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In this article, we study the global stability and the asymptotic properties of the non-negative
solutions of the non-linear difference equation:

xn+1 =
Axn−αxn−β + Bxn−γ

Cxn−αxn−β + Dxn−γ
, n = 0, 1, ...,

where α, β, γ are positive integers, A,B, C, D are positive real numbers and the initial conditions
x−p, x−p+1, ..., x−1, x0 for p = max{α, β, γ} are arbitrary positive real numbers.

Key words : Difference equations; recursive sequences; local stability; global stability;
boundedness; prime period two solution.

1. INTRODUCTION

The qualitative study of difference equations is a fertile research area and increasingly attracts many

mathematicians. This topic draws its importance from the fact that many real life phenomena are

modeled using difference equations. Examples from economy, biology, etc. can be found in [6, 9, 10,

24, 29].
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It is known that nonlinear difference equations are capable of producing a complicated behavior

regardless its order. There has been a great interest in studying the global attractivity, the boundedness

character and the periodicity nature of nonlinear difference equations. For example, in the articles

[6, 9, 10, 25, 28] closely related global convergence results were obtained which can be applied to

nonlinear difference equations in proving that every solution of these equations conver to a period

two solution. The study of these equations is challenging and rewarding and is still in its infancy.

We believe that the nonlinear rational difference equations are of paramount importance in their own

right. Furthermore the results about such equations offer prototypes for the development of the basic

theory of the global behavior of nonlinear difference equations.

Elabbasy et al. [7, 8] investigated the global stability and the periodicity of the solutions of the

recursive sequence

xn+1 =
αxn + βxn−1 + γxn−2

Axn + Bxn−1 + Cxn−2
and xn+1 =

αxn−l + βxn−k

Axn−l + Bxn−k

Zayed [38] studied the global stability and the asymptotic properties of the nonnegative solutions

of the nonlinear difference equation

xn+1 = Axn + Bxn−k +
pxn + xn−k

q + xn−k

Our aim in this paper is to investigate the behavior of the solution of the following nonlinear

difference equation

xn+1 =
Axn−αxn−β + Bxn−γ

Cxn−αxn−β + Dxn−γ
, n = 0, 1, ..., (1)

where A,B,C, D are positive real numbers, α, β, γ are positive integers and the initial conditions

x−p, x−p+1, ..., x−1, x0 for p = max{α, β, γ} are arbitrary positive real numbers.

Here, we recall some notations and results which will be useful in our investigation. Let I be

some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial conditions x−k, x−k+1, x−k+2, ...,

x0 ∈ I , the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (2)

has a unique solution {xn}∞n=−k.

Definition 1 — The difference equation (2) is said to be persistence if there exist numbers m and

M with 0 < m ≤ M < ∞ such that for any initial conditions x−k, x−k+1, ..., x0 ∈ (0,∞) there
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exists a positive integer N , which depends on the initial conditions, such that

m ≤ xn ≤ M for all n ≥ N.

Definition 2 — (Equilibrium Point). A point x̄ ∈ I is called an equilibrium point of Eq. (2) if

x̄ = f(x̄, x̄, ..., x̄). That is, xn = x̄ for n ≥ 0, is a solution of Eq. (2), or equivalently, x̄ is a fixed

point of f .

Definition 3 — (Stability).

• The equilibrium point x̄ of Eq. (2) is locally stable if for every ε > 0, there exists δ > 0 such

that for all x−k, x−k+1, x−k+2, ..., x0 ∈ I, with

|x−k − x̄|+ |x−k+1 − x̄|+ |x−k+2 − x̄|+ ... + |x0 − x̄| < δ,

we have |xn − x̄| < ε, for all n ≥ −k.

• The equilibrium point x̄ of Eq. (2) is locally asymptotically stable if x̄ is locally stable solution

of Eq. (2) and there exists γ > 0, such that for all x−k, x−k+1, x−k+2, ..., x0 ∈ I, with

|x−k − x̄|+ |x−k+1 − x̄|+ |x−k+2 − x̄|+ ... + |x0 − x̄| < δ,

we have lim
n→∞xn = x̄.

• The equilibrium point x̄ of Eq. (2) is global attractor if for all x−k, x−k+1, ..., x0 ∈ I we have

lim
n→∞xn = x̄.

• The equilibrium point x̄ of Eq. (2) is globally asymptotically stable if x̄ is locally stable, and x̄

is also a global attractor of Eq. (2).

• The equilibrium point x̄ of Eq. (2) is unstable if x̄ is not locally stable.

The linearized equation of Eq. (2) about the equilibrium x̄ is the linear difference equation

yn+1 =
k∑

i=0

∂f(x̄, x̄, ..., x̄)
∂xn−i

yn−i

Theorem 1 — Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then |p| + |q| < 1 is a sufficient

condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ....
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Remark 1 : The theorem can be easily extended to a general linear equations of the form

xn+k + p1xn+k−1 + ... + pkxn = 0, n = 0, 1, ..., (3)

where p1, p2, ..., pk ∈ R and k ∈ {0, 1, 2, ...}. Then Eq. (3) is asymptotically stable provided that
k∑

i=0

|pi| < 1.

Theorem 2 — Let f ∈ C[Ik+1, I] for some interval I of the real numbers and for some non-

negative integer k, and consider the difference equation (2). Let {xn}∞n=−k be a solution of Eq.(2),

and suppose that there exist constants h ∈ I and H ∈ I such that

h ≤ xn ≤ H for all n ≥ −k.

Let l0 be a limit point of the sequence {xn}∞n=−k. Then the following statements are true.

(i) There exists a solution {Ln}∞n=−∞ of Eq. (2), called a full limiting sequence of {xn}∞n=−k, such

that L0 = l0, and such that for every N ∈ {...,−1, 0, 1, ...}, LN is a limit point of {xn}∞n=−k.

(ii) For every i0 ≤ −k, there exists a subsequence {xri}∞i=0 of {xn}∞n=−k such that

LN = lim
n→∞xri+N for every N ≥ −i0.

2. LOCAL STABILITY OF EQ. (1)

In this section we investigate the local stability character of the solutions of Eq. (1). If Eq. (1) admits

an equilibrium point x̄ then x̄ > 0 and

x̄ =
Ax̄2 + Bx̄

Cx̄2 + Dx̄
=

Ax̄ + B

Cx̄ + D
,

or

x̄(Cx̄ + D) = Ax̄ + B,

or also

Cx̄2 + (D −A)x̄−B = 0,

Let ∆ = (D −A)2 + 4BC. Then Eq. (1) admits a unique positive equilibrium point given by

x̄ =
A−D +

√
(D −A)2 + 4BC

2C
. (4)
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Define the following function

f : (0,∞)3 → (0,∞)

f(u, v, w) =
Auv + Bw

Cuv + Dw
.

(5)

Therefore it follows that

fu(u, v, w) =
(AD −BC)vw

(Cuv + Dw)2
, fv(u, v, w) =

(AD −BC)uw

(Cuv + Dw)2
, fw(u, v, w) = −(AD −BC)uv

(Cuv + Dw)2
.

Then

fu(x̄, x̄, x̄) =
(AD −BC)
(Cx̄ + D)2

, fv(x̄, x̄, x̄) =
(AD −BC)
(Cx̄ + D)2

, fw(x̄, x̄, x̄) = −(AD −BC)
(Cx̄ + D)2

.

Let a =
(AD −BC)
(Cx̄ + D)2

then the linearized equation of Eq. (1) about x̄ is

yn+1 − ayn−α − ayn−β + ayn−γ = 0. (6)

whose characteristic equation is given by

λγ+1 − aλγ−α − aλγ−β + a = 0.

Theorem 3 — Assume that

|AD −BC| < (Cx̄ + D)2

3
.

Then the equilibrium point of Eq. (1) is locally asymptotically stable.

PROOF : It follows from Theorem 1 that Eq. (6) is asymptotically stable if

|a|+ |a|+ |a| =
∣∣∣∣
(AD −BC)
(Cx̄ + D)2

∣∣∣∣ +
∣∣∣∣
(AD −BC)
(Cx̄ + D)2

∣∣∣∣ +
∣∣∣∣
(AD −BC)
(Cx̄ + D)2

∣∣∣∣ = 3
|AD −BC|
(Cx̄ + D)2

< 1,

and so,

|AD −BC| < (Cx̄ + D)2

3
.

The proof is complete.

3. GLOBAL ATTRACTOR OF THE EQUILIBRIUM POINT OF EQ. (1)

In this section we investigate the global attractivity character of solutions of Eq. (1).

Theorem 4 — The equilibrium point x̄ of Eq. (1) is global attractor if D ≥ A.
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PROOF : Let {xn}∞n=−p be a solution of Eq. (1) and again let f be the function defined by Eq.

(5), then we can easily see that the function f(u, v, w) is increasing in u, v and decreasing in w. Thus

from Eq. (1), we see that

xn+1 =
Axn−αxn−β + Bxn−γ

Cxn−αxn−β + Dxn−γ
≤ Axn−αxn−β + B × 0

Cxn−αxn−β + D × 0
=

A

C
.

Then

xn ≤ A

C
= H for all n ≥ 1.

xn+1 =
Axn−αxn−β + Bxn−γ

Cxn−αxn−β + Dxn−γ
≥ A× 0 + Bxn−γ

C × 0 + Dxn−γ
=

B

D
.

Then

xn ≥ B

D
= h for all n ≥ 1.

We see therefore that

h =
B

D
≤ xn ≤ A

C
= H for all n ≥ 1.

It follows by the method of Full Limiting sequences that there exist solutions {In}∞n=−∞ and {Sn}∞n=−∞
of Eq.(1) with

I = I0 = lim
n→∞ inf xn ≤ lim

n→∞ supxn = S0 = S,

where

In, Sn ∈ [I, S], n = 0,−1, ...

It suffices to show that I = S.

Now it follows from Eq.(1) that

I =
AIn−α−1In−β−1 + BIn−γ−1

CIn−α−1In−β−1 + DIn−γ−1
≤ AS2 + BI

CS2 + DI
,

and so

AS2 + BI −DI2 ≥ CS2I → AS2I + BI2 −DI3 ≥ CS2I2.

Similarly, it follows from Eq.(1) that

S =
ASn−α−1Sn−β−1 + BSn−γ−1

CSn−α−1Sn−β−1 + DSn−γ−1
≥ AI2 + BS

CI2 + DS
,

and so

AI2 + BS −DS2 ≤ CI2S → AI2S + BS2 −DS3 ≤ CI2S2.
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It follows that

AI2S + BS2 −DS3 ≤ CI2S2 ≤ AS2I + BI2 −DI3.

or also

AS2I+BI2−DI3−AI2S−BS2+DS3 = (S−I)
[
(A−D)SI − (BS + BI + DS2 + DI2)

] ≥ 0.

Hence

I ≥ S if (A−D)SI − (BS + BI + DS2 + DI2) < 0.

Now, we know that D ≥ A and so it follows that I ≥ S. Therefore I = S. This completes the

proof.

For confirming the local and global stability results, we consider two numerical examples. For

A = 1, B = 1, C = 1, D = 4, α = 3, β = 1, γ = 2, x−3 = 1, x−2 = 2, x−1 = 3, x0 = 1 which

satisfy the stability conditions then Eq.(1) admits an equilibrium point x̄ = 0.30278 which is a global

attractor of Eq.(1) (See Figure 1, left). For A = 2, B = 5, C = 5, D = 3, α = 1, β = 2, γ =

3, x−3 = 1, x−2 = 2, x−1 = 3, x0 = 1 which satisfy also the stability conditions then Eq.(1) admits

an equilibrium point x̄ = 0.9050 which is a global attractor of Eq.(1) (See Figure 1, right).

n
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1.5
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2.5

3
x(n+1)=(Ax(n-α)x(n-β )+Bx(n-γ))/(Cx(n-α)x(n-β )+Dx(n-γ))

n
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2

2.5

3
x(n+1)=(Ax(n-α)x(n-β )+Bx(n-γ))/(Cx(n-α)x(n-β )+Dx(n-γ))

Figure 1: Right A = 1, B = 1, C = 1, D = 4, α = 3, β = 1, γ = 2, x−3 = 1, x−2 = 2, x−1 =

3, x0 = 1 and left A = 2, B = 5, C = 5, D = 3, α = 1, β = 2, γ = 3, x−3 = 1, x−2 = 2, x−1 =

3, x0 = 1.

4. BOUNDEDNESS OF SOLUTIONS OF EQ. (1)

In this section we study the boundedness of solutions of Eq. (1).
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Theorem 5 — Every solution of Eq. (1) is bounded and persists.

PROOF : Let {xn}∞n=−p be a solution of Eq. (1). It follows from Eq. (1) that

xn+1 =
Axn−αxn−β + Bxn−γ

Cxn−αxn−β + Dxn−γ

=
Axn−αxn−β

Cxn−αxn−β + Dxn−γ
+

Bxn−γ

Cxn−αxn−β + Dxn−γ

≤ Axn−αxn−β

Cxn−αxn−β
+

Bxn−γ

Dxn−γ
=

(
A

C
+

B

D

)
= M

Hence

xn ≤
(

A

C
+

B

D

)
= M for all n ≥ 1. (7)

Now we wish to show that there exists m > 0 such that

xn ≥ m for all n ≥ 1.

The change of variables, yn =
1
xn

, gives Eq. (1) in the form

1
yn+1

=

A

yn−αyn−β
+

B

yn−γ

C

yn−αyn−β
+

D

yn−γ

=
Ayn−γ + Byn−αyn−β

Cyn−γ + Dyn−αyn−β
,

or in the equivalent form

yn+1 =
Cyn−γ + Dyn−αyn−β

Ayn−γ + Byn−αyn−β

=
Cyn−γ

Ayn−γ + Byn−αyn−β
+

Dyn−αyn−β

Ayn−γ + Byn−αyn−β

≤ Cyn−γ

Ayn−γ
+

Dyn−αyn−β

Byn−αyn−β
=

(
C

A
+

D

B

)

Thus we obtain

xn =
1
yn
≥ 1(

C

A
+

D

B

) =
AB

BC + AD
= m for all n ≥ 1. (8)

One deduces from (7) and (8) that

m ≤ xn ≤ M for all n ≥ 1.
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Therefore every solution of Eq.(1) is bounded and persists.

For confirming the boundedness results, we consider the following two numerical examples. For

A = 2, B = 1, C = 1, D = 4, α = 2, β = 2, γ = 3, x−3 = 10, x−2 = 2, x−1 = 3, x0 = 4 and

A = 2, B = 5, C = 5, D = 3, α = 1, β = 2, γ = 3, x−3 = 1, x−2 = 2, x−1 = 3, x0 = 1. The

solution is bounded and persists (See Figure 2).

n
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x(n+1)=(Ax(n-α)x(n-β )+Bx(n-γ))/(Cx(n-α)x(n-β )+Dx(n-γ))
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x(n+1)=(Ax(n-α)x(n-β )+Bx(n-γ))/(Cx(n-α)x(n-β )+Dx(n-γ))

Figure 2: Right A = 2, B = 1, C = 1, D = 4, α = 2, β = 2, γ = 3, x−3 = 10, x−2 = 2, x−1 =

3, x0 = 4 and left A = 2, B = 5, C = 5, D = 3, α = 1, β = 2, γ = 3, x−3 = 1, x−2 = 2, x−1 =

3, x0 = 1.

5. PERIODICITY OF SOLUTIONS OF EQ. (1)

In this section we study the existence of prime period two solutions of Eq. (1).

Theorem 6 — For A = D, Eq. (1) has prime period two solutions if and only if BC > 4A2, γ is

odd, α and β are even.

PROOF : First suppose that there exists a prime period two solutions

..., p, q, p, q, ...

of Eq.(1). We see from Eq.(1) that

p =
Aq2 + Bp

Cq2 + Dp

and

q =
Ap2 + Bq

Cp2 + Dq
.
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Hence

Cq2p + Dp2 = Aq2 + Bp (9)

and

Cqp2 + Dq2 = Ap2 + Bq. (10)

Subtracting Eq.(10) from Eq.(9) gives

Cqp(q − p) + D(p2 − q2) = A(q2 − p2) + B(p− q).

Since p 6= q, it follows that

Cqp + D(p + q) = A(q + p) + B. (11)

Again adding Eq.(9) and Eq.(10) yields

Cqp(q + p) + D(p2 + q2) = A(q2 + p2) + B(p + q).

As p + q 6= 0 then

Cqp + D
(p2 + q2)

p + q
= A

(p2 + q2)
p + q

+ B. (12)

Subtracting Eq.(12) from Eq.(11) gives

D

(
(p2 + q2)

p + q
− (p + q)

)
= A

(
(p2 + q2)

p + q
− (p + q)

)
.

Since
(p2 + q2)

p + q
6= (p + q) then A = D. From Eq.(11), we deduce that

qp =
B

C
.

From Eq.(9), we deduce that

Bq + Dp2 = Aq2 + Bp (13)

and from Eq. (10), we deduce that

Bp + Dq2 = Ap2 + Bq. (14)

Subtracting Eq.(14) from Eq.(13) we obtain

2A(p2 − q2) + 2B(q − p) = 0.

Since p 6= q, then

p + q =
B

A
.
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Then p and q are positive solutions of equation

t2 − B

A
t +

B

C
= 0. (15)

This means that

∆ =
B2

A2
− 4

B

C
> 0

and then
B

A2
>

4
C

→ BC > 4A2

Conversely suppose that condition (i) is true. We will show that Eq.(1) has a prime period two

solution. Assume that

p =

B

A
−

√
B2

A2
− 4

B

C
2

=
B

2A

(
1−

√
1− 4A2

BC

)

and

q =

B

A
+

√
B2

A2
− 4

B

C
2

=
B

2A

(
1 +

√
1− 4A2

BC

)

We see from condition (i) that 1− 4A2

BC
> 0, therefore p and q are distinct positive real numbers.

Set

x−α = q, x−γ = p, x−β = q, ..., and x0 = p.

We wish to show that

x1 = x−1 = q and x2 = x0 = p.

It follows from Eq.(1) that

x1 =
Ax−αx−β + Bx−γ

Cx−αx−β + Dx−γ
=

Ap2 + Bq

Cp2 + Aq
=

A

(
B

2A

(
1−

√
1− 4A2

BC

))2

+ B
B

2A

(
1 +

√
1− 4A2

BC

)

C

(
B

2A

(
1−

√
1− 4A2

BC

))2

+ A
B

2A

(
1 +

√
1− 4A2

BC

)

=
B

A

(
1−

√
1− 4A2

BC

)2

+ 2
(
1 +

√
1− 4A2

BC

)

BC

A2

(
1−

√
1− 4A2

BC

)2

+ 2
(
1 +

√
1− 4A2

BC

)
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=
B

A

4− 4A2

BC

BC

A2

(
2− 4A2

BC
− 2

√
1− 4A2

BC

)
+ 2

(
1 +

√
1− 4A2

BC

)

=
4(

B

A
− A

C
)

2BC

A2
− 4− 2BC

A2

√
1− 4A2

BC
+ 2 + 2

√
1− 4A2

BC

=
4(

B

A
− A

C
)

(
2BC

A2
− 2

) (
1−

√
1− 4A2

BC

)

Multiplying the denominator and numerator by

(
1 +

√
1− 4A2

BC

)
=

2Aq

B
gives

x1 =

4(
B

A
− A

C
)

(
1 +

√
1− 4A2

BC

)

(
2BC

A2
− 2

)
4A2

BC

=
4(

B

A
− A

C
)
2Aq

B(
2BC

A2
− 2

)
4A2

BC

=

(
1− A2

BC

)

(
1− A2

BC

)q = q.

Similarly as before one can easly show that

x2 = p.

Then it follows by induction that

x2n = p and x2n+1 = q for all n ≥ −1.

Thus Eq.(1) has the positive prime period two solution

..., p, q, p, q, ...

where p and q are the distinct roots of the quadratic equation (15) and the proof is complete.

For confirming the periodicity results, we consider the following two numerical examples. For

A = 6, B = 30, C = 5, D = 6, α = 4, β = 2, γ = 1, x−4 = 2, x−3 = 3, x−2 = 2, x−1 =

3, x0 = 2 which satisfy the periodicity conditions then Eq.(1) has positive prime period two solutions

..., 2, 3, 2, 3, ... (See Figure 3, right).
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n
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3
x(n+1)=(Ax(n-α)x(n-β )+Bx(n-γ))/(Cx(n-α)x(n-β )+Dx(n-γ))
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x(
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x(n+1)=(Ax(n-α)x(n-β )+Bx(n-γ))/(Cx(n-α)x(n-β )+Dx(n-γ))

Figure 3: Right A = 6, B = 30, C = 5, D = 6, α = 4, β = 2, γ = 1, x−4 = 2, x−3 = 3, x−2 =

2, x−1 = 3, x0 = 2 and left A = 10, B = 70, C = 7, D = 10, α = 4, β = 4, γ = 5, x−5 = 5, x−4 =

2, x−3 = 5, x−2 = 2, x−1 = 5, x0 = 2.

Since A = 10, B = 70, C = 7, D = 10, α = 4, β = 4, γ = 5, x−5 = 5, x−4 = 2, x−3 =

5, x−2 = 2, x−2 = 5, x0 = 2 which satisfy the periodicity conditions then Eq.(1) has positive prime

period two solutions ..., 5, 2, 5, 2, ... (See Figure 3, left).

Lemma 1 —

(i) If α, β and γ are odd, then Eq. (1) has no positive solutions of prime period two.

(ii) If α, β and γ are even, then Eq. (1) has no positive solutions of prime period two.

(iii) If α, γ are odd and β is even (respectively if β, γ are odd and α is even), then Eq. (1) has no

positive solutions of prime period two.

(iv) If α is odd, β and γ are even (respectively if α, γ are even and β is odd), then Eq. (1) has no

positive solutions of prime period two.

PROOF : Suppose that there exists a prime period two solutions

..., p, q, p, q, ...

of Eq.(1).

We prove this for the first two cases where γ, α and β are odd and for the case where α, β and γ

are even. The other cases are similar and will be omitted.
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(i) Assume that α, β and γ are odd. We see from Eq.(1) that

p =
Ap2 + Bp

Cp2 + Dp
=

Ap + B

Cp + D
,

and

q =
Aq2 + Bq

Cq2 + Dq
=

Aq + B

Cq + D
.

Hence

Cp2 + (D −A)p−B = 0,

and

Cq2 + (D −A)q −B = 0.

Then p and q are positive solutions of equation

Ct2 + (D −A)t−B = 0.

Since B > 0, then one of the solutions is negative. This is a contradiction. Thus Eq.(1) has no

prime period two solution.

(ii) Assume that α, β and γ are even. We see from Eq.(1) that

q =
Ap2 + Bp

Cp2 + Dp
=

Ap + B

Cp + D
,

and

p =
Aq2 + Bq

Cq2 + Dq
=

Aq + B

Cq + D
.

Hence

Cpq + Dq = Ap + B, (16)

and

Cpq + Dp = Aq + B. (17)

Subtracting Eq.(17) from Eq.(16) we obtain

(D + A)(q − p) = 0.

Since D + A 6= 0, then

p = q

which is a contradiction and then Eq.(1) has no prime period two solution.
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6. CONCLUSION

This paper discussed local and global stability, boundedness and periodicity of the solutions of

Eq.(1). In Section 2 we proved that Eq.(1) admits a unique positive equilibrium point given by

x̄ =
D −A +

√
(D −A)2 + 4BC

2C
and that if |AD − BC| <

(Cx̄ + D)2

3
then this equilibrium

point is locally asymptotically stable. In Section 3 we showed that the unique equilibrium of Eq.(1) is

globally asymptotically stable if D ≥ A. In Section 4 we proved that the solution of Eq.(1) is always

bounded and persists. In Section 5 we gave some conditions on the periodicity of solutions of Eq.(1).
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