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We develop new closed form representations of sums of reciprocal binomial coefficients. We
also identify new integral and hypergeometric representation for the binomial-harmonic number
sums.
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1. INTRODUCTION AND PRELIMINARIES

In the interesting paper [6], Nimbran considers the representation of

S (k) =
∞∑

n =1

(nk − k)!
(nk)!

, (1.1)

for k ∈ N\ {1}, in closed form and evaluates S (k) for k = {2, 3, 4, 5, 6, 8, 10, 12} . In particular

S (2) = ln 2 is listed in [4], S (3) =
√

3π
12 − 1

4 ln 3 and S (4) = 1
4 ln 2− π

24 are listed in [5]. Nimbran’s

search of the literature yields no other evaluation of S (k) for k ≥ 5 and then sets out to evaluate

S (k) for k = {5, 6, 8, 10, 12}. Nimbran claims S (10) is difficult to evaluate and finds it impossible

to evaluate S (k) for any other values of k. Nimbran’s method of evaluating S (k) is indeed ingenious

and relies on the representation

ln p =
∑

m≥1

(
p−1∑

r=1

(
1

mp + r −m
− 1

mp

))

which is a generalization of an identity given by Euler in 1734, [3]. As a by-product of Nimbran’s

investigations, he also obtains some rather interesting representations of π including

π =
22
7
−

∞∑

n =1

60
(4n2 − 1) (16n2 − 1) (16n2 − 9)

.
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In this paper we shall investigate (1.1) and give a general identity for S (k) for every k ∈ N\ {1} .

Furthermore we shall extend our investigation of (1.1) and evaluate representations for harmonic

number sums of the form HknS (k) . First we recall some definitions of some special functions that

will be useful throughout this paper. The Gamma function, for z ∈ C, as given by Euler in integral

form is

Γ (z) =

∞∫

0

e−ttz−1dt, < (z) > 0,

the special case for z ∈ N reduces to, from the recurrence relation, Γ (n + 1) = nΓ (n) = n!. The

Pochhammer, or shifted factorial is defined by (λ)ν = Γ(λ+ν)
Γ(λ) . The Beta function, or Euler integral

of the first kind is

B (z, w) =

1∫

0

tz−1 (1− t)w−1 dt

=
Γ (z) Γ (w)
Γ (z + w)

, < (z) > 0,< (w) > 0.

Let

Hn =
n∑

r=1

1
r

=
∫ 1

0

1− tn

1− t
dt = γ + ψ (n + 1) =

∞∑

j=1

n

j (j + n)
, H0 := 0

be the nth harmonic number, where γ denotes the Euler-Mascheroni constant, H
(m)
n =

∑n
r=1

1
rm is

the mth order harmonic number and ψ(z) is the Digamma (or Psi) function defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)
Γ(z)

and ψ(1 + z) = ψ(z) +
1
z
,

moreover

ψ(z) = −γ +
∞∑

n=0

(
1

n + 1
− 1

n + z

)
.

A generalized hypergeometric function is defined by

pFq [z] = pFq


 a1, a2, ..., ap

b1, b2, ..., bq

∣∣∣∣∣∣
z


 = pFq [(ap) ; (bq) | z]

=
∑

n≥0

(a1)n ... (ap)n zn

(b1)n ... (bq)n n!
=

∑

n≥0

p∏
j=1

(aj)n zn

q∏
j=1

(bj)n n!
(1.2)
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for bj non-negative integers or zero. When p ≤ q; pFq [z] converges for all complex values of

z, pFq [z] is an entire function. When p > q + 1; pFq [z] converge for z = 0, unless it terminates,

which it does when one of the parameters aj is a negative integer, hence pFq [z] is a polynomial in

z. When p = q + 1 the series converges in the unit disc |z| < 1, and also for |z| = 1 provided that

<
(

q∑
j=1

bj −
p∑

j=1
aj

)
> 0. When p = 2, q = 1 we have the familiar Gauss hypergeometric function

2F1


 a, b

c

∣∣∣∣∣∣
z


 =

Γ (c)
Γ (b) Γ (c− b)

1∫

0

tb−1 (1− t)c−b−1

(1− zt)a dt,

where |z| < 1, < (c− b) > 0 and < (b) > 0. The following Lemma will be useful in the development

of the main Theorem.

Lemma 1 — Let p (n) and q (n) be polynomials in n where all the roots of q (n) are simple. No

root of q (n) is in N and let the deg (p (n)) ≤ deg (q (n)− 2). Let vn = p(n)
q(n) . Then

∞∑

n=0

vn = −
k∑

r=1

αrψ(βr) (1.3)

where

vn =
p (n)
q (n)

=
k∑

r=1

αr

n + βr
. (1.4)

PROOF : From vn = p(n)
q(n) we have

∞∑
n=0

vn =
∞∑

n=0

p(n)
q(n) . By partial fraction expansion vn =

∑k
r=1

αr
n+βr

since all the roots of q (n) are simple. For the series
∞∑

n=0
vn to converge it suffices to have

lim
n→∞nvn = 0, in which case

∑k
r=1 αr = 0. Now

∞∑

n=0

vn =
∞∑

n=0

k∑

r=1

αr

n + βr

=
∞∑

n=0

k∑

r=1

αr

(
1

n + βr
− 1

n + 1

)
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=
k∑

r=1

αr

∞∑

n=0

(
1

n + βr
− 1

n + 1

)

= −
k∑

r=1

αr (γ + ψ(βr))

= −
k∑

r=1

αrψ(βr)

and the Lemma is proved. 2

2. CLOSED FORM SUMMATION

We now prove the following theorem.

Theorem 1 — Let k ∈ N\ {1} and j ∈ R+ then we have the novel representation

T (j, k) =
∞∑

n =1

1(
nk + j

k

) =
k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(

r + j

k
). (2.1)

The case j = 0 reduces to

T (0, k) =
∞∑

n =1

1(
nk

k

) =
k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(

r

k
). (2.2)

PROOF : Consider the expansion

T (j, k) =
∞∑

n =1

1(
nk + j

k

) =
∞∑

n =1

k! (nk − k + j)!
(nk + j)!

= k!
∞∑

n =1

1
k∏

r=1
(nk + j + 1− r)

= k!
∞∑

n =1

1
(nk + j + 1− k)k

=
∞∑

n =0

1
k∏

r=1

(
n + 1 + j+1−r

k

)
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where Pochhammer’s symbol (x)n = Γ(x+n)
Γ(x) . By partial fraction decomposition we have

T (j, k) =
k∑

r =1

(−1)r

(
k − 1

r − 1

) ∞∑

n =0

(
1

n + 1
− 1

n + j−r
k

)

and applying Lemma 1 we conclude

T (j, k) =
k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(

r + j

k
)

and (2.1) follows. For j = 0 (2.2) follows and we notice that T (0, k) = k!S (k) which is the sum

(1.1). 2

It is possible to express T (j, k) in terms of basic trigonometric functions and we show the result

in the next remark

Remark 1 : Gauss’s Digamma theorem states that for 0 < a < b

ψ
(a

b

)
= −γ − ln (2b)− π

2
cot

(πa

b

)
+ 2

[ b
2 ]−1∑

µ =1

cos
(

2πaµ

b

)
ln

(
sin

(πµ

b

))
.

Applying Gauss’s Digamma theorem to (2.1) we have

T (j, k) = (−1)k ln (2k) +
k∑

r =1

(−1)r

(
k − 1

r − 1

)(
−π

2
cot

(
(r + j) π

k

))

+2
k∑

r =1

(−1)r

(
k − 1

r − 1

)


[ k
2 ]−1∑

µ =1

cos
(

2π (r + j) µ

k

)
ln

(
sin

(πµ

k

))

 ,

where [x] is the integer part of x and r + j < k. The case j = 0 follows simply.

Some examples follow. The case j = k is interesting and we see that

T (k, k) =
∞∑

n =1

1(
nk + k

k

) =
k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(

r + k

k
).
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Now since ψ(1 + z) = ψ(z) + 1
z , we have that

T (k, k) =
∞∑

n =1

1(
nk + k

k

) =
k∑

r =1

(−1)r

(
k − 1

r − 1

)(
k

r
+ ψ(

r

k
)
)

= −1 + T (0, k) .

Also

T (0, 6) = 32 ln 2− 27
2

ln 3− 7
√

3π

6
,

T (3, 6) = 47− 32 ln 2− 27
2

ln 3− 11
√

3π

6
,

T (8, 6) = −757
28

+ 32 ln 2 +
27
2

ln 3− 11
√

3π

6
,

T

(
3
2
, 4

)
= π

(
4 + 2

√
2
)
− 64

3
.

In the next section we give an extension to Theorem 1 by incorporating harmonic numbers to the

sum T (j, k) and associating the sum with hypergeometric and integral representation.

3. EXTENSION

We begin with the proof of the following Theorem.

Theorem 2 — Under the assumptions of Theorem 1 and let m ∈ N then,

T (m) (j, k) =
∞∑

n =1

d(m)

dj(m)




(
nk + j

k

)−1

 =

∞∑

n =1

Q(m) (j, k)

=
1

km

k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(m)(

r + j

k
) (3.1)

=
m!
km

k∑

r =1

(−1)r+m

(
k − 1

r − 1

)
H

(m+1)
r+j−k

k

, (3.2)

where

Q(m) (j, k) =
d(m)

dj(m)




(
nk + j

k

)−1

 .
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PROOF : From the identity (2.1) we differentiate both sides ”m” times with respect to j so that

T (m) (j, k) =
∞∑

n =1

d(m)

dj(m)




(
nk + j

k

)−1

 =

∞∑

n =1

Q(m) (j, k)

=
1

km

k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(m)(

r + j

k
)

and (3.1) follows. From the known identity, relating polygamma functions with harmonic numbers

ψ(m)(1 + z) = (−1)m m!
(
H(m+1)

z − ζ (1 + z)
)

,

then

T (m) (j, k) =
m!
km

k∑

r =1

(−1)r+m

(
k − 1

r − 1

)
H

(m+1)
r+j−k

k

since
k∑

r =1

(−1)r

(
k − 1

r − 1

)
= 0, for k ≥ 2,

hence (3.2) follows. For completeness we detail some values of Q(m) (j, k):

Q(1) (j, k) =
1(

nk + j

k

) (Hkn+j−k −Hkn+j)

and

Q(2) (j, k) =
1(

nk + j

k

)
(
(Hkn+j−k −Hkn+j)

2 −
(
H

(2)
kn+j−k −H

(2)
kn+j

))
,

some more details on the function Q(m) (j, k) are given in the paper [9]. 2

The cases j = 0 and j = k are interesting and the results are given in the next corollary.

Corollary 1 — For j = 0

T (m) (0, k) =
∞∑

n =1

Q(m) (0, k)

=
1

km

k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(m)(

r

k
)

=
m!
km

k−1∑

r =1

(−1)r+m

(
k − 1

r − 1

)
H

(m+1)
r−k

k

, (3.3)
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where
∞∑

n =1

Q(m) (0, k) =
∞∑

n =1

lim
j→0


 d(m)

dj(m)




(
nk + j

k

)−1




 .

For j = k

T (m) (k, k) = T (m) (0, k) + (−1)m+1Λ(m) (k) (3.4)

where

Λ(m) (k) = lim
α→0


 d(m)

dj(m)




(
k + α

α

)−1






PROOF : From (3.1) we have

T (m) (0, k) =
1

km

k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(m)(

r

k
)

=
m!
km

k∑

r =1

(−1)r+m

(
k − 1

r − 1

)
H

(m+1)
r−k

k

,

since for r = k, H
(m+1)
0 = 0, then (3.3) follows. For the case j = k,

T (m) (k, k) =
∞∑

n =1

Q(m) (k, k)

=
1

km

k∑

r =1

(−1)r

(
k − 1

r − 1

)
ψ(m)(1 +

r

k
)

where

Q(m) (k, k) = lim
j→k


 d(m)

dj(m)




(
nk + j

k

)−1




 .

By the property of the polygamma function

ψ(m)(1 + z) = ψ(m)(1 + z) +
(−1)m m!

zm+1

T (m) (k, k) =
1

km

k∑

r =1

(−1)r

(
k − 1

r − 1

)(
ψ(m)(

r

k
) +

(−1)m m!km+1

rm+1

)

= T (m) (0, k) + (−1)m m!k
k∑

r =1

(−1)r

(
k − 1

r − 1

)
1

rm+1
.
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From the paper [9], we have

k∑

r =1

(−1)r

(
k − 1

r − 1

)
1

rm+1
= −Λ(m) (k)

m!k

hence

T (m) (k, k) = T (m) (0, k) + (−1)m+1Λ(m) (k) ,

hence (3.4) follows. Some values of Λ(m) (k) are

Λ(1) (k) = Hk , Λ(2) (k) = H2
k + H

(2)
k

Λ(3) (k) = H3
k + 3HkH

2
k + 2H

(3)
k .2

Example 1 : Some illustrative examples follow.

T (1) (j, k) =
∞∑

n =1

Hnk−k+j −Hnk+j(
nk + j

k

)

=
m!
km

k∑

r =1

(−1)r+1

(
k − 1

r − 1

)
H

(2)
r+1−k

k

,

T (1) (1, 4) =
3
16

ζ (2)− 1
6
G− 1

6
, T (1) (0, 4) =

1
6
G− 7

48
ζ (2)

where G is Catalan’s constant.

T (3) (0, 2) = −21
2

ζ (4) ,

T (4) (4, 4) = −2835
16

ζ (5)− 5π5

16
− 76111

864
.

The expression T (j, k) and T (m) (j, k) can also be represented in integral and hypergeometric

form and for completeness the following is recorded.

Theorem 3 — Let the assumptions of Theorem 1 apply, then

T (j, k) = k

∫ 1

0

xj (1− x)k−1

(1− xk)
dx, (3.5)
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T (m) (j, k) = k

∫ 1

0

xj (1− x)k−1 lnm x

(1− xk)
dx (3.6)

and

T (j, k) =
1(

k + j

k

) 1+kFk




1+j
k , 2+j

k , ...., k+j
k , 1

1+j+k
k , 2+j+k

k , ...., 2k+j
k

∣∣∣∣∣∣
1


 . (3.7)

PROOF : Consider

T (j, k) =
∞∑

n =1

1(
nk + j

k

) =
∞∑

n =1

Γ (nk + j − k + 1)Γ (k + 1)
Γ (nk + j + 1)

= k
∞∑

n =1

B (k, nk − k + j + 1) ,

where Γ (·) is the gamma function and B (·, ·) is the beta function. Now

T (j, k) = k

∫ 1

0

xj (1− x)k−1

xk

∞∑

n =1

(
xk

)n
dx,

and (3.5) follows. Now differentiating m times with respect to j results in

T (m) (j, k) = k

∫ 1

0

xj (1− x)k−1 lnm x

(1− xk)
dx

hence (3.6). For the hypergeometric function we consider the definition (1.2) above and write

T (j, k) =
∞∑

n =1

1(
nk + j

k

) =
∞∑

n =0

1(
nk + k + j

k

)

therefore (3.7) follows. 2
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Remark 2 : It is straightforward to see, from (3.3) and (3.6), that

T (m) (0, 2) = 2
∫ 1

0

lnm x

1 + x
dx =

∞∑

n =1

lim
j→0


 d(m)

dj(m)




(
2n + j

2

)−1






= 2 (−1)m m!
(
1− 2−m

)
ζ (m + 1)

=
(−1)m+1 m!

2m
H

(m+1)

− 1
2

= 2m!
∞∑

n =1

(−1)m+n+1

nm+1
.

Many other examples of binomial sums, harmonic number sums, integral representations and

hypergeometric summation are available in [1, 2, 8, 10-15]. Some interesting binomial series are also

investigated in [7].

REFERENCES

1. W. Chu, Finite differences and Dixon-like Binomial sums, Integral Transforms Spec. Funct., 23(4)
(2012), 251-261.

2. M. W. Coffey and S. J. Johnston, Some results involving series representations of hypergeometric func-
tions, J. Comput. Appl. Math., 233(3) (2009), 674-679.

3. L. Euler, De progressionibus harmonicis observationes, Comm. aca. sci. Petrop., 7 (1740), 150-161.
Opera omnia, 14(1), 87-100. http://www.math.dartmouth.edu/euler/pages/E043.

4. W. L. Ferrar, A textbook of convergence, Oxford University Press, 1947, p.74.

5. K. Knopp, Theory and applications of infinite series, Dover Publications, New York, 1990 reprint of
Blackie and son, London 2nd ed. 1951, p268, ex. 107(g) and (h).

6. A. Nimbran, Euler’s constant, harmonic series and related infinite sums, Math. Student, 82(1-4) (2013),
177-182.

7. A. Nimbran and P. Levrie, Some continued fractions for π and G. Indian J. Pure Appl. Math., 48(2)
(2017), 187-204.

8. R. Roy, Binomial identities and hypergeometric series, Amer. Math. Monthly, 94(1) (1987), 36-46.

9. A. Sofo, New classes of harmonic number identities, J. Integer Seq., 15(7) (2012), Article 12.7.4, 12 pp.

10. A. Sofo, Quadratic alternating harmonic number sums, J. Number Theory, 154 (2015), 144-159.



160 ANTHONY SOFO

11. A. Sofo, Integrals of logarithmic and hypergeometric functions, Commun. Math., 24(1) (2016), 7-22.

12. A. Sofo, A master integral in four parameters, J. Math. Anal. Appl., 448(1) (2017), 81-92.

13. A. Sofo, Integral identities for sums, Math. Commun., 13(2) (2008), 303-309.

14. V. Strehl, Binomial identities-combinatorial and algorithmic aspects. Trends in discrete mathematics,
Discrete Math., 136(1-3) (1994), 309-346.

15. E. W. Weisstein, “Binomial Sums”, From MathWorld-A Wolfram Web Resource,
http://mathworld.wolfram.com/BinomialSums.html.


