coates-Wiles and Rubin. Before

we describe elliptic units, we describe the simpler case of cyclotomic units.

For x ∈ Q/Z, x 6= 0, let g(x) = e2πix − 1. Define the group of cyclotomic units to be the

intersection of all units with the group generated by g(x).

Theorem 12 — (a) If the denominator of x is composite, then g(x) is a unit in the ring of algebraic

integers. If the denominator of x is a power of p then g(x) is a p-unit.
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(b) The mapping x → g(x) satisfies the distribution relation:

∏

Ny=x

g(y) = g(x),

for all integers N ≥ 1.

(c) For x ∈ 1
N Z/Z, g(x) ∈ Q(ζN ). For a ∈ (Z/N)∗, let σa be the natural element in

Gal(Q(ζN )/Q). Then

g(x)σa = g(ax).

(d) The index of the cyclotomic units in all units is closely related to the class number of the real

subfield. The index is equal to the class number in the case of prime power level.

Siegel Units : We will define Siegel units here which do not have as nice properties as the case of

cyclotomic units described above, but are easier to define than the elliptic units which have properties

much more analogous to cyclotomic units which we will be taking up next.

Let K be a quadratic imaginary field with HK the Hilbert class field of K. We recall that HK

is the maximal unramified abelian extension of K and that its Galois group over K is canonically

isomorphic to the class group of K. For an ideal I of K, we let σI denote the corresponding element

of the Galois group of the Hilbert class field of K.

For an ideal I of K, define

u(I) =
∆(OK)
∆(I−1)

,

where OK is the ring of integers in K, and ∆ is the Ramanujan delta function. (Recall that one way

to define modular forms is as functions on sets of lattices in C.)

Theorem 13 — (Siegel).

(a) u(I) ∈ HK .

(b) u(IJ ) = u(I)σJ u(J ).

(c) (u(I)) = I−12.

If h is the class number of K, then Ih is a principal ideal, say Ih = (α), α ∈ K∗. Clearly, α

is unique only up to a root of unity in K, and therefore α12 is well-defined. It follows that δ(I) =

u(I)hα12 is a well defined unit of HK . The group generated by such units is called the group of

Siegel units.
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Elliptic Units : Let L ⊂ C be a lattice which is invariant under multiplication by elements of OK .

For an integral ideal I of K, define

Θ(z, L, I) = θ(z,L)NI
θ(z,I−1L)

= ∆(L)
∆(I−1L)

∏′
u∈I−1L/L

∆(L)
(℘(z,L)−℘(u,L))6

.

The prime over the product notation signifies that the product is to be taken over non-zero ele-

ments. (Since we do not define θ(z, L) here, one could take the second equality for the definition of

Θ(z, L, I).) The numbers Θ(z, L, I) satisfy a ‘distribution relationship’ as in theorem 12(b):

∏

v∈J−1L/L

Θ(z + v, L, I) = Θ(z,J −1L, I),

which holds for any coprime ideals I,J in OK .

Theorem 14 — Let m be a non-trivial integral ideal of K and v a primitive m-division point of

L (i.e., v ∈ m−1L but v 6∈ n−1L for any proper divisor n of m). Then if (I,m) = 1,

(1) Θ(v, L, I) belongs to the m-ray class field of K.

(2) σc(Θ(v, L, I)) = Θ(v, c−1L, I).

(3) Θ(v, L, I) is a unit if m is not a power of a prime ideal. If m = ℘n, it is a unit outside ℘.

5. THETA FUNCTION ASSOCIATED TO QUADRATIC FORMS

Let q : L → Z be a positive definite quadratic form on a lattice L in Rk. The simplest theta function

associated to q is
θq(z) =

∑
v∈L eπiq(v)z

=
∑

n≥0 rq(n)eπinz

where rq(n) = ]{v ∈ L|q(v) = n}.

It is known that θq(z) is a modular form of weight k/2 on the upper-half plane.

The Fourier coefficients of a theta function are all positive integers with 1 as its constant term. For

many weights for the full modular group, Manickam, Ramakrishnan, Kalyan Chakraborty, Arbind Lal

have determined all modular forms with these properties for their Fourier coefficients, cf. [9].

The space of modular forms is spanned by cusp forms and Eisenstein series. Eisenstein series

have a simple Fourier expansion while cusp forms have nice estimates for their Fourier coefficients.

Combining the two, one gets the following theorem.
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Theorem 15 — (Hardy-Ramanujan). rq(n) =
π

k
2 n

k
2
−1

k
2 !

σk(n) + O(n
k
4 ), where k ≥ 4, and σk(n)

is the ‘singular series’.

Such a theorem has been generalised by Raghavan in [28] who obtained an asymptotic formula

for the number of integral representations of an n rowed positive semi-definite integral matrix T by

an m rowed positive definite integral matrix S, i.e., the cardinality of the set of integral matrices X

of size (n, m) with

XStX = T.

We will denote the cardinality of this set of X’s by rS(T ).

The estimate on rS(T ) is via an association of Siegel modular form to S. We therefore fix some

notation regarding Siegel modular forms.

Let

Hn = {Z = X + iY ∈ Mn(C)|tZ = Z, Y > 0}

be the Siegel upper half space. The symplectic group Sp(2n,R) operates on Hn and one has the

notion of a Siegel modular form of genus n and weight k analogous to modular forms in one variable.

A Siegel modular form has Fourier expansion

F (Z) =
∑

tA=A≥0

f(A)eπitr(AZ).

We now state Raghavan’s theorem which estimates the Fourier coefficients of a Siegel modular

form in terms of the Fourier coefficients of a linear combination of Eisenstein series. The difficulty

in the proof of this theorem arises because unlike the one variable case, it is not true that a Siegel

modular form is up to a cusp form, a linear combination of Eisenstein series. Raghavan has to use

Siegel’s generalisation of the ‘Farey dissection’ to matrix spaces to obtain an estimate on the Fourier

coefficient of the difference.

Theorem 16 — (Raghavan). Given a Siegel modular form

F (Z) =
∑

T≥0

a(T )eπitr(TZ),

one can associate to F (Z) a linear combination of Eisenstein series

φ(Z) =
∑

T≥0

b(T )eπitr(TZ),
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such that

a(T )− b(T ) = 0([minT−1]
n(n+1−2k)

2 [minT ]
n+1−k

2 )

for |T | ≥ ν, for some constant ν, and where minT denotes the minimum value taken by T at a

non-zero vector.

Singular modular forms : A Siegel modular form F given by F (Z) =
∑

T≥0 f(T )eπitr(TZ) is called

a cusp form if f(A) = 0 whenever A is singular. At the other extreme we have the notion of a singular

modular form which are Siegel modular forms which have the property that f(A) = 0 whenever A is

non-singular. Certain theta functions constructed below provide examples of singular modular forms.

To a positive definite quadratic form q : L → Z, define θq(Z) to be the function on the Siegel

upper-half plane Hn defined by

θq(Z) =
∑

tA=A≥0

rq(A)eπitr(AZ).

The function θq(Z) is called the theta function of genus n associated to the quadratic form q

generalising the theta function in one variable defined at the beginning of this section. This Siegel

modular form is singular if k < n. The first of the following two theorems, due to Resnikoff, states

that the weights of singular modular forms is exactly like this, and the second due to Raghavan, cf.

[29], states that singular modular forms are linear combinations of theta functions.

Theorem 17 — (Resnikoff). Singular modular forms of genus n exist only for weights < n/2.

Theorem 18 — (Raghavan). A singular modular form is a linear combination of theta series.

Remark : Raghavan proved the above theorem for the full modular group. The general case is due

to Resnikoff and Freitag.

Raghavan also has several papers, some jointly with others, in which he studies estimates on the

Fourier coefficients of Siegel modular forms, cf. [4], for one such work.

6. MODULAR FORMS OF HALF-INTEGRAL WEIGHT

There has been an extensive study by Vasudevan of Vivekananda College, Chennai together with

his former students Manickam and Ramakrishnan on the theory of new forms for half-integral weight

modular forms and its relation to Jacobi forms. They have also made an explicit construction of the so

called Shintani lifting which gives a connection between modular forms of integral and half-integral

weights and have thereby obtained an explicit version of Waldspurger’s theorem. We mention only

one of their papers [20] out of several that they have written.
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7. HENSELIAN RINGS

There has been several contributions from mathematicians at Chandigarh on Henselian rings.

The classical result of Hasse and Arf on higher ramification groups in a cyclic Galois extension

of a complete discrete rank 1 valued field states that the jumps in the Herbrand upper indexing occur

at integers. In a paper by Avtar and Sankaran, cf. [1], an analogous result has been proved for

higher rank valued fields which are Henselian. They extend a result of S. Sen conjectured by A.

Grothendieck, on wildly ramified automorphisms of a complete discrete rank 1 valued field.

Sudesh K. Khanduja has several papers around Hensel’s lemma. We only mention [17] here.

8. BRAUER-SIEGEL THEOREM

There is the famous Brauer-Siegel theorem in Algebraic number theory which tells how the various

basic invariants of a number field (class number, regulator and the discriminant) vary as we vary the

number field. In an interesting work, Sudesh K. Gogia (now Sudesh K. Khanduja after marriage!)

and IS Luther prove the analogue of the Brauer-Siegel theorem for function fields.

9. SOME MORE RECENT WORKS

In this section we briefly mention about some of the recent works done (written in late 1990’s!) in

Algebraic number theory. All these mathematicians have been associated with the Tata Institute of

Fundamental Research, Bombay.

Kirti Joshi : He has constructed coverings of the affine line using Drinfeld modules, cf. [15].

C. Khare : He has proved several results about congruences of modular forms, cf. [18] a subject

which has increasing become of central interest since the work of A. Wiles and Taylor-Wiles on the

proof of Fermat’s last theorem. He also has proved that Artin’s conjecture is a consequence of Serre’s

conjecture on modularity of certain Galois representations, cf. [19].

Madhav Nori : He has a very beautiful construction for unramified coverings of the affine line in

positive characteristic by finite Chevalley groups in that characteristic, cf. [21]. He also has a new

proof of the algebraicity of values of L-functions associated to Grössencharacters on totally real

number fields which is due originally to Siegel and Klingen, cf. [22].

Dipendra Prasad : According to conjectures of Langlands which have been proved in many cases,

representation theory of p-adic groups is closely related to the representation theory of the Galois

group of the p-adic field. Several of my works, some done in collaboration with B.H.Gross, cf.
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[13], use this parametrization to give a description of “branching laws”: explicit description of the

decomposition of representations of a group restricted to a subgroup. In particular, there is a p-adic

analogue of a theorem of Clebsch and Gordan about the tensor product of representations of GL(2),

cf. [26, 27].

C S Rajan : He has studied estimates on the orders of the Tate-Shafarevich group for elliptic curves

over function field of curves over finite fields, cf. [32]. He also has proved multiplicity one theorem

for `-adic representations.

Nimish Shah : Counting integral points on algebraic varieties of bounded height is a basic and

important problem in number theory. Nimish Shah together with his collaborators have an impressive

paper dealing with this problem when the variety in question is a closed subvariety of the affine

n-space which is acted upon transitively by a reductive algebraic group, and for more general such

homogeneous varieties. The proofs depend on the ‘unipotent flows’ on measures, see [11], for a paper

in this direction.
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