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1. INTRODUCTION

Most of the important partial differential equations (PDEs) has its origin in physics and geometry.

Applications of PDEs go in to many different areas of mathematical physics. Its connections with

other branches of mathematics are many. One example is the work of Petrowsky in 1945 on support of

fundamental solutions of hyperbolic operators with constant coefficients. Petrowsky gave a necessary

and sufficient conditions for stable lacunas in terms of the homology of algebraic hyper surface given

by the symbol of the operator. This work was corrected, clarified and generalized after more than

twenty five years, by Atiyah, Bott and Garding [31, 32] in their two papers. The theory of integrable

systems have applications in algebraic geometry. Application of heat equation in the proof of index

theorems is well known. The spectral theory of Laplace-Beltrami operators and scattering theory for

wave equations are used in the study of automorphic forms in number theory.

All the modern developments in the theory of PDEs were intimately linked to the progress in

geometric measure theory, complex analysis, harmonic analysis, functional analysis, topology, and

algebraic geometry. The theory of PDE is vast and diverse. Even in the case of linear PDEs, in the

class of elliptic, hyperbolic, parabolic and dispersive equations some questions can be answered in a

general framework but the qualitative properties and analysis of solutions differ significantly. When

it comes to the nonlinear case each PDE is a world in itself. New ideas and techniques are required

for progress in each case and so research in the theory of PDEs remains always as a challenging field.
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During the past ten years there were tremendous progress in the field of linear and nonlinear

partial differential equations. The aim of this article is to review some of the important contributions

made by mathematicians in India. These include works in elliptic equations, hyperbolic equations

and the dispersive equations. The main works are on well posedness, existence and regularity results

and analysis of control, homogenization and inverse problems.

The numerical and computational aspects of the theory of PDEs is vey important for both theoret-

ical and applications point of view and substantial works were done in India during the last decade,

however in this article we are focussing only the theoretical aspects of PDE.

2. ELLIPTIC PDE

The second half of 20th century witnessed a lot of developments in the study of nonlinear elliptic

partial differential equations. A lot of progress have already been made in the study of linear ellip-

tic equations. Together with various tools from nonlinear analysis like degree theory, various index

theories, variational calculus, Morse theory, etc., many spectacular results were proved on semilinear

elliptic equations originating from geometry, physics, biology etc. The work on Yamabe problem

from differential geometry by Trudinger, Aubin and Schoen and the works of Nirenberg and Brezis

on its Euclidean counterpart brought out the role of sharp inequalities in the analysis of these prob-

lems. Alexandroff’s moving plane method and its adaptation to the PDE setting by Serrin lead to the

discovery of many interesting qualitative properties of solutions.

Starting from the mid 80’s there have been many important works by Indian mathematicians in

this area which were well noticed by the international community.These contributions have been on

many aspects of this theory namely the study of existence of solutions, uniqueness/multiplicity of

solutions, establishing various inequalities/embeddings, qualitative properties of solutions etc. Below

we will explain some of the main contributions made in the last decade.

2.1 Sharp inequalities

It is well known that sharp inequalities play an important role in the study of partial differential

equations. Many sharp embeddings were developed by the Indian PDE community, below we will

explain some of these inequalities.

It was known that the classical Hardy inequality which states for u ∈ C∞
c (Rn), n ≥ 3, [

∫
Rn [|∇u|2

− (n−2)2

4
u2

|x|2 ] dx ≥ 0 is optimal. However Brezis and Vazques [44] showed that the inequality can

be improved if we restrict u ∈ C∞
c (Ω) for a bounded open set Ω ⊂ Rn, n ≥ 3 and subsequently there

was a conjecture of Brezis on the improvement of this inequality. In a significant work Adimurthi,
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Chaudhuri and Ramaswamy [1] proved this conjecture showing that the above inequality can be im-

proved by adding infinitely many weighted L2 norms. This work stimulated a lot of study on Hardy

type inequalities. In [8] Adimurthi and Sekar established that the fundamental solution plays a crucial

role in establishing Hardy type inequalities. Using this idea in [8] a Hardy type inequality where the∫
Rn |∇u|2 is replaced by

∫
Rn ai,j(x)uxiuxj for an elliptic matrix ai,j(x) is obtained and as a conse-

quence sharp Hardy type inequalities were proved in general manifolds and in the Heisenberg group.

Another interesting result obtained in this direction is a Hardy inequality developed by Adimurthi and

Tintarev for the Dirac operator in [12].

Hardy inequality has its second order counterpart namely the Hardy Rellich inequality which

states that for u ∈ C∞
c (Rn), n ≥ 5,

∫
Rn [|∆u|2 − n2(n−4)2

16
u2

|x|4 ] dx ≥ 0. Motivated by the devel-

opments on the Hardy inequality one wonders whether improvements are possible when one restricts

this inequality to functions which are supported in a bounded domain. The answers were already

known in the work of Tertikas and his collaborators. In dimension 4 the form of this Hardy Rellich

inequality was not known, in a nontrivial work [7], Adimurthi et al. solved this problem by proving

this inequality in dimension 4.

Another type of embeddings where the Indian PDE community contributed significantly is the

limiting case of the Sobolev embedding of the nth order Sobolev space in Rn namely the Moser-

Trudinger and Adams inequality. The classical Moser-Trudinger inequality states that

sup





∫

Ω

e4πu2
: u ∈ W 1,2

0 (Ω), ||∇u||2 ≤ 1



 < ∞

for any bounded domain Ω ⊂ R2. These type of inequalities are an active area of research due to

its applications in PDE problems with exponential nonlinearity coming from geometry and physics.

In an important piece of work [3] Adimurthi, etc., established an improved version of this inequality

making precise a result of Lions. The work is known for the beautiful blow-up analysis. In an-

other work [9] Adimurthi and Sandeep established the following singular version of this embedding

sup{∫
Ω

e4π(1−β)u2

|x|2β : u ∈ W 1,2
0 (Ω), ||∇u||2 ≤ 1} < ∞. The main contribution of this work was the

discovery of a conformal map which maps this inequality to the classical one when one restricts to

radial functions. These transformations are playing a major role in the study of cocompactness prop-

erties of problems in R2 with exponential nonlinearities. These embeddings have been extensively

studied for functions defined on compact manifolds. However sharp embeddings were missing in

noncompact manifolds. In the case of Hyperbolic space Mancini and Sandeep established the sharp

Moser-Trudinger inequality [103] (see [13] for a different proof) and in fact classified the hyperbolic
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metric on the unit disc as an optimal case of the conformal metrics on the Euclidean unit disc for

which Moser-Trudinger inequality holds. The higher order version of this embedding namely the

Adams inequality in the case of Hyperbolic space was established by Karmakar and Sandeep in [90].

This result is obtained by introducing a conformally invariant norm using the geometric GJMS op-

erator and it yielded a much sharper result comparing with some of the results proved at the same

time.

One of the important question one studies with these inequalities is about the existence of extremal

functions for this inequalities. This question for the singular Moser-Trudinger embedding was open

for quite some time. The corresponding result for the standard Moser-Trudinger is already known and

the proof uses the isoperimetric inequality directly or indirectly. The main difficulty in the singular

case is that a weighted version of this isoperimetric inequality which is required was missing. In a very

interesting work Csató [56] and Csató and Roy [57, 58] solved this problem in the two dimensional

case.

2.2 Qualitative properties of solutions

The eigenvalue problems for the Laplace operator and other degenerate elliptic operators are impor-

tant and very challenging. We know from classical results that among smooth bounded domains with

the same measure the first eigenvalue is minimal iff the domain is a ball. In a very nice work [91]

Kesavan studied similar issues for domains of the form B1 \ B2 where B1 is a fixed ball and B2 is

a ball of fixed radius such that B2 ⊂ B1. In this work he showed that the first Dirichlet eigenvalue

of Laplacian is maximum iff the balls B1 and B2 are concentric. The results were extended to space

forms by Anisa and Aithal in [26] and to rank one symmetric spaces of non-compact type by Anisa

and Vemuri in [46]. The same problem for the p-Laplace equation was studied by Anisa and Rajesh

[47] and obtained some partial results. The main issue in this case is due to the lack of strong compar-

ison principle and the problem is solved in a recent work of Anoop and his collaborators in [28]. In

another important work [27] Anoop and his collaborators have shown that the second eigenfunction

for the p-Laplacian with Dirichlet boundary condition can not be radial.

In [98], Lucia and Prashanth studied the simplicity and uniqueness of the positive principal eigen-

value of the weighted p-Laplacian eigenvalue problem under various assumptions on the weight. The

main issue with the problem is the nonavailability of Harnack’s inequality. However using a capacity

argument the authors established the simplicity of the first eigenvalue.

Another major symmetry result obtained was on the positive solutions of the Hardy-Sobolev-

Mazya equation. In Mancini and Sandeep [102] and Castorina et al. [45], showed that these equation
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has a hidden symmetry namely the hyperbolic symmetry which eventually resulted in the classifica-

tion of extremals of Hardy-Sobolev-Mazya inequalities.

In [95] Lin and Prajapat studied the C2 solutions of the equation ∆u−µu+k(x)u
n+2
n−2 in the punc-

tured unit disc under suitable assumptions on k and the solutions were shown to be asymptotically

symmetric.

2.3 Concentration phenomenon and lack of compactness

One of the main difficulty in the analysis of elliptic problems coming from geometry and physics is

their lack of compactness. One studies how the compactness fails and then uses this information to

study the existence of solutions.

One of the main tool to study the lack of compactness is the blow-up analysis. However for

problems in R2 of the form −∆u = f(u) where f is like an exponential function, there was no

effective blow-up analysis. Adimurthi and Druet developed a technique for this blow-up analysis

through a linearization argument and which was further developed in [3]. Blow-up analysis was

developed for the fourth order problem in [6]. In [4] Adimurthi and Grossi proved a conjecture of Ni

regarding the asymptotic behaviour of positive solutions when f(u) = up as p → ∞. Most of the

difficulties in these problems comes from the lack of compactness for the Moser-Trudinger embedding

which is too complicated to analyse. Adimurthi and Tintarev analysed this phenomenon in [19] and

showed that the weak continuity of the Moser functional on the unit ball of the Sobolev space H1
0 (B),

where B is the unit ball in R2 fails only on the translations of concentrating Moser functions, up to a

remainder vanishing in the Sobolev norm. This type of analysis also known as profile decomposition

was established for the space of bounded variation functions in [20] by Adimurthi and Tintarev.

In these problems with lack of compactness, the noncompact sequences generally arises as a

scaled form of a fixed profile which happens to be the solution of a limiting partial differential equa-

tion. Thus one of the crucial problems in this analysis is to classify the solutions of these type of

limiting PDEs. One such limiting problem coming from a problem in an astrophysics model is the

Hardy-Sobolev Mazya equation. A complete classification of positive solution of this equation was

established by Sandeep and his collaborators in [45, 101] and consequently the lack of compactness

was analyzed in [38] by Bhakta and Sandeep.

One of the effective tool in establishing the existence of solution for this type of problems is

through an approach known as finite dimensional reduction in which one constructs solutions which

are small perturbations of a scaled form of the limiting profile mentioned above. This approach

depends heavily on classifying the positive solutions of the limiting problem and then establishing
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whether these solutions are nondegenerate or not. In this direction, in [70] Ganguly and Sandeep

established that the limiting solution for a semilinear elliptic problem in the hyperbolic space is de-

generate and showed that the degeneracy occurs only though a finite dimensional subspace. The finite

dimensional reduction approach was successfully used by Prashanth and his collaborators to establish

various existence and exact multiplicity results results for the perturbed Gaussian curvature problem

on S2 (see [78]), the perturbed Q-curvature problem on S4 (see [117]) and for the perturbed scalar

curvature problem (see [116]).

In recent years there have been lot of interest in understanding the concentrating pattern of sin-

gularly perturbed equations. Lot of work has been done in the past on solutions concentrating at a

single point or at a finite number of points. However very little was known on solutions concentrating

on higher dimensional manifolds. Srikanth and his collaborators developed various tools to study

these problems. In [65] Esposito et al. the information on Morse index was used to identify the

concentration pattern of singularly perturbed elliptic problems in an annulus. In [126], positive solu-

tions concentrating on a one dimensional orbit was constructed for the singularly perturbed problem

−ε∆u+λu = up as the parameter ε → 0 in an annulus inR4 with Dirichlet boundary condition. This

result was extended to annulus in R2n and solutions concentrating on an n− 1 dimensional manifold

in [113]. These results were proved by reducing the problem to a lower dimension and using the

known tools for this reduced problem. This reduction procedure was shown to be related to the Hopf

fibration and using the Hopf fibration of the complex projective space Ruf and Srikanth proved the

existence of solutions concentrating on one dimensional orbits in [127]. These techniques were used

further to construct solutions concentrating on orthogonal spheres in [106] by Manna and Srikanth.

2.4 Uniqueness and multiplicity

One of the fundamental question about any PDE is the existence and uniqueness of solution. If it is

not unique one also investigates the structure of the solution set. Below we will describe some of the

Indian contributions in this direction in the last decade.

Finite energy solutions of the semilinear elliptic problem ∆Hu + λu + up = 0 in the hyperbolic

space were completely analysed in [102] by Mancini and Sandeep and conditions under which the

solution exists is obtained. It was also shown that the solution is unique. One of the remarkable result

obtained in this work was a nonexistence phenomenon in the three dimensional hyperbolic space.

The uniqueness of positive solutions of the Dirichlet problem in the unit ball B for

−div(|∇u|p−2∇u) = f(u) where f is an Emden-Fowler type nonlinearity is a long standing open

problem. In a recent work [21] Adimurthi et al. proved that the solutions are unique in the class of



THEORETICAL DEVELOPMENTS IN PARTIAL DIFFERENTIAL EQUATIONS 687

solutions {u : u(0) > c} for a suitable constant c.

In [96], Lin and Prajapat studied the self-dual vortex equations on a torus which arises in the rela-

tivistic abelian Chern-Simons model involving two Higgs particles and two Gauge fields. They proved

the existence of maximal solutions and the invertibility of the linearized operator at the maximal so-

lutions. They also proved the existence of a local minimizer for the associated energy functional and

the existence of a second mountain pass critical point.

An analytic global unbounded branch of solution was established by Bougherara et al. for a

singular bifurcation problem in [43]. Another important contribution in the existence of solution was

the work of Bhakta and Marcus [39] for a semilinear elliptic problem with singularity where they

establish the existence and uniqueness for the problem.

The bifurcation problem for the Dirichlet problem −∆nu = λf(u) in the unit ball in Rn was

studied in [73] by Giacomoni et al. and it was shown that there exists a λ0 > 0 such that for

λ < λ0 the problem has two solutions, uniqueness for λ = λ0 and nonexistence for λ > λ0. Various

multiplicity results have been proved by Sreenadh and his collaborators using the Nehari manifold

approach for various equations which are active topics of research at present like nonlocal equations,

semilinear problems involving p(x)-Laplacian, Kirchhoff equation etc., see [107, 130, 131] and the

references therein. In a nice work [77] Goyal and Sreenadh studied the Fucik spectrum of nonlocal

elliptic operators and showed that the linesR×{λ1} and {λ1}×R are isolated in the Fucik spectrum.

Uniqueness and asymptotic profile of least energy solutions for a critical exponent problem with

Hardy potential in the unit ball was obtained in [122] by Ramaswamy and Santra.

In [99], the structure of stationary isothermic surfaces for the solution of a heat equation with

initial data as the characteristic function of a domain was established.

2.5 Systems

There has been some interesting work on systems. In [92] Kesavan established a generalized version

of the Poincare Lemma which states that any irrotational vector field in the negative order Sobolev

space H−1(Ω) where Ω is simply connected is the gradient of an L2(Ω) function.

In [109], Musina and Sreenadh established the existence of non-trivial and radially symmetric

solutions to the Henon-Lane-Emden system with weights.

There has been some interesting work on differential forms in open subsets of Rn by Saugata

and his collaborators. Some of the issues studied are differential inclusion where one studies the

solvability of the equation dw ∈ E where E is a given subset consisting of k + 1 forms and d is the
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exterior derivative, the pull back equation which studies whether two differential forms are related via

a pull back of one of them under a diffeomorphism and minimization of convex integrals. Saugata

Bandyopadhyay has made important contributions towards these problems in [33-35] and [36].

2.6 Inverse problems

Inverse problems is an active area of research at present and there have been some nice works on

this topic from India. Venkateswaran and his collaborators studied uniqueness and stability questions

related to lower order perturbations of biharmonic and polyharmonic operators in [49, 132]. They

have also derived exact inversion formulas for integral transforms arising from problems in radar,

seimic and medical imaging, and tensor tomography [69]. In several instances, deriving exact inver-

sion formulas for integral transforms may be difficult, in which case, approximate inversion methods

such as microlocal inversion methods may be useful. Instead of reconstructing the function itself,

one hopes to reconstruct the singularities of the function. In this context, they have made important

contributions in [68, 133].

3. HYPERBOLIC PARTIAL DIFFERENTIAL EQUATIONS

First order systems of partial differential equations of the form

A0(u, x, t)∂tu +
k∑

j=1

Aj(u, x, t)∂xju + B(u, x, t) = 0, (1)

appear in many physical applications when higher order terms which account for viscosity and heat

conduction effects are ignored. Here u is a function of the space variable x ∈ Rk, and the time

variable t ∈ R and taking values in open connected subset Ω of Rn and Aj(u, x, t) and B(u, x, t)

are n× n matrices depending on (u, x, t). The compressible Euler equations in 3-space dimensions,

a 5× 5 system describing conservation of mass, momentum and energy is such a system with a long

history which dates back to Euler [66].

One of the basic question is global in time, well-posedness of the initial value problem. The

notion of hyperbolicity comes in this context. The mathematical theory of linear hyperbolic equations

were started by Hadamard and developed into a beautiful theory by subsequent works of Schauder,

Petrowsky, Friedrichs, John, Leray, Garding, Lax, Hormander and others. For nonlinear systems the

theory is not yet well developed. Due to nonlinearity and absence of regularising effects, solutions

which are initially smooth becomes discontinuous in finite time. There is no well developed theory

for general multidimensional case, except for scalar equations and systems of strictly hyperbolic

equations in one space variable in conservation form. Systems of conservation laws in one space



THEORETICAL DEVELOPMENTS IN PARTIAL DIFFERENTIAL EQUATIONS 689

variable with flux f : Ω → Rn, takes the form

∂tu + ∂x(f(u)) = 0. (2)

This system is called strictly hyperbolic if the Jacobian matrix Df(u) has real distinct eigenval-

ues, indexed in increasing order, λ1(u) < λ2(u) < ... < λn(u). They are called the characteristic

speeds of the system. Rigorous mathematical theory of conservation laws started with the works of

Hopf [81] on Burgers equation. It was found that the right function space to work with is BV space

and solution to (2) with the initial condition u(x, 0) = u0(x), x ∈ R1 should be formulated in the

weak sense. Weak formulation leads to a severe restriction of the discontinuities through the Rankine

Hugoniot conditions, but weak solutions are not unique. Physical solution is selected by imposing

admissibility criteria on the solution. Here the small scale effects which was ignored in the equation

(2) plays an important role.

An early example of a shock admissibility criterion in gas dynamics is that only compressive

shocks are admissible. Riemann [125], in 1860, observed that this is equivalent to the requirement

that shock be supersonic relative to the state at front and subsonic relative to the state on the back.

Lax [94] fomulated this as a general shock condition, for genuinely nonlinear case. Liu [97] extended

this to a comprehensive shock admissibility criterion which work for more general characteristic

fields. Indeed there are many selection principles, all of them are not equivalent but they are related.

Viscosity admissibility criteria and the Lax/Liu-condition are sufficiently powerful to give uniqueness

for strictly hyperbolic systems when shocks are of moderate strength.

The work of Lax [94] on the Riemann problem and Glimm’s work [76] on general initial value

problem were important milestones in the development of the theory of systems of conservation laws.

The contributions by Liu, Dafermos, Bressan, Serre, LeFloch and their collaborators lead to a well-

posedness theory. The book of Dafermos [59] is a thorough treatise of the theory of hyperbolic

conservation laws, covering different aspects with a detailed list of references. Now we highlight

some of the important contributions by Indian mathematicians.

3.1 Scalar conservation laws with discontinuous flux

Hyperbolic equations with discontinuous flux appear in many physical situations and classical theory

described before does not apply here. There are many theories and [25] gives a unified treatment of

research in this topics which includes contributions from India. In a series of papers, Adimurthi and

Gowda [2], Adimurthi, Misra and Gowda [5, 10, 11] and Adimurthi, Dutta, Ghoshal and Gowda [14]

developed a new well-posedness theory of scalar conservation laws with discontinuous flux.The class

of flux functions they consider are some what restricted because of convexity assumptions but results
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are sharp.

In the paper [14], total variation bound of (A, B) entropy solutions to the Cauchy problem for a

single conservation law of the form

ut + (H(x)f(u) + (1−H(x))g(u))x = 0, u(x, 0) = u0(x),

where f(u), g(u) are strictly convex functions and H(x) the Heaviside function is studied. The main

result of this paper is that the (A,B) entropy solutions are of bounded variation if A and B are not

critical points of g and f respectively. If either A or B is a critical point of g or f then an example is

constructed where the (A, B) entropy solution has unbounded total variation.

New structure theorem for entropy weak solutions [15] and stability results in Lp norm for 1 ≤
p < ∞ [18] are other important works done in the case of scalar conservation laws with some

convexity assumptions on the flux. They also studied optimal control problem for scalar conservation

laws with strictly convex flux in [17]. In another paper [16] exact controllability of entropy solution of

scalar conservation laws with strictly convex flux was studied using initial or boundary data control.

In these analysis, explicit formula for convex conservation laws, derived by Lax [94] and by Joseph

and Gowda [83] and generalized characteristics introduced by Dafermos were crucial.

3.2 Stochastic partial differential equations

Conservation laws with stochastic forcing term is an active field of research at present. The method

of deterministic entropy inequalities fail to capture the noise-noise interactions and the Krushkov

approach cannot be directly adapted for a well posedness theory. Feng and Nualart [67] resolved this

difficulty by introducing a strong in time entropy formulation. Biswas and Majee [41] gave a more

appropriate weak in time and weak in space entropy formulation and developed a well posedness

theory. In another paper [42] Biswas and his collaborators derived an explicit continuous dependence

estimate for multidimensional stochastic balance laws driven by Levy processes and then they get

error estimate for solutions for the stochastic vanishing viscosity method. In addition, they established

fractional BV estimate for vanishing viscosity approximations in case the noise coefficient depends

on both the solution and spatial variable.

In [71], Gawarecki, Mandrekar and Rajeev proved the existence and uniqueness of strong solu-

tions for linear stochastic differential equations in the space dual to a multi-Hilbertian space driven

by a finite-dimensional Brownian motion under relaxed assumptions on the coefficients. In another

interesting paper [72], they proved a monotonicity inequality for linear stochastic partial differential

equations. More recently, Rajeev and Suresh Kumar [121] proposed a new method for proving the ex-

istence and pathwise uniqueness of strong solutions of stochastic differential equations with irregular
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diffusion and drift coefficients without the assumption of nondegeneracy.

In [104] Manna and Mohan proved the existence and uniqueness of the strong solution of a

stochastic infinite dimensional shell model of turbulence. In another work [105] Manna et al. studied

the stochastic Navier-Stokes equations in an admissible unbounded multi-channel domain consisting

of several outlets smoothly connected to a bounded domain and proved the existence and uniqueness

of a strong path-wise solution.

3.3 Nonlinear Dispersive Equations

Nonlinear Dispersive Equations is an important class of PDEs and in the last couple of decades there

have been many important works on the analysis of well-posedness for nonlinear dispersive PDEs

by world’s leading experts. Local and global existence of Schrodinger equation corresponding to the

twisted Laplacian and in modulation spaces were studied by Ratnakumar and Sohani in [123] and

Bhimani and Ratnakumar [40] respectively. Existing numerical analysis lags far behind in handling

various issues related to dispersive equations, in this context one task is to fill the gap between the

state of the art in the numerical analysis and the continuous PDE theory of these problems. Koley and

his collaborators proved convergence of a fully discrete finite difference scheme for the Korteweg-

de Vries (KdV) equation in [80], while convergence of a higher order Galerkin scheme for KdV is

proved in [61]. They also analyzed operator splitting schemes for Benjamin-Ono (BO) equation. In

particular they proved convergence of both Godunov and Strang splittings in [62]. Furthermore, in

[63], they proved convergence of finite difference schemes for the BO equation.

3.4 Initial boundary value problem for hyperbolic systems

Initial boundary value problem for (2) in x > 0, t > 0 with initial condition u(x, 0) = u0(x), for

x > 0 with a Dirichlet type boundary condition u(0, t) = uB(t), t > 0 generally has no solu-

tion. Since the characteristic speed depends on the solution and we need to prescribe data only on

the entering characteristic directions, the boundary condition has to be prescribed in a weak form

u(0, t) ∈ A(uB(t)) where A(uB(t)) is admissible set depending on uB(t) and certain other physical

features coming from the small scale physical features in the system. For scalar case, Bardos, Leroux

and Nedelec [37], derived such an admissible set based on boundary entropy inequalities. For scalar

conservation laws there are enough entropy-entropy flux pairs to characterize the admissible set. For

systems, admissible set given by this method is in general too large to give a well-posed problem.

Alternately, Gisclon and Serre [74], Gisclon [75] and Joseph and LeFloch [84, 85] formulated bound-

ary conditions in terms of Boundary layers, for strictly hyperbolic systems with p negative and n− p

positive characteristic speeds. For vanishing viscosity approximation

ut + f(u)x = ε(B(u)x)x, x > 0, t > 0
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with positive matrix B(u), the boundary layer is given by

B(v)v′ = f(v)− f(v̄), v(0) = uB(t), v(∞) = v̄.

Admissible boundary data based on boundary layer is the set of all v̄ for which this ODE prob-

lem has a solution, denoted by A(uB(t)). They analysed the boundary layers in vanishing viscosity

limit and showed that the admissible set A(uB(t)) contains the point uB(t) and a manifold with

dimension p and its tangent space at the point uB(t) is spanned by rj(uB(t)) : j = 1, 2, ...p - the

eigenvectors corresponding to the negative characteristic speeds. Structure of the admissible set for

difference approximations, relaxation approximations and Dafermos self-similar diffusive approxi-

mations with general diffusive matrix are also studied in Joseph and LeFloch [85-87] where as the

diffusive-dispersive effects in the boundary layers is analysed in Choudhury, Joseph and LeFloch [50].

The analysis shows that different regularizations give different admissible set and different solutions.

These works clarify the importance of physical regularizations for the formulation of boundary con-

ditions for hyperbolic systems. In another paper Joseph and LeFloch [88] analyzed physical viscosity

and capillarity effects for self-similar solutions to the Riemann problem for a system which is not

hyperbolic, that is arising in liquid-vapour phase dynamics.

3.5 Riemann problems and interactions

Sharma and his collaborators studied several nonlinear hyperbolic equations coming in practical prob-

lems with arbitrary data, but satisfying some natural physical conditions. They include study of the

evolutionary behaviour of an unsteady three dimensional motion of a shock wave of arbitrary strength

in a non-ideal gas [114], using singular surface theory and Riemann problem for isentropic magneto-

gasdynamics system and interaction of elementary waves [119, 120]. In the paper [118], Radha and

Sharma solved the Riemann problem for the one-dimensional Euler equation governing the flow of

ideal polytropic gases. Then evolution of the amplitudes of C1 discontinuities and interaction of C1

wave with shock waves were studied. In the papers [128] by Sharma and Radha and [114] by Pandey

and Sharma, Lie group methods and similarity analysis are used to study many systems such as ideal

gas equations, magnetogasdynamics equations, viscous compressible fluid, and reflection of a shock

waves in a plane flow.

3.6 δ - waves

The multi-dimensional zero-pressure gas dynamics system is an analytical model proposed to describe

the large-scale structure of the universe, see Gurbatov et al. [79] and the references there in. The new

feature of this system is that the velocity component remains in the BV space, where as the density

component is a measure, see Joseph [82]. There is no mathematical theory for this system but some
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progress is made recently by Albeverio and Shelkovich [22]. In the paper [48], Choudhury, Joseph

and Sahoo constructed radial solutions with different behaviours at the origin. Also Joseph and Sahoo

[89] analyzed the development of δ, δ′, δ′′ waves for special systems using vanishing viscosity method

and gave a formulation of solution and derivation of Rankine-Hugoniot conditions.

3.7 Kinematical Conservation Laws and Applications

The kinematical conservation laws (KCL) are equations of evolution of a moving surface Ωt in d-

dimensional (d-D) space Rd. The KCL are derived in a specially defined ray coordinate system

(ξ1, ξ2, . . . , ξd−1, t), where ξ1, ξ2, . . . , ξd−1 are surface coordinates on Ωt and t > 0 is time. The

analysis of KCL system was completed by Arun and Prasad [29] and Arun et al. [30]. Since the

KCL constitutes a system of conservation laws, its physically valid weak solutions can contain dis-

continuities like shocks. The successive positions of the surface Ωt can be obtained by mapping a

solution of the KCL into the physical space, via solving the ray equations corresponding to the mo-

tion. The image of a discontinuous solution of the KCL, containing shocks, gives rise to singularities

on Ωt, known as kinks, which are points on Ωt when Ωt is a curve in R2 and curves on Ωt when

it is a surface in R3. Across a kink, geometrical quantities, such as the normal n to Ωt, the metrics

associated with ξ1, ξ2, . . . , ξd−1 etc. and dynamical variables, such as an amplitude w on Ωt may be

discontinuous. On the other hand, the differential form of KCL can be shown to be equivalent to the

ray equations for Ωt as long as the solution remains smooth. The KCL is a purely geometric result

and its derivation does not take into account any dynamics driving the surface. Hence, the KCL leads

to an undetermined system of equations and additional closure relations are necessary to get a com-

pletely determined set of equations. One of the most important application is in the so-called weakly

nonlinear ray theory, which is a powerful perturbation method to study the propagation of a small

amplitude nonlinear wave front in a polytropic gas. Here, an energy transport equation involving an

amplitude w, which is related to the normal velocity m of the wave front, serves the role of a closure

relation.

4. HOMOGENIZATION AND CONTROL PROBLEMS

Homogenization is one of the very active areas of research in the field of partial differential equa-

tions. It has applications in several applied problems including material science, porous media, thin

structures, oscillatory domains etc.

Initially, Kesavan has studied the homogenization of elliptic eigenvalue problem and later he has

studied several problem on the homogenization of optimal control problem and also thin plates with

his collaborators and students Rajesh Mahadevan, N. Sabu and T. Muthukumar. For references and
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further recent developments see [93, 100, 110, 111].

Vanninathan has contributed very significantly to the theory beginning with the work on the eigen-

value problem in perforated domains. In fact, he with his collaborators developed the method of Bloch

Wave analysis to study homogenization problems. For example, he has studied the first and second or-

der correctors for elliptic PDEs with rapidly oscillating coefficients by using Bloch waves. This is the

continuation of the authors earlier works. He has also studied the homogenization of a Schrodinger

equation in a periodic medium with a time dependent potential. With Sivaji Ganesh, the homogeniza-

tion of a periodic linear elasticity problem in three dimensions is carried out using the Bloch wave

method. The authors highlight various phenomena in the Fourier space and to illustrate how Fourier

techniques can be used to study homogenization problems with the help of Bloch approximation. In

another significant work, Vanninathan with his collaborator has revisited the well-known homoge-

nization results concerning elliptic second-order operators with oscillating coefficients by applying

the Bloch wave approximation. In another paper, he has considered the sequence of operators in a

bounded domain. The aim of the paper was to find a necessary and sufficient condition on the coeffi-

cients for the sequence of solution to be bounded in certain Sobolev spaces. He also presented a new

approach to study the problem of homogenization of periodic structures. By using the Bloch wave

decomposition, some classical results on homogenization are re-established. We refer [23, 54, 129]

and the references there for details.

Now we describe Vanninathan’s work on comparison between the two-scale asymptotic expansion

method for periodic homogenization and the so-called Bloch wave method. It is well-known that the

homogenized tensor coincides with the Hessian matrix of the first Bloch eigenvalue when the Bloch

parameter vanishes. In the context of the two-scale asymptotic expansion method, there is the notion

of high order homogenized equation where the homogenized equation can be improved by adding

small additional higher order differential terms. The next non-zero high order term is a fourth-order

term, accounting for dispersion effects. This homogenized fourth-order tensor is not equal to the

fourth-order tensor arising in the Taylor expansion of the first Bloch eigenvalue, which is often called

Burnett tensor. In [24], Allaire, Briane and Vanninathan establish an exact relation between the

homogenized fourth-order tensor and the Burnett fourth-order tensor. For the special case of a simple

laminate they prove that the homogenized fourth-order tensor may change sign. In the elliptic case

they explain the difference between the homogenized and Burnett fourth-order tensors by a difference

in the source term which features an additional corrector term. Finally, for the wave equation, the two

fourth-order tensors coincide again, so dispersion is unambiguously defined, and only the source

terms differ as in the elliptic case. In an earlier paper Conca, Orive and Vanninathan [55] studied the
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case where the Burnett fourth-order tensor has a sign.

Nandakumaran has studied homogenization of Stokes problems and eigenvalue problems in per-

forated domains. His main tool was two-scale convergence. Later with Rajesh [112], he has studied

few nonlinear parabolic problems with nonlinearity in the coefficient of time derivative as well. They

have also studied homogenization in the set-up of viscosity solutions. In [110] with T. Muthukumar,

he has studied certain low cost control problems, later in a significant paper [100] Mahadevan and

Muthkumar answered the question which could not be carried out earlier. Now for the last several

years, he with his students are studying problems in domains with rapidly oscillating and there are

many articles in this direction. This type of domains appears in several applications. They have some

significant contribution to the optimal control problems in oscillating domains. They use the method

of unfolding to study such problems [111]. In a novel approach, recently they have characterized

optimal controls via the unfolding operators which is quite new.

Now we look at some important contributions in control problem. We start with the work of

Chowdhury, Ramaswamy and Raymond [53], who studied the one-dimensional compressible Navier-

Stokes system linearized about a constant steady state. The null controllability for regular initial data

by an interior control acting everywhere in the velocity equation was established. This result was

proved to be sharp by showing that the null controllability cannot be achieved by a localized inte-

rior control or by a boundary control acting only in the velocity equation. The system was proved

to be approximately controllable, but not stabilizable with a decay rate greater than the value of an

accumulation point of the real eigenvalues of the linearized operator. In [51], Chowdhury and Ra-

maswamy study optimal control problems for the two-dimensional unsteady linearized compressible

Navier-Stokes equations in a rectangle. The control acts through a Dirichlet boundary condition. The

authors first study the existence and uniqueness of the solution for the two-dimensional linearized

compressible Navier-Stokes equations in a rectangle with nonhomogeneous Dirichlet boundary data,

not necessarily smooth, by the transposition method. They next prove the existence and uniqueness of

optimal controls. Finally, they derive first-order necessary and sufficient optimality conditions. The

paper of Chowdhury, Maity, Ramaswamy and Raymond [52] provides a first result on the problem

of finding a feedback control law that stabilizes compressible fluid flows, and proposes a localized

distributed control, acting only in the velocity equation of the compressible Navier-Stokes system. In

the paper of Mitra, Ramaswamy and Raymond [108], the compressible Navier-Stokes equations are

studied in a bounded interval with an internal square-integrable control is considered acting on the

velocity equation.

In the paper [111], Nandakumaran, Prakash and Sardar were concerned with an optimal control
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problem for the Laplace equation posed in a two-dimensional domain having an oscillating boundary.

Periodic controls in thin periodic slabs of period ε > 0 are considered. It was proved that for each

ε > 0, the optimal control problems considered are well-posed. Secondly, optimal controls were

characterized via the unfolding operator method. Finally, a convergence analysis, as the parameter

ε goes to 0 was carried out. In [60], Nandakumaran and his collaborators studied exact internal

controllability for the wave equation in a domain with oscillating boundary with Neumann boundary

condition.

In [64], Ervedoza and Vanninathan studied controllability of a simplified model of fluid-structure

interaction. In a significant paper [124], Raymond and Vanninathan, studied null controllability in a

fluid-solid structure model, coupling the Stokes equations in a two-dimensional domain with a system

of ordinary differential equations corresponding to a finite-dimensional approximation of equations

modelling deformations of an elastic body or vibrations of a rigid body. A null controllability result

in time T > 0 was obtained by means of a distributed control acting only in the fluid equation and

located in relatively compact subset of the domain. The proof is based on a Carleman estimate for the

related adjoint system.
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