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1. INTRODUCTION

Let H(D) denote the class of analytic functions f on the open unit disc D = {z ∈ C : |z| < 1}. Also

denote by A the subclass of H(D) consisting of functions normalized by

f(z) = z +
∞∑

n=2

anzn.

For α > 0, the α-logarithmic Bloch space Blog,α is the Banach space of those functions f ∈ H(D)

which satisfy

‖ f ‖log,α := |f(0)|+ sup
z∈D

(1− |z|2)
(

log
2

1− |z|2
)α

|f ′(z)| < ∞.

For simplicity, the space Blog,1 will be denoted by Blog.

The logarithmic Bloch spaces were studied by many authors (see for example [3] and [4]).

A typical example of an unbounded univalent function in the space Blog is the function

f(z) = log log
2

1− z
, (z ∈ D).
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Let us mention also that the logarithmic Bloch spaces play a basic role studying the boundedness

of Hankel and Toeplitz operators in Bergman and Bloch-type spaces (see. e.g., [1] and [12]).

Various operators of fractional calculus (that is, fractional integral and fractional derivative) have

been studied in the literature (cf. [5, 9-11]). We use the following definition used recently by Srivas-

tava and Owa [10]. The fractional integral of order λ is defined, for a function f , by

D−λ
z f(z) =

1
Γ(λ)

∫ z

0

f(ζ)
(z − ζ)1−λ

dζ, (λ > 0),

where f is an analytic function in a simply-connected region of the z-plane containing the origin, and

the multiplicity of (z − ζ)λ−1 is removed by requiring log(z − ζ) to be real when z − ζ > 0.

It is easy to check that for f(z) = z +
∑∞

n=2 anzn ∈ A we have

D−λ
z f(z) =

1
Γ(2 + λ)

zλ+1 +
∞∑

n=2

Γ(n + 1)
Γ(λ + n + 1)

anzn+λ, (z ∈ D). (1.1)

Also the fractional derivative of order λ is defined, for a function f , by

Dλ
z f(z) =

1
Γ(1− λ)

d

dz

∫ z

0

f(ζ)
(z − ζ)λ

dζ, (0 ≤ λ < 1),

where f is a above, and the multiplicity of (z − ζ)−λ is removed, as in previous definition.

Also it is interesting to note that for f(z) = z +
∑∞

n=2 anzn ∈ A we have

Dλ
z f(z) =

1
Γ(2− λ)

z1−λ +
∞∑

n=2

Γ(n + 1)
Γ(n + 1− λ)

anzn−λ, (z ∈ D). (1.2)

Jung et al. [5] investigated the linear operator =α
β which is defined by

=α
βf(z) =

Γ(α + β + 1)
Γ(α + 1)Γ(β + 1)

α

zβ

∫ z

0

(
1− t

z

)α−1

tβ−1f(t)dt, (f ∈ H(D), z ∈ D)

α > 0;β > −1;

and they proved for f ∈ A with Ref ′(z) > 0, =α
βf is bounded at least for α > 1 and β > −1. In

view of ([5], Lemma 4), for function f(z) = z +
∑∞

n=2 anzn ∈ A we have

=α
βf(z) = z +

Γ(α + β + 1)
Γ(β + 1)

∞∑

n=2

Γ(β + n)
Γ(α + β + n)

anzn, (α > 0, β > −1). (1.3)

Definition 1.1 — For f(z) =
∑∞

n=0 anzn with f ∈ H(D), we define

Φb,cf(z) =
∞∑

n=0

(b)n

(c)n
anzn, (z ∈ D).
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Here b, c are complex numbers such that c 6= 0,−1,−2, ..., (b)0 = 1 for b 6= 0, and for each

positive integer n, (b)n = b(b + 1)(b + 2)...(b + n− 1) is the Pochhammer symbol.

The above series converges absolutely for all z ∈ D, and hence represents an analytic function in

the unit disc D. It should be remarked that by specializing the parameters b, c and using (1.1), (1.2)

and (1.3) one can obtain that

D−λ
z f(z) =

zλ

Γ(1 + λ)
Φ1,1+λf(z), (z ∈ D, λ > 0), (1.4)

Dλ
z f(z) =

z−λ

Γ(1− λ)
Φ1,1−λf(z), (z ∈ D, 0 ≤ λ < 1), (1.5)

and

=α
βf(z) =

α + β

β
Φβ,α+βf(z), (z ∈ D, α > 0, β > 0), (1.6)

where f ∈ A.

It is natural to ask that for which functions f and parameters b, c, Φb,cf ∈ Blog,α(α > 0). The

main purpose of this paper is finding conditions on the parameters b, c such that when f is chosen

from suitable classes, Φb,cf ∈ Blog,α(α > 0).

Remark 1.1 : It is easy to see that the function g(x) = (1 − x)
(
log 2

1−x

)α
(0 < x < 1) is

bounded and decreasing for 0 ≤ α < ln 2.

Proving our results we shall use the following well known result

∫ 1

0
tp−1(1− t)q−1dt =

Γ(p)Γ(q)
Γ(p + q)

where Re p > 0 and Re q > 0.

2. MAIN RESULTS

In the following Theorem we prove:

Theorem 2.1 — Let b, c be complex numbers such that −1 < Re c < Re b. Also let f ∈ H(D)

and Φb,cf ∈ Blog,α where 0 ≤ α < ln 2. Then f ∈ Blog,α. Moreover

‖f‖log,α ≤ |f(0)|+ |Γ(b)|Γ(Re(b− c))Γ(Re c + 1)
|Γ(c)||Γ(b− c)|Γ(Re b + 1)

‖Φb,cf‖log,α.

PROOF : Let f(z) =
∑∞

n=0 anzn ∈ H(D) and Φb,cf ∈ Blog,α. By the hypotheses of the theorem,
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for z ∈ D we have
∫ 1

0
(1− t)b−c−1tc−1Φb,cf(tz)dt =

Γ(c)
Γ(b)

∫ 1

0
(1− t)b−c−1tc−1

∞∑

n=0

Γ(b + n)
Γ(c + n)

antnzndt

=
Γ(c)
Γ(b)

∞∑

n=0

Γ(b + n)
Γ(c + n)

anzn

∫ 1

0
(1− t)b−c−1tn+c−1dt

=
Γ(c)Γ(b− c)

Γ(b)

∞∑

n=0

anzn

=
Γ(c)Γ(b− c)

Γ(b)
f(z). (2.1)

By Remark 1.1 and relation (2.1), we obtain

(1− |z|2)
(

log
2

1− |z|2
)α

|f ′(z)|

≤ |Γ(b)|
|Γ(c)||Γ(b− c)|

∫ 1

0
(1− t)Re(b−c)−1tRe c(1− |z|2)

(
log

2
1− |z|2

)α

|(Φb,cf)′(tz)|dt

≤ |Γ(b)|
|Γ(c)||Γ(b− c)|

∫ 1

0
(1− t)Re(b−c)−1tRe c(1− |tz|2)

(
log

2
1− |tz|2

)α

|(Φb,cf)′(tz)|dt

≤ |Γ(b)|‖Φb,cf‖log,α

|Γ(c)||Γ(b− c)|
∫ 1

0
(1− t)Re(b−c)−1tRe cdt

< ∞, (z ∈ D),

since −1 < Re c < Re b. Therefore f ∈ Blog,α and

‖f‖log,α ≤ |f(0)|+ |Γ(b)|Γ(Re(b− c))Γ(Re c + 1)
|Γ(c)||Γ(b− c)|Γ(Re b + 1)

‖Φb,cf‖log,α.2

By putting b = 1 and c = 1 − λ in the Theorem 2.1 and using (1.5) we obtain the following

corollary:

Corollary 2.1 — Let f ∈ A and zλDλ
z f ∈ Blog,α where 0 ≤ λ < 1 and 0 ≤ α < ln 2. Then

f ∈ Blog,α and ‖f‖log,α = (1− λ)‖zλDλ
z f‖log,α.

A function f ∈ H(D) is called uniformly locally univalent if there exists a constant ρ > 0 such

that f is univalent on the hyperbolic disc |(z − a)/(1− āz)| < tanh ρ of radius ρ for every a ∈ D. It

is known that a non-constant analytic function f is uniformly locally univalent if and only if the norm

‖ f ′′/f ′ ‖= sup
z∈D

(1− |z|2)
∣∣∣∣
f ′′(z)
f ′(z)

∣∣∣∣
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of the pre-Schwarzian derivative f ′′/f ′ of f is finite. Let

B(λ) = {f ∈ H(D); ‖ f ′′/f ′ ‖≤ 2λ}.

Kim and Sugawa [6, 7] investigated various properties of the functions which belong to the class

B(λ). In the next theorem we prove:

Theorem 2.2 — Let λ > 0 and let b, c be complex numbers such that −1 < Re b < Re c − λ
2 .

Also suppose that f(z) =
∑∞

n=0 anzn is uniformly locally univalent with ‖ f ′′/f ′ ‖≤ λ. Then

Φb,cf ∈ Blog,α for 0 ≤ α < ln 2.

PROOF : Let |z| = r (0 < r < 1) and ‖ f ′′/f ′ ‖≤ λ. Then we have

log
∣∣∣∣
f ′(z)
f ′(0)

∣∣∣∣ ≤
∣∣∣∣log

f ′(z)
f ′(0)

∣∣∣∣

=
∣∣∣∣
∫ z

0

f ′′(w)
f ′(w)

dw

∣∣∣∣

≤ r

∫ 1

0

∣∣∣∣
f ′′(tz)
f ′(tz)

∣∣∣∣ dt

≤ r

∫ 1

0

λ

1− r2t2
dt

= λ log

√
1 + r

1− r
.

This implies

|f ′(z)| ≤ |f ′(0)|
(

1 + r

1− r

)λ
2

, (|z| = r < 1). (2.2)

On the other hand, we have

Φb,cf(z) =
Γ(c)
Γ(b)

∞∑

n=0

Γ(b + n)
Γ(c + n)

.
c + n

c + n
anzn

=
Γ(c)

Γ(b)Γ(c− b + 1)

∞∑

n=0

Γ(b + n)Γ(c− b + 1)
Γ(c + n + 1)

(c + n)anzn

=
Γ(c)

Γ(b)Γ(c− b + 1)

∫ 1

0
tb−1(1− t)c−b

∞∑

n=0

(c + n)anzntndt

=
Γ(c)

Γ(b)Γ(c− b + 1)

∫ 1

0
tb−1(1− t)c−b(cf(tz) + tzf ′(tz))dt. (2.3)

Set h(z) = cf(z) + zf ′(z). Since ‖ f ′′/f ′ ‖≤ λ, we obtain |f ′′(z)| ≤ λ|f ′(z)|
1−|z|2 (z ∈ D), and so

|h′(z)| ≤ |f ′(z)|
(

λ|z|
1− |z|2 + |c|+ 1

)
, (z ∈ D). (2.4)
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Then in view of (2.3) and (2.4) we have

|(Φb,cf)′(z)| ≤ |Γ(c)|
|Γ(b)||Γ(c− b + 1)|

∫ 1

0
tRe b(1− t)Re(c−b)|f ′(tz)|

(
λt|z|

1− t2|z|2 + |c|+ 1
)

dt

and by relation (2.2), for |z| = r (0 < r < 1), we obtain

(1− |z|2)
(

log
2

1− |z|2
)α

|(Φb,cf)′(z)|

≤ |Γ(c)|
|Γ(b)||Γ(c− b + 1)|

∫ 1

0
tRe b(1− t)Re(c−b)(1− |z|2)

(
log

2
1− |z|2

)α

|f ′(0)|

×
(

1 + tr

1− tr

)λ
2

(
λt|z|

1− t2|z|2 + |c|+ 1
)

dt

≤ |Γ(c)||f ′(0)|
|Γ(b)||Γ(c− b + 1)|(log 2)α

∫ 1

0
tRe b(1− t)Re(c−b)

(
2

1− t

)λ
2

(
λt

1− t
+ |c|+ 1

)
dt

≤ |Γ(c)||f ′(0)|2λ
2

|Γ(b)||Γ(c− b + 1)|λ(log 2)α

∫ 1

0
tRe b+1(1− t)Re(c−b)−λ

2
−1

+
|Γ(c)||f ′(0)|2λ

2

|Γ(b)||Γ(c− b + 1)|(|c|+ 1)(log 2)α

∫ 1

0
tRe b(1− t)Re(c−b)−λ

2

< ∞

since −1 < Re b < Re c− λ
2 and so Φb,cf ∈ Blog,α.

By putting b = 1 and c = 1 + λ in the Theorem 2.2 and using (1.4) we obtain the following

corollary:

Corollary 2.2 — Let f(z) = z +
∑∞

n=2 anzn ∈ B(p) and 0 < p < λ. Then z−λD−λ
z f ∈ Blog,α

for 0 ≤ α < ln 2.

Also by putting b = β and c = γ + β in the Theorem 2.2 and using (1.6) we obtain:

Corollary 2.3 — Let f(z) = z +
∑∞

n=2 anzn ∈ B(p) and 0 < p < γ. Then =γ
βf ∈ Blog,α for

0 ≤ α < ln 2 and β > 0.

Theorem 2.3 — Let 0 ≤ α < ln 2 and let 0 < b < c− 1. Also suppose f(z) =
∑∞

n=1 anzn and

g(z) =
∑∞

n=1
an

nc−b z
n be analytic in D where {an} is a bounded sequence in C. Then g ∈ Blog,α if

and only if Φb,cf ∈ Blog,α.

PROOF : From Stirlings formula, we have the following asymptotic expansion for the gamma

function (| arg z| ≤ π − ε, ε > 0) ([8], p. 88):

Γ(z) ≈ e−zzz

√
2π

z

(
1 +

1
12z

+
1

288z2
+ ...

)
(z →∞).
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Hence we obtain (as n →∞)

Γ(b + n)
Γ(c + n)

≈ ec−b

(
b + n

c + n

)b+n− 1
2

(c + n)b−c

(
1 +

c− b

12(b + n)(c + n)
+ ...

)
. (2.5)

Note that (as n →∞)
(

b + n

c + n

)b+n− 1
2

≈ e−(c−b)

(
1 +

c− b

2(b + n)
+ ...

)
(2.6)

and

(c + n)b−c = nb−c

(
1− −c

n

)−(c−b)

= nb−c

(
1 +

−c(c− b)
n

+ ...

)
. (2.7)

Therefore by relations (2.5) to (2.7), we have

Γ(b + n)
Γ(c + n)

≈ nb−c
∞∑

i=0

Ain
−i (n →∞) (2.8)

where the Ai are constants depending on b, c with A0 = 1. From (2.8) we obtain

Φb,cf(z) =
Γ(c)
Γ(b)

∞∑

n=1

Γ(b + n)
Γ(c + n)

anzn

≈ Γ(c)
Γ(b)

∞∑

n=1

nb−c

{ ∞∑

i=0

Ain
−i

}
anzn,

and so
Γ(b)
Γ(c)

Φb,cf(z) = g(z) +
∞∑

n=1

nb−cO

(
1
n

)
anzn (2.9)

where g(z) =
∑∞

n=1
an

nc−b z
n. Since an = O(1), we have

∣∣∣∣∣
∞∑

n=1

nb−c+1O

(
1
n

)
anzn−1

∣∣∣∣∣ ≤
(

max
n∈N

|an|
) ∞∑

n=1

∣∣∣∣O
(

1
nc−b

)∣∣∣∣

< ∞

since 0 < b < c− 1 and so there exists N > 0 such that
∣∣∣∣∣
∞∑

n=1

nb−c+1O

(
1
n

)
anzn−1

∣∣∣∣∣ < N, (z ∈ D). (2.10)

Now, suppose g ∈ Blog,α where 0 ≤ α < ln 2. From (2.9) we have

(Φb,cf)′(z) =
Γ(c)
Γ(b)

(
g′(z) +

∞∑

n=1

nb−c+1O

(
1
n

)
anzn−1

)
, (z ∈ D),



198 Z. OROUJI AND R. AGHALARY

and so by (2.10)

(1− |z|2)
(

log
2

1− |z|2
)α

|(Φb,cf)′(z)| ≤ |Γ(c)|
|Γ(b)|

(
‖g‖log,α + N(1− |z|2)

(
log

2
1− |z|2

)α)

≤ |Γ(c)|
|Γ(b)| (‖g‖log,α + N(log 2)α)

< ∞, (z ∈ D).

Therefore Φb,cf ∈ Blog,α.

Conversely, suppose Φb,cf ∈ Blog,α. From (2.9),

g′(z) =
Γ(b)
Γ(c)

(Φb,cf)′(z)−
∞∑

n=1

nb−c+1O

(
1
n

)
anzn−1, (z ∈ D),

and therefore we obtain

‖g‖log,α ≤ |Γ(b)|
|Γ(c)|‖Φb,cf‖log,α + sup

z∈D
(1− |z|2)

(
log

2
1− |z|2

)α

N

≤ |Γ(b)|
|Γ(c)|‖Φb,cf‖log,α + N(log 2)α.

So g ∈ Blog,α and the proof is completed. 2

By putting b = 1 and c = 1 + λ in the Theorem 2.3 and using (1.4) we obtain the following

corollary:

Corollary 2.4 — Let 0 ≤ α < ln 2 and λ > 1. Also let f(z) =
∑∞

n=1 anzn ∈ A where {an} is a

bounded sequence in C. Then
∑∞

n=1 n−λanzn ∈ Blog,α if and only if z−λD−λ
z f ∈ Blog,α.

Also by putting b = β and c = γ + β in the Theorem 2.3 and using (1.6) we obtain:

Corollary 2.5 — Let 0 ≤ α < ln 2 and γ > 1. Also let f(z) =
∑∞

n=1 anzn ∈ A where {an} is a

bounded sequence in C. Then
∑∞

n=1 n−γanzn ∈ Blog,α if and only if =γ
βf ∈ Blog,α.

Corollary 2.6 — Suppose 0 < b < c − 1 and f(z) =
∑∞

n=1 anzn ∈ H(D) where {an} is a

bounded sequence in C. Then Φb,cf has nontangential limits in almost every direction.

PROOF : Set g(z) =
∑∞

n=1
an

nc−b z
n, (z ∈ D). By relation (2.9) from Theorem 2.3, we have

Γ(b)
Γ(c)

Φb,cf(z) = g(z) +
∞∑

n=1

nb−cO

(
1
n

)
anzn, (z ∈ D).

Since an = O(1) and c− b > 1, we obtain

|g(z)| ≤
(

max
n∈N

|an|
) ∞∑

n=1

1
nc−b

< ∞, (z ∈ D)
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and
∣∣∣∣∣
∞∑

n=1

nb−cO

(
1
n

)
anzn

∣∣∣∣∣ ≤
(

max
n∈N

|an|
) ∞∑

n=1

∣∣∣∣O
(

1
nc−b+1

)∣∣∣∣

< ∞, (z ∈ D).

Therefore Φb,cf is bounded and so has nontangential limits in almost every direction. 2

The next theorem deals with the case 0 < b < c + 1. For its proof we shall need the following

result due to Clunie and Macgrogor [2].

Theorem 2.4 — Let f be analytic and univalent in D and let γ > 1/2. Then there is a set E of

measure 2π such that for all θ ∈ E, if ∠α is a Stolz angle with vertex α = eiθ,

lim
z→α

log |f ′(z)|(
log 1

1−|z|
)γ = 0, (z ∈ ∠α).

Theorem 2.5 — Suppose f is analytic and univalent in D and 0 < b < c + 1. Then Φb,cf has

nontangential limits in almost every direction.

PROOF : Let f(z) =
∑∞

n=0 anzn be analytic and univalent in D and fix γ in the interval (1/2, 1).

By Theorem 2.4, there exists some constant A and a set E of measure 2π such that for all θ ∈ E

log |f ′(z)| ≤ A

(
log

1
1− |z|

)γ

whenever α = eiθ and z ∈ ∠α. For any δ > 0 we have

(1− |z|)δ|f ′(z)| ≤ (1− |z|)δ exp
{

A

(
log

1
1− |z|

)γ}

= exp
{

A

(
log

1
1− |z|

)γ

− δ log
1

1− |z|
}

.

Since γ < 1, it is clear that this last expression approaches zero as |z| → 1. Hence

|f ′(z)| ≤ B

(1− |z|)δ
(2.11)

for some constant B whenever z lies in the Stolz angle ∠α. If g(z) =
∑∞

n=0(c + n)anzn = cf(z) +

zf ′(z), then from (2.11) we obtain

|g(z)| ≤ |cf(0)|+ |c|rB
∫ 1

0

1
(1− tr)δ

dt + r
B

(1− r)δ

≤ |cf(0)|+ B|c|
1− δ

+
rB

(1− r)δ
(2.12)
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for all z ∈ ∠α(|z| = r). Using the same argument as in the proof of Theorem 2.2 we know that

Φd,cf(z) =
Γ(c)

Γ(d)Γ(c− d + 1)

∫ 1

0
td−1(1− t)c−dg(tz)dt. (2.13)

Let d be such that b < d < c + 1, and choose δ > 0 so that δ < c− d + 1. Then in view of (2.12)

and (2.13), for all z ∈ ∠α(|z| = r), we have

|Φd,cf(z)| ≤ |Γ(c)|
Γ(d)Γ(c− d + 1)

∫ 1

0
td−1(1− t)c−d|g(tz)|dt

≤ |Γ(c)|
Γ(d)Γ(c− d + 1)

∫ 1

0
td−1(1− t)c−d

(
|cf(0)|+ B|c|

1− δ
+

Btr

(1− tr)δ

)
dt

≤ |Γ(c)|
Γ(d)Γ(c− d + 1)

((
|cf(0)|+ B|c|

1− δ

) ∫ 1

0
td−1(1− t)c−ddt + B

∫ 1

0
td(1− t)c−d−δdt

)

= K < ∞.

Hence Φd,cf is bounded inside ∠α. Also

Φb,cf(z) =
Γ(c)
Γ(b)

∞∑

n=0

Γ(b + n)
Γ(d + n)

.
Γ(d + n)
Γ(c + n)

anzn

=
Γ(c)

Γ(b)Γ(d− b)

∫ 1

0
tb−1(1− t)d−b−1Ψ(tz)dt (2.14)

where

Ψ(z) =
∞∑

n=0

Γ(d + n)
Γ(c + n)

anzn, (z ∈ D).

Therefore

|Ψ(z)| = Γ(d)
|Γ(c)| |Φd,cf(z)| < Γ(d)

|Γ(c)|K. (2.15)

Let

h(t) =
Γ(c)

Γ(b)Γ(d− b)
tb−1(1− t)d−b−1.

Then h > 0,
∫ 1
0 h(t)dt = Γ(c)

Γ(d) , and by (2.14),

Φb,cf(z) =
∫ 1

0
h(t)Ψ(tz)dt. (2.16)

These properties imply that Φb,cf is uniformly continuous on the set ∠α. To see this, let z1, z2 ∈
∠α and let ε > 0 be given. Since

∫ 1
0 h(t)dt exists, there is an x ∈ (0, 1) such that

∫ 1

1−x
h(t)dt <

ε

4K

|Γ(c)|
Γ(d)

. (2.17)
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By the uniform continuity of Ψ on compact subset of D, there exists λ > 0 such that

|Ψ(tz2)−Ψ(tz1)| < εΓ(d)
2|Γ(c)| (2.18)

whenever |z2 − z1| < λ with z1, z2 ∈ ∠α and for all t ∈ [0, 1− x]. Therefore, by relations (2.15) to

(2.18), for |z2 − z1| < λ we have

|Φb,cf(z2)− Φb,cf(z1)| ≤
∫ 1−x

0
h(t)|Ψ(tz2)−Ψ(tz1)|dt +

∫ 1

1−x
h(t)|Ψ(tz2)−Ψ(tz1)|dt

<
εΓ(d)
2|Γ(c)|

∫ 1−x

0
h(t)dt + 2K

Γ(d)
|Γ(c)|

∫ 1

1−x
h(t)dt

<
εΓ(d)
2|Γ(c)|

∫ 1

0
h(t)dt +

ε

2

= ε.

Hence Φb,cf is uniformly continuous inside ∠α and so can be extended continuously to the bound-

ary. This implies that

lim
z→α

Φb,cf(z) (z ∈ ∠α),

exists for every θ ∈ E, where α = eiθ. Since E has measure 2π, this proves the theorem. 2
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