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1. INTRODUCTION

Let H (D) denote the class of analytic functions f on the open unitdisc D = {z € C : |z| < 1}. Also
denote by A the subclass of H(ID) consisting of functions normalized by

f(z)=2z+ Z anz".
n=2

For o > 0, the a-logarithmic Bloch space B, , is the Banach space of those functions f € H(D)
which satisfy

15 g = O+ sup(1 = ) (g =5 ) 172 < o

zeD
For simplicity, the space Bjo 1 Will be denoted by Biqg.
The logarithmic Bloch spaces were studied by many authors (see for example [3] and [4]).

A typical example of an unbounded univalent function in the space Bi,, is the function

f(z)zloglogl_z, (z € D).



192 Z. OROUJI AND R. AGHALARY

Let us mention also that the logarithmic Bloch spaces play a basic role studying the boundedness
of Hankel and Toeplitz operators in Bergman and Bloch-type spaces (see. e.g., [1] and [12]).

Various operators of fractional calculus (that is, fractional integral and fractional derivative) have
been studied in the literature (cf. [5, 9-11]). We use the following definition used recently by Srivas-
tava and Owa [10]. The fractional integral of order ) is defined, for a function f, by

O e = L
where f is an analytic function in a simply-connected region of the z-plane containing the origin, and
the multiplicity of (z — ¢)*~" is removed by requiring log(z — ¢) to be real when z — ¢ > 0.

It is easy to check that for f(z) = 2+ Yo", a,2" € A we have
A 1
D f(z) = AV +Z )\+n+1) anz", (z € D). (1.1)

Also the fractional derivative of order ) is defined, for a function f, by

U
DY) = i | e 0=a<),

where f is a above, and the multiplicity of (z — ¢)~* is removed, as in previous definition.

Also it is interesting to note that for f(z) = z + ZZ":Q a,z" € A we have

DM f(2) = 274 Z e + 1 ——anz", (z € D). (1.2)

1“(

Jung et al. [5] investigated the linear operator 3% which is defined by

cap_ Tla+pB+1) o 270\ g
Jﬂf(z)_r(aﬂ)r(ﬁﬂ)zﬁ/o <1 Z) 9L (t)dt, (f € H(D), z € D)

a>0;0>-1;

and they proved for f € A with Ref’(z) > 0, S3fis bounded at least foraw > 1and 8 > —1. In
view of ([5], Lemma 4), for function f(z) = 2+ > .2, a,2" € A we have

casn o Tla+B+1) < TL(B+n) n B
Gf(2) =2+ SRS Zr(a+ﬁ+n)anz, (>0,6>-1). (1.3)

Definition 1.1 — For f(z) = Y7, anz" with f € H(ID), we define

Dy f(2) = Z @anz", (z€eD).

n=0 (C)n
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Here b, ¢ are complex numbers such that ¢ # 0,—1,—2,...,(b)o = 1 for b # 0, and for each
positive integer n, (b),, = b(b+ 1)(b+ 2)...(b +n — 1) is the Pochhammer symbol.

The above series converges absolutely for all z € D, and hence represents an analytic function in
the unit disc D. It should be remarked that by specializing the parameters b, ¢ and using (1.1), (1.2)
and (1.3) one can obtain that

A
DI f(z) = P(12+ A)@me(z), (z €D, \ > 0), (1.4)
Y
DM (z) = ﬁ@l,l_ﬁ(z), (zeD,0< A< 1), (1.5)
and
capy_ @B
S3f(2) = 3 D504+5f(2), (zeD,a>0,0>0), (1.6)
where f € A.

It is natural to ask that for which functions f and parameters b, ¢, @y .f € Bioga(e > 0). The
main purpose of this paper is finding conditions on the parameters b, ¢ such that when f is chosen
from suitable classes, @ .f € Biog,o( > 0).

Remark 1.1 : 1t is easy to see that the function g(z) = (1 — ) (log %)a 0<z<1)is
bounded and decreasing for 0 < « < In 2.

Proving our results we shall use the following well known result

Yot et _ TOT(2)
/Ot (- tptar = 2

where Re p > 0 and Re ¢ > 0.

2. MAIN RESULTS

In the following Theorem we prove:

Theorem 2.1 — Let b, ¢ be complex numbers such that —1 < Re ¢ < Re b. Also let f € H(D)
and @, .f € Biog,o Where 0 < o < In2. Then f € Biog,o. Moreover

ID(5)|T(Re(b — ¢))T(Re ¢ + 1)
IT(©)[[T(b— c)|D(Re b+ 1)

[flhog.a < [£(0)] + [@p.c.f ll1og.a-

PROOF : Let f(2) = > 02 anz" € H(D) and @y . f € Biog,o- By the hypotheses of the theorem,
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for z € D we have

/01(1 —t)bmem ey f(tz)dt = ?EZ) /01(1 —t)ber et ni:% 11:22) :[ Z; ant™2"dt
- ?Eg g;) ?Ei I Z; 4n2" /01(1 tybmelgmtelgy
_ F(C)E((f)_ ¢) 5‘2“
_ F<C>I§(<§)‘ ) f(2). 2.1)
By Remark 1.1 and relation (2.1), we obtain
(1 - |2P) (1g2||) 7
ur i / e o) (tog = ) @) 0

e(b—)—1,Re c 2 \° ,
c)HF —c ’ / 1 B t Rel tR (1 - |tz‘2) <10g I—W> |(q>b,cf) (tz)|dt
)

|F(b |H(I>b,cfH10g,a
INGIINCENI]

< 00, (z € D),

< (1 o t)Re(b—c)—ltRe <dt

since —1 < Re ¢ < Re b. Therefore f € Biog o and

IT'(b)|T'(Re(b—¢))I'(Rec+1)
IT(c)|IT(b — ¢)|T(Reb+1)

1/ lhog,a < [£(0)] + 1. 10g,0-0
By putting b = 1 and ¢ = 1 — X\ in the Theorem 2.1 and using (1.5) we obtain the following
corollary:

Corollary 2.1 — Let f € Aand 2*D2f € Biogo Where 0 < A < 1and 0 < a < In2. Then
f € Biog.a ad || flliog.a = (1 = A)|2*D2 fll1og.a-

A function f € H(D) is called uniformly locally univalent if there exists a constant p > 0 such
that f is univalent on the hyperbolic disc |(z — a)/(1 — @z)| < tanh p of radius p for every a € D. It
is known that a non-constant analytic function f is uniformly locally univalent if and only if the norm

f”(Z)

[Favas H—Sup(l—\Z\) 7(2)




LINEAR OPERATORS DEFINED BY HYPERGEOMETRIC FUNCTIONS 195

of the pre-Schwarzian derivative "/ f’ of f is finite. Let

B\) = {f e HD); || f7/f 1< 27}
Kim and Sugawa [6, 7] investigated various properties of the functions which belong to the class
B(A). In the next theorem we prove:

Theorem 2.2 — Let A > 0 and let b, c be complex numbers such that —1 < Re b < Re ¢ — 3.
Also suppose that f(z) = >»° ,anz" is uniformly locally univalent with || f”/f" ||< A. Then
Oy of € Biog,a for0 < o <In2.

PROOF : Let |z =r (0 <r < 1)and || f’/f ||< A. Then we have

f@w ‘1 f@w
7] = [ 70)
z f//(,w)dw‘

1f’(’w)
gr/o

f(t2)
f'(tz)
1
. / A
0 1-— T2t2
1+7r

1—7

log

dt

IN

= Alog

This implies

eSO () Gd=r<n, @)

r

On the other hand, we have

(b c+n
(I)bcf Z nzn
= OF Yc+n

(c+n)a,z"

B I'(c) Z F'b+n)'(c—b+1)
ST (c—b+1) —  Tl+n+1)

_ I'(c) v P .
B F(b)F(c—b+1)/o 71— b;o(ﬂrn)anz t"dt

1@ Lo ,
= RO i, 10 e ) e (23

Set h(z) = cf (2) + 2/’ (2). Since || /" |< A, we obtain | f(z)| < 2 ’|<;|3‘ (z € D), and 50

IOl A1), GeD) 24
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Then in view of (2.3) and (2.4) we have

At|z]
Dy . / < tReb Rec b) 1) dt
(@@ < kD [ 7] (2 + el +

and by relation (2.2), for |z| = 7 (0 < r < 1), we obtain

(1= 12) (1o 1= ) 1@V

c 1 N
< T, 0= ) (los ) 1)

A
1+tr\2 At‘z|
1
X(l—tr) <1—t2‘z|2+’0‘+ )dt
A

IT(c)]|.£(0)] a/1 Re b Reeny (2 \2 [ M
< —
S TN —br s [ 1= =) (2l ) a

’F(C)Hf/((])p% o ! Re b+1 Re(c—b)— 7—1
S E@)e—b 1 1) 182 /o ey

PEOUSORE (o [ ke o3
T IE@)Te—b+ e T Dos2) /Ot (1—1)

< 00

since —1 < Reb < Rec— % and so @y, . f € Biog,a-

By putting b = 1 and ¢ = 1 + X in the Theorem 2.2 and using (1.4) we obtain the following
corollary:

Corollary 2.2 — Let f(2) = 2+ Y o2 5 an2™ € B(p) and 0 < p < \. Then 27 *DA f € Bioga
for0 < a <In2.

Also by putting b = 3 and ¢ = v + 3 in the Theorem 2.2 and using (1.6) we obtain:

Corollary 2.3 — Let f(2) = z + 3_)" y anz™ € B(p) and 0 < p < 7. Then I3 f € Biog,a for
0<a<In2and B> 0.

Theorem 2.3 — Let 0 < oo < In2andlet 0 < b < ¢ — 1. Also suppose f(z) = > -7, anz™ and
9(2) = Yoo, ~e=52" be analytic in D where {a,} is a bounded sequence in C. Then g € Biog o if
and only if @y cf € Biog,a-

PROOF : From Stirlings formula, we have the following asymptotic expansion for the gamma
function (|arg z| < 7 —€,e > 0) ([8], p. 88):

o 1 1
T(2) ~ e 227y 22 (14— .
S < Tl st ) (z = o0)
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Hence we obtain (as n — o0)

T btn—3 _
Y (= S TN S S S

I'(c+n) c+n 12(b+n)(c+n)

Note that (as n — o0)

b+n b+n_%we—(c—b) 1+ C—b +
ct+n - 2(b+n)

P e G —ele —
(c+n)=¢=nb=c <1 — C) = nbe (1 + Gl + > .
n

Therefore by relations (2.5) to (2.7), we have

and

F(b+n) ~ nb—cC = o
T(ctn) ~n ZAm (n — o0)

where the A; are constants depending on b, ¢ with Ay = 1. From (2.8) we obtain

_ T(e) r'b+n)
(I)b,cf(z) = P(b) nZ:l F(C—‘r n) anz
~ w 3 nb=¢ 3 in 'y apz”
~ti oy { S e
and so
F(b) b—c n
F()tIDbcf —i—Zn O( >an2

where g(z) = > )7, ~¢=52". Since a,, = O(1), we have

o0 1 (o0}
b—c+1 n—1

E n O (n) anZ < (meal\)l(\ano E

n=1 n=1

< 00

()

since 0 < b < ¢ — 1 and so there exists NV > 0 such that

o0

S ntetio <1> a2
n

n=1

Now, suppose g € Biog,o Where 0 < o < In2. From (2.9) we have

(Pp.cf) (2) = I( Z < Z b=etl ( )anz ) , (z € D),

<N, (z e D).

(2.5)

(2.10)
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and so by (2.10)
o (o2 ) @y < [T (2 Y
= 128) (1o = ) 1@ = ot (oo + 51— ) (1og 5 ) )
_IN(o)
= T)
< 00, (z €D).

(llglhog,a + N (log 2)%)

Therefore @y, . f € Biog,a-

Conversely, suppose @y, .f € Biog,o. From (2.9),

g'(2) = Il:gbi Dy f)'( Z i C+10< )anz (z € D),

and therefore we obtain

L'(b)| 2 2 ¢
og.on > ¢ c og,x 1- 1 N
19ll10g, (o) | ®p,c.fl10g, +§‘ég( 2[%) { log 1— |22
L'(b)|

b

H(I)b,cfulo ot N(log 2)(1‘
= 1) ¢

S0 g € Biog,o and the proof is completed. O
By putting b = 1 and ¢ = 1 + X in the Theorem 2.3 and using (1.4) we obtain the following

corollary:
Corollary 2.4 — Let 0 < ae < In2and A > 1. Also let f(2)
bounded sequence in C. Then 3"°° | n*a,,2" € Biogq if and only if 22D f € Biog o

=32, a,2" € Awhere {a,}isa

Also by putting b = 5 and ¢ = v + 3 in the Theorem 2.3 and using (1.6) we obtain:
=37, a,2" € Awhere {a,}isa

Corollary 2.5 — Let 0 < aw < In2and v > 1. Also let f(z)
f € Blog,a-

bounded sequence in C. Then >~>° ; n™7a, 2" € Biog o if and only if
Corollary 2.6 — Suppose 0 < b < ¢ — 1 and f(z) = > o7, apz" € H(D) where {a,} isa

bounded sequence in C. Then & . f has nontangential limits in almost every direction
(z € D). By relation (2.9) from Theorem 2.3, we have

PROOF : Set g(2) = > 2 22527,

?8 b +an Co( ) (z € D).

Since a,, = O(1) and ¢ — b > 1, we obtain

1
< <max ]an|> Z o < 00 (z e D)

B €N
n=1

l9(2)
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and
oo

<
< (maglonl) 3

n=1

> 1

E n?=c0 () anz"”
n

n=1

1
o (nc—b—l-l)’
< 00, (z € D).

Therefore @, . f is bounded and so has nontangential limits in almost every direction. 0

The next theorem deals with the case 0 < b < ¢ + 1. For its proof we shall need the following
result due to Clunie and Macgrogor [2].

Theorem 2.4 — Let f be analytic and univalent in D and let v > 1/2. Then there is a set E of
measure 2 such that for all § € E, if Z,, is a Stolz angle with vertex o = e

’

5 =0, (z € Zy).

Theorem 2.5 — Suppose f is analytic and univalent in D and 0 < b < ¢+ 1. Then &, . f has
nontangential limits in almost every direction.

PROOF : Let f(z) = >, anz" be analytic and univalent in D and fix ~ in the interval (1/2,1).
By Theorem 2.4, there exists some constant A and a set E' of measure 27 such that forall 6 € £

1 Y
g ()] < 4 (1o = 1)

whenever o = ¢ and z € Z,. Forany § > 0 we have

(1= 12’1 (2)] < (1= [e])’ exp {A (log - |z|>7}

= All L 7—51 !
= exp Ogl—]z\ ogl_‘z| .

Since v < 1, it is clear that this last expression approaches zero as |z| — 1. Hence

B
'(z —_ 2.11

for some constant B whenever z lies in the Stolz angle Z,. If g(2) = > "7 j(c + n)anz"™ = cf(z) +
zf'(z), then from (2.11) we obtain

|
9] < Jef O + lelrB | s+ s
< |ef(0)] + IB_’ClS + (1CBT)5 (2.12)

199
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forall z € Z,(|z| = r). Using the same argument as in the proof of Theorem 2.2 we know that

I'(c) /1 t37H (1 — )7 g (t2)dt. (2.13)

il ) = Tt —as ) J,

Let d be suchthat b < d < ¢+ 1, and choose § > 0 so that § < ¢ — d + 1. Then in view of (2.12)
and (2.13), forall z € Z,(|z| = r), we have

POl [ty e
B0c ()] < o [, O e

IC(0)] Lo . Bl Bir
= T()r(c—d+1) /0 - <|Cf(0)| TSt a- tr)5> a
c c 1 .
= r(d)r‘(rc(_)‘cwr 1) <<|Cf( I+ 1 5l 15)/0 (1 —t)c_ddzH—B/O t4(1 _t)C—d—adt>

=K < o0.

Hence ®, . f is bounded inside Z,. Also

o0

(c) r'd+n)
o f (2 b rd d+n +n)anz
= SBTE— EZ)—b)/ =11 — )4 N (12 dt (2.14)
where
= T(d+n)
U(z) 2", (= €D)
7;) I'(c+n)
Therefore o i
¥(E) = @0 () < LK @15
Let
_ Tl d—b-1
h(t) ROCEDN (1—1t)
Then h > 0, [, h(t)dt = (2.14),
1
Oy f(2) = /0 h(t)W(tz)dt. (2.16)

These properties imply that ®;, . f is uniformly continuous on the set Z,. To see this, let z;, 25 €
Z, and let e > 0 be given. Since fo t)dt exists, there is an = € (0, 1) such that

! e [L(c)
/1$h( )it < (2.17)
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By the uniform continuity of ¥ on compact subset of D, there exists A > 0 such that

el'(d)

|\IJ(t22) - \Il(t'zl” < 2|F(C)|

(2.18)

whenever |z, — 21| < A with 21,29 € £, and forall ¢t € [0,1 — «]. Therefore, by relations (2.15) to
(2.18), for |22 — 21| < A we have

1—x 1
|Pp o f(22) — Ppef(21)] < /0 h(t)|¥(tze) — U(tz1)|dt + /1 h(t)|¥(tze) — W(tz1)|dt

—x

1—x 1
< 26;(?' / ht )dt+2K|11:((g| oz
EF d dt
<2 Jo +3

= €.

Hence @, . f is uniformly continuous inside Z,, and so can be extended continuously to the bound-
ary. This implies that
lim @, . f(2) (z € Za),

exists for every § € E, where o = ¢%. Since E has measure 27, this proves the theorem. 0
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