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We develop new closed form representations of sums of reciprocal binomial coefficients. We
also identify new integral and hypergeometric representation for the binomial-harmonic number
sums.
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1. INTRODUCTION AND PRELIMINARIES

In the interesting paper [6], Nimbran considers the representation of

S (k) = ZW (1.1)

n=1
for £ € N\ {1}, in closed form and evaluates S (k) for k = {2,3,4,5,6,8,10, 12} . In particular
S(2) =In2islistedin[4], S (3) = 43T —1In3and S (4) = 1 In2— Z are listed in [5]. Nimbran’s
search of the literature yields no other evaluation of S (k) for £ > 5 and then sets out to evaluate
S (k) for k = {5,6,8,10, 12}. Nimbran claims S (10) is difficult to evaluate and finds it impossible
to evaluate S (k) for any other values of k. Nimbran’s method of evaluating S (k) is indeed ingenious
and relies on the representation
p—1
p=2 (Z <mp—|—1—m - n;))
m>1 \r=1
which is a generalization of an identity given by Euler in 1734, [3]. As a by-product of Nimbran’s
investigations, he also obtains some rather interesting representations of 7 including

22 i 60
7T = (4n?—1)(16n* — 1) (160> — 9)

m =
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In this paper we shall investigate (1.1) and give a general identity for S (k) for every £ € N\ {1}.
Furthermore we shall extend our investigation of (1.1) and evaluate representations for harmonic
number sums of the form Hy,, S (k). First we recall some definitions of some special functions that
will be useful throughout this paper. The Gamma function, for z € C, as given by Euler in integral
form is

I(z) = / et ldt, R (2) > 0,
0
the special case for = € N reduces to, from the recurrence relation, I" (n + 1) = nI' (n) = n!l. The

Pochhammer, or shifted factorial is defined by (\), = F%A&)” ). The Beta function, or Euler integral

of the first kind is

1
B(sw) — /tz—l (11"t
0
W, R(z) >0, (w) > 0.

(z +w)
Let
"1 L1 = n
H,=Y == dt = 1) = - . Hy:=0
;"” /0 g vl ;J(JJFTL) ’
be the nth harmonic number, where ~ denotes the Euler-Mascheroni constant, am = S s
the m!" order harmonic number and +(z) is the Digamma (or Psi) function defined by
_d _T'(2) _ 1
9(z) = g (0BT ()} = oy and (1 42) =(2) + -,
moreover
T S e
- c\n+l n+z ’
A generalized hypergeometric function is defined by
1,02, ..., Gp
pFylzl = Fy z| = plyl(ap);(by) | 2]
b1,ba, ..., by
11 (a))
a;i), 2"
B (a1), - (ap), 2"  —j=1 "
= 2 (b1), .. (by), n! 2.5 (1.2)
n>0 \1n n n>0 TT (bj), n!
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for b; non-negative integers or zero. When p < ¢; ,F, (2] converges for all complex values of
z, pFy [2] is an entire function. When p > ¢ + 1; ,F, [2] converge for z = 0, unless it terminates,
which it does when one of the parameters a; is a negative integer, hence ,F, [2] is a polynomial in
z. When p = ¢ + 1 the series converges in the unit disc |z| < 1, and also for |z| = 1 provided that

q p
R > bj— > aj| >0.Whenp = 2,¢=1we have the familiar Gauss hypergeometric function
: ~

where |z| < 1, R (c —b) > 0and R (b) > 0. The following Lemma will be useful in the development
of the main Theorem.

Lemma 1 — Let p (n) and ¢ (n) be polynomials in n where all the roots of ¢ (n) are simple. No
root of ¢ (n) is in N and let the deg (p (n)) < deg (¢ (n) — 2). Let v, = %. Then

[e'S) k
Zvn = _Zar'@z}(ﬁr) (13)
n=0 r=1
where
n k
= 1.4
n TZ:I n+ By (14)
o
PROOF : From v, = E"g we have Z Up = > %. By partial fraction expansion v, =
=0 n=0
Z’j 1 nis, since all the roots of g (n) are simple. For the series ° v, to converge it suffices to have
n=0

lim nv,, = 0, in which case Z _;a, = 0. Now

n—oo

[ee]

- ZZO‘ <n+ﬁr n+1>

n=0r=1
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[ee]

= 2 Z<n+ﬁr nil)

r=1

k
= =) o (y+v(B)
r=1

k
= - Z arw(/@r)
r=1

and the Lemma is proved. O

2. CLOSED FORM SUMMATION

We now prove the following theorem.

Theorem 1 — Let k € N\ {1} and j € R then we have the novel representation

The case j = 0 reduces to

> 1
_nzzl nk _7"21
k

PROOF : Consider the expansion

> 1 = k! (nk —k+ )
nzl nk + j nzl (nk +j)
k
> 1 - 1
= ! = k!
kz k kz(nk—i—j—l—l—k)
n=L ] (nk+j+1-1) n=1
r=1

3
[l
o
=
A~
3
4
—_
4
f
t
=
~
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where Pochhammer’s symbol (z), = J@&+n) By partial fraction decomposition we have
y n T'(z)

. _k A R T 1 1

n =0

and applying Lemma 1 we conclude

k 7 .
T(.K) = Z(—n’“(’:_i)w( )

r=1

and (2.1) follows. For j = 0 (2.2) follows and we notice that 7" (0, k) = k1S (k) which is the sum
0

(1.1).
It is possible to express 7' (7, k) in terms of basic trigonometric functions and we show the result

in the next remark
Remark 1 : Gauss’s Digamma theorem states that for 0 < a < b

-1

(4 (E) =—y—1In(20) — gcot (@> +2 cos <27rbau) In (sin (%)) .
1

T(j,k) = (—1>’“ln(2k>+§3(‘1)r<fj ) <_gC°t((r+kj)ﬂ>>

r=1
k
+2) " (-1)" < k_i )
r=1 r—=

where [z] is the integer part of « and r + j < k. The case j = 0 follows simply.

Some examples follow. The case j = k is interesting and we see that

Tk =3 e = 3 (1) ( - )wﬁ";’“).

n=1 nk + k r=1
k
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Now since (1 + z) = 9(z) + 1, we have that

e
0o k
TR = 3= D) S N
r k

= —14T(0,k)
Also
2
T(0,6) = 32ln2——71n3—7\/§7r,
2 6
2 11
T(3,6) = 47— 321112——71 3 \6/377,
2 11
T(8,6) = —%+321 2+?71 3 11V3r

T<Z,4) - Tr(4+2\f2) -
In the next section we give an extension to Theorem 1 by incorporating harmonic numbers to the
sum 7 (4, k) and associating the sum with hypergeometric and integral representation.

3. EXTENSION
We begin with the proof of the following Theorem.

Theorem 2 — Under the assumptions of Theorem 1 and let m € N then,

-1
7 )(37/“) = ZW(( & ZZQ( )(]k
n=1

n=1
1 S k=1 N ]
r=1 -
m! & rem [ k=1 (m+1)
= 2. (1) L H (3.2)
r=1 B

where
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PROOF : From the identity (2.1) we differentiate both sides ”m” times with respect to j so that
-1
> g(m) nk + j s
(m) (; — £ — (m) (;
(5, k) Z_: pHED (( y ;Q (7, k)

k
1 kE—1 r+7J
— _1) (m)
> (1) (T1>w )
and (3.1) follows. From the known identity, relating polygamma functions with harmonic numbers

W4 2) = ()"l (HD — ¢ (14 2))

then

since
k—1

k
> (-1 ( > =0, fork > 2,
r=1 r—1

hence (3.2) follows. For completeness we detail some values of QU™ (j, k):
1

QW (j,k) = —————— (Hinsj—t — Hinty)
nk+j
and
1
@ ()= — - o N (g® g®
Q (]7k) ke +] ((Hkn-i-]—k Hkn-i—]) (Hkn+]7k H]gn+])) )
k
some more details on the function QU™ (j, k) are given in the paper [9]. O

The cases j = 0 and j = k are interesting and the results are given in the next corollary.

Corollary1 — Forj =0

T (0,k) = ) Q™ (0,k)
n=1

k
1 k—1 r
- —_1) (m)(_
w2 Y ( o )w ()
'k—l E_1
= Yy ( 1 ) HY, (33)
r=1 r—= k

155
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where .
(m)
Forj =k
T (k, k) = T (0, k) + (=1)" LA (k)
where

PROOF : From (3.1) we have

T (0,k) =

T - 30
1< 1
— (m)(q
~ 2 <r_1 >¢ (+3)
where )
dm nk+j\
(m) @

By the property of the polygamma function

A1) = ¢W%1+zy+t%¥¥ﬂ
1 r
(m (m) ("
Tom kmz (T_1><¢ (5 +

ol

(=1

,rerl

)

(3.4)
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From the paper [9], we have

i(—l)r E-1) 1 A
— r—1 Tm+1 a m'k

hence
T (k, k) =T (0,k) + (—1)™ A (k)

hence (3.4) follows. Some values of A(™ (k) are

AD (k) = Hy, A (k)= B + B

A® (k) = H}+3H.H?+2HY O

Example 1 : Some illustrative examples follow.

[e.9]

Hn — j — ddn j
T(l) (],k‘) _ Z k—k+j . k+j
n=1 nk +J
k

k
m! k—1 9
kaZl( ) ( r—1 ) r+i7k7

3 1 1 1 7
1) - 2 _a_=- 7 - _
T (1,4) 16((2) 6G 5 T (0,4) 6G 48{(2)
where G is Catalan’s constant.
T(g) (07 2) = - 221 C (4) y
2835 57° 76111
(4) et o fPas
4 16 )~ " =61

The expression 7" (j, k) and 7™ (j, k) can also be represented in integral and hypergeometric
form and for completeness the following is recorded.

Theorem 3 — Let the assumptions of Theorem 1 apply, then

Ui (] — g)E1
T(,k) = k:/o de, (3.5)
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1.5 oNE-1 m
70" (k) = k/ x (1( )" " In z
0

1 —zk)
and
T(j,k) = 14xF 1.
. 14§k 2451k 2k+j
k+j TR s
k
PRrROOF : Consider
. — > nk—l—j—k+1) (k+1)
nl(nk+j> n=1 77, +]+ )
k

o0

= kY B(knk—k+j+1),

where T (+) is the gamma function and B (-, -) is the beta function. Now

1 g1 k=1 o0 "
T(j,k) = k:/o :E](lzkx)z_:l(xk) dz,

and (3.5) follows. Now differentiating m times with respect to j results in

1,5 1 )k—l In™
(m) B z(l—x x
T (5, k) = k:/o T dz

hence (3.6). For the hypergeometric function we consider the definition (1.2) above and write

therefore (3.7) follows.

(3.6)

(3.7)
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Remark 2 : It is straightforward to see, from (3.3) and (3.6), that

e e}

-1
T(m (0,2) = 2/ e = S him [ L ntJ
0 1—|—$ n:1]—>0 d](m) 2

= 2(-1)"m!(1-2"")((m+1)

(_1)m+l m) H(m+1)
2m -3
2

o0 (_1)m+n+1
— | ~ 7
= 2ml Z nm+1 )
n=1

Many other examples of binomial sums, harmonic number sums, integral representations and
hypergeometric summation are available in [1, 2, 8, 10-15]. Some interesting binomial series are also
investigated in [7].
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