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This paper is concerned with self-similar flows of the multidimensional isentropic compressible
Euler equations caused by the uniform expansion of a spherically-symmetric piston into the undis-
turbed fluid. Under the spherically-symmetric and self-similar assumptions, the problem can be
reduced to a boundary value problem for a system of nonlinear ordinary differential equations.
We consider the two-constant equation of state p = A1ρ

γ1 + A2ρ
γ2 which arises in a number

of various physical contexts and results the problem becomes more complicated than the case of
polytropic gas equation of state. To deal with the difficulty, we first establish the global existence
of smooth solutions to the boundary value problem for a new ODE system.
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1. INTRODUCTION

The three-dimensional isentropic compressible Euler equations are of the form

{
ρt +∇ · (ρU) = 0,

(ρU)t +∇ · (ρU ⊗ U) +∇p = 0,
(t, x) ∈ R+ × R3, (1.1)

where ρ(t, x) is the density, U(t, x) = (u1, u2, u3)(t, x) is the velocity, p = p(ρ) is a given increasing

function of ρ. If the flow is spherically symmetric, that is the solution has the following geometric

structure (
ρ(t, x), U(t, x)) = (ρ(t, r), u(t, r)

x
r

)
,
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where r = |x| and u(t, r) is a scalar function, then system (1.1) can be rewritten as




ρt + (ρu)r = −2ρu
r ,

(ρu)t + (ρu2 + p)r = −2ρu2

r ,
(t, r) ∈ R+ × R+. (1.2)

It is well known that the spherically-symmetric flow is one of the most important flows in gas

dynamics and attracts much attention in recent years, since this kind of flows arises in many important

physical situations such as supernovae formation in stellar dynamics, inertial confinement fusion and

explosion waves in water, air, and other media, see the famous monographs Courant and Friedrichs

[9] and Whitham [22]. In this paper, we are interested in the spherically-symmetric flows of the

isentropic compressible Euler equations arising from the uniform expansion of a spherical piston and

preceded by a shock front. This problem is often taken as the simplest way to model an explosion and

has been studied by many authors. Under the self-similar assumption, the problem can be reduced to

a system of nonlinear ordinary differential equations (ODE) with some boundary conditions imposed

on the piston surface and the shock front. The study of such nonlinear ODE problems was initiated by

Taylor [21] in numerical for the isentropic Euler equations. In [9], Courant and Friedrichs established

the vector field of the ODE system and discussed the properties of the solution curves. A single

second-order nonlinear ordinary differential equation in the velocity potential was first proposed by

Lighthill [15]. He considered a simplified equation and obtained an approximate relation between the

shock Mach number M and the nondimensional piston velocity α. This result was recently improved

in [12]. We also refer the reader to [13, 14, 23, 24] for the construction of global axisymmetric

solutions to the two-dimensional isentropic Euler equations.

The investigation of the global analysis of the multidimensional piston problem to the Euler equa-

tions for compressible flows was started by Chen [7]. He investigated a free boundary value problem

of the second-order ordinary differential equation in the velocity potential and established the global

existence of solutions to the piston problem for unsteady potential flows. For more relevant results,

one may consult [5, 8, 10] and the references therein. In [19], Peng and Lien considered the mul-

tidimensional piston problem of the isentropic Euler equations with the polytropic gas equation of

state by studying a nonlinear ODE system. Based on a careful analysis of the ODE system, they

obtained the global existence of smooth solutions to the ODE problem together with some appropri-

ate boundary conditions. The nonlinear stability of the spherically-symmetric flows was presented in

[11].

We notice that studies on the multidimensional piston problem of the compressible Euler equa-

tions are almost limited to the polytropic gas, that is the equation of state takes the form p(ρ) = Aργ
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with constants A > 0, γ ≥ 1, while the analyses for the general equation of state are absent. As a

ladder step to study the case of the general equation of state, in the present paper we investigate a

somewhat general case than the polytropic gas equation of state, i.e., we consider the two-constant

equation of state

p(ρ) = A1ρ
γ1 + A2ρ

γ2 , (1.3)

where A1, A2, γ1, γ2 are constants. When γ1 = γ2 ≥ 1 and A1 + A2 > 0, (1.3) reduces to the

polytropic gas equation of state. Most importantly, the equation of state (1.3) indeed arises in a

number of various physical contexts and has more implications. For example, it can be taken as the

sum of the fluid and magnetic pressures in the ideal magnetogasdynamics with a transverse magnetic

field [20] and can correspond to the modified Chaplygin gas equation of state being used to describe

the current accelerated expansion of the universe [1-4]. It is rather worthwhile to mention that the

equation of state (1.3) can also be applied to regularize the polytropic gas equation of state to avoid

the possibility of formation of cavitation of the solutions for the perturbation Euler equations, see,

e.g., [6, 16-18]. In the present paper, we deal with the case Ai > 0 and γi ≥ 1 (i = 1, 2), the other

cases will be considered in a later publication.

The aim of this paper is to establish the global existence of solutions for the uniformly expanding

piston problem to the isentropic compressible Euler equations (1.1) with the equation of state (1.3).

The approach of the paper is inspired by Peng and Lien [19]. However, their procedure depends

strongly on the concrete form of the polytropic gas equation of state which results in it cannot be

applied to the equation of state (1.3) and also the general equation of state. To deal with (1.2) with

(1.3), we first consider a new system




ρt + (ρu)r = −2ρu
r ,

(ρu)t + (ρu2 + p1 + p2)r = −2ρu2

r ,

ϕt + (ϕu)r = −2ϕu
r ,

(t, r) ∈ R+ × R+, (1.4)

where p1 = A1ρ
γ1 , p2 = A2ϕ

γ2 and ϕ ≥ 0. Without loss of generality, we assume γ1 < γ2

throughout the paper. Clearly, if ϕ ≡ ρ, then system (1.4) reduces to (1.2) with (1.3). The problem

can be reduced to a free boundary value problem for a system of nonlinear ordinary differential

equations by the self-similar assumptions. We study carefully the ODE system to obtain the global

existence of smooth solutions of the free boundary value problem. The original problem is then

resolved by restricting ϕ = ρ at time zero. We point out that this method is successfully applied to

construct a class of global bounded weak axisymmetric solutions to the two-dimensional isentropic

Euler equations with the equation of state (1.3) [13].
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The rest of the paper is organized as follows. Section 2 is devoted to delivering some preliminaries

and presenting the main results of the paper. The proof of our theorem is divided into two cases γ1 = 1

and γ1 > 1 by symmetry. The detailed proof of these two cases are provided in Section 3 and Section

4, respectively.

2. FORMULATION AND RESULTS

Suppose that the initial state is given by (ρ, u, ϕ) = (ρ0, 0, ϕ0) with ρ0 > 0, ϕ0 > 0 and the piston

is located at the origin. Starting from t = 0, the piston isotropically expands outward at a constant

speed b0, as a result, a shock wave forms and moves outward with constant velocity σ0(> b0). Set

c0 =
√

p′1(ρ0) and denote M = σ0/c0. Here we emphasize that the constant c0 (not the speed of

sound for the undisturbed gas) thus chosen plays an important role in our paper. Then M > M0 :=√
1 + p′2(ϕ0)/p′1(ρ0) > 1 by the fact that the flow in front of the shock wave is supersonic.

We introduce a self-similar variable

ξ =
r

σ0t
=

r

c0Mt

to fix the location of the shock at ξ = 1. Looking for self-similar solutions (ρ, u, ϕ) = (ρ, u, ϕ)(ξ) of

(1.4) gets the following system of ordinary differential equations



ρξ = 2ρu(c0Mξ−u)
ξ[(c0Mξ−u)2−(p′1(ρ)+ϕ̄)]

,

uξ = 2u(p′1(ρ)+ϕ̄)
ξ[(c0Mξ−u)2−(p′1(ρ)+ϕ̄)]

,

ϕ̄ξ = 2(γ2−1)ϕ̄u(c0Mξ−u)
ξ[(c0Mξ−u)2−(p′1(ρ)+ϕ̄)]

,

(2.1)

where ϕ̄ = γ2A2ϕ
γ2/ρ. Moreover, we introduce

u = c0Mf(ξ), ρ = ρ0h(ξ), ϕ̄ = c2
0g(ξ). (2.2)

Putting the above into (2.1) yields



h′(ξ) = 2M2fh(ξ−f)
ξ[M2(ξ−f)2−(hγ1−1+g)]

,

f ′(ξ) = 2f(hγ1−1+g)
ξ[M2(ξ−f)2−(hγ1−1+g)]

,

g′(ξ) = 2(γ2−1)M2gf(ξ−f)
ξ[M2(ξ−f)2−(hγ1−1+g)]

.

(2.3)

The Rankine-Hugoniot jump conditions of (1.4) read that



σ[ρ] = [ρu],

σ[ρu] = [ρu2 + p1 + p2],

σ[ϕ] = [ϕu],
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where σ is the speed of the discontinuity, [q] := qr − ql, qr, ql are the states on the two sides of a

discontinuity line, from which and the Lax entropy condition and the assumption u0 = 0 one has

ρ̂

ρ0
=

ϕ̂

ϕ0
, û = σ0

(
1− ρ0

ρ̂

)
, σ2

0ρ0(ρ̂− ρ0) = ρ̂

[
p1(ρ̂) + p2(ϕ̂)− p1(ρ0)− p2(ϕ0)

]
, (2.4)

where (ρ̂, û, ϕ̂) is the state behind the shock front satisfying ρ̂ > ρ0. Combining (2.2) and (2.4), we

find that ĥ := ρ̂/ρ0 > 1 solves the following algebraic equation

hγ1+1 + A0h
γ2+1 −

(
γ1M

2 + 1 + A0

)
h + γ1M

2 = 0, (2.5)

where A0 = A2ϕ
γ2
0 /(A1ρ

γ1
0 ). Moreover, we claim that the algebraic equation (2.5) has only one root

greater than one. In fact, we denote

H(h) := hγ1+1 + A0h
γ2+1 −

(
γ1M

2 + 1 + A0

)
h + γ1M

2,

and differentiate the above with respect to h to arrive

H ′(h) = (γ1 + 1)hγ1 + A0(γ2 + 1)hγ2 −
(

γ1M
2 + 1 + A0

)
,

H ′′(h) = γ1(γ1 + 1)hγ1−1 + A0γ2(γ2 + 1)hγ2−1,

from which we see that H(h) is a strictly convex function for h > 0. In addition, we find that

H(+∞) = +∞, H(1) = 0 and

H ′(1) = (γ1 + 1) + A0(γ2 + 1)−
(

γ1M
2 + 1 + A0

)

= γ1(1−M2) + γ2A0 < γ1(1−M2
0 ) + γ2

A2ϕ
γ2
0

A1ρ
γ1
0

= 0,

which imply that there exists a unique number ĥ > 1 such that H(ĥ) = 0.

Thus, the boundary conditions of system (2.3) on the shock front ξ = 1 are




h(1) = ĥ,

f(1) = 1− 1
ĥ
,

g(1) = γ2A0

γ1
ĥγ2−1.

(2.6)

Furthermore, we note that the path of the piston is r = b0t, which means that ξb = b0/σ0 < 1

is the piston location. On the other hand, the kinematic condition at the piston requires that the flow

velocity on the piston surface is the same as the piston velocity, i.e., u(ξb) = b0 or

f(ξb) = ξb. (2.7)
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Then our problem is to seek solutions of (2.3) with the boundary conditions (2.6)-(2.7) in [ξb, 1]

for any given M > M0.

We state our main result as follows.

Theorem 1 — For any given M > max{√1 + p′2(ϕ0)/p′1(ρ0), b0/c0}, the ODE system (2.3)

with the boundary conditions (2.6)-(2.7) has a unique positive smooth solution (h(ξ), f(ξ), g(ξ)) on

[ξb, 1]. Moreover, h(ξ), f(ξ), g(ξ) are decreasing functions for ξ ∈ [ξb, 1].

Based on Theorem 1, we can obtain the result for system (1.2). First we find by (2.1) that

ρξ

ρ
=

ϕξ

ϕ
,

from which one gets
ϕ(ξ)
ρ(ξ)

=
ϕ̂

ρ̂
.

If we restrict ϕ0 = ρ0, then we obtain by (2.4) that ϕ̂ = ρ̂, which means ϕ(ξ) ≡ ρ(ξ) for

ξ ∈ [ξb, 1]. Thus the vector function (ρ, u) = (ρ0h̃(ξ), c0Mf̃(ξ)), defined on [ξb, 1], solves the

following problem




ρξ = 2ρu(c0Mξ−u)
ξ[(c0Mξ−u)2−(p′1(ρ)+p′2(ρ))]

,

uξ = 2u(p′1(ρ)+p′2(ρ))
ξ[(c0Mξ−u)2−(p′1(ρ)+p′2(ρ))]

,
(2.8)

with the boundary conditions

ρ(1) = ρ̂, u(1) = c0M

(
1− ρ0

ρ̂

)
, u(ξb) = b0. (2.9)

It is notice that system (2.8) is the corresponding system of (1.2) in terms of variable ξ. Therefore,

we have the following theorem.

Theorem 2 — Let ρ0 be the density of the undisturbed gas and b0 be the piston velocity. For any

given σ0 > max{√p′1(ρ0) + p′2(ρ0), b0}, system (1.2) with (1.3) has a unique positive self-similar

smooth solution (ρ, u)(r/t) defined in R+ × [b0t, σ0t] such that r = b0t is the piston surface and

r = σ0t is a shock wave front.

3. PROOF THEOREM 1 FOR γ1 = 1

In this section, we show Theorem 1 for the case γ2 > γ1 = 1. In this case, the ODE problem (2.3)
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(2.6) can be written as 



h′(ξ) = 2M2fh(ξ−f)
ξ[M2(ξ−f)2−(1+g)]

,

f ′(ξ) = 2f(1+g)
ξ[M2(ξ−f)2−(1+g)]

,

g′(ξ) = 2(γ2−1)M2gf(ξ−f)
ξ[M2(ξ−f)2−(1+g)]

,

(3.1)

with the boundary values 



h(1) = ĥ,

f(1) = 1− 1
ĥ
,

g(1) = γ2A0ĥ
γ2−1,

(3.2)

where ĥ is the only real root greater than 1 to the equation

h2 + A0h
γ2+1 −

(
M2 + 1 + A0

)
h + M2 = 0,

from which one has

M2 =
ĥ2 + A0ĥ

γ2+1 − (1 + A0)ĥ

ĥ− 1
. (3.3)

We define an auxiliary function

I1(ξ) = M2[ξ − f(ξ)]2 − [1 + g(ξ)].

Inserting (3.2) and (3.3) into the above leads to

I1(1) =
−(ĥ− 1)2 −A0[γ2ĥ

γ2+1 − (γ2 + 1)ĥγ2 + 1]

ĥ(ĥ− 1)
< 0.

Here we used the fact that γ2x
γ2+1 − (γ2 + 1)xγ2 + 1 > 0 for x > 1. Therefore, we obtain by

(3.1) and (3.2) that

h(1) > 1, 0 < f(1) < 1, g(1) > 0,

h′(1) < 0, f ′(1) < 0, g′(1) < 0.
(3.4)

Moreover, we differentiate the function I1(ξ) with respect to ξ to get

I ′1(ξ) = 2M2(ξ − f)(1− f ′)− g′, (3.5)

which along with (3.4) gives

I ′1(1) > 0. (3.6)
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We combine (3.4)-(3.6) and use the classical local existence theory of smooth solutions for the

nonlinear ODE system to find that there exists a small positive number ε0 such that the problem (3.1)

(3.2) has a unique smooth solution (h, f, g)(ξ) in the interval [1− ε0, 1] satisfying

h(ξ) > 0, ξ > f(ξ) > 0, g(ξ) > 0,

h′(ξ) < 0, f ′(ξ) < 0, g′(ξ) < 0,

I1(ξ) < 0, I ′1(ξ) > 0

∀ ξ ∈ [1− ε0, 1]. (3.7)

Let ξ̄ be a constant in (0, 1−ε0) such that the interval (ξ̄, 1] is the maximal interval of existence for

the positive continuous solution to the problem (3.1)-(3.2). We next prove that there exists a number

ξb ∈ (ξ̄, 1 − ε0) such that f(ξb) = ξb, which means the solution (h, f, g)(ξ) satisfies the boundary

condition (2.7) at ξ = ξb.

We first establish the following lemma.

Lemma 3.1 — Let (h, f, g)(ξ) be the positive continuous solution for the problem (3.1)-(3.2).

Assume that ξ > f(ξ) in the interval [ξ̂, 1] for some number ξ̂ ∈ (ξ̄, 1−ε0]. Then it holds f(ξ) > f(1)

and I1(ξ) < 0 for all ξ ∈ [ξ̂, 1).

PROOF : We use the contradiction argument to prove this lemma. Assume that there exists a

number ξ∗ ∈ [ξ̂, 1) such that f(ξ∗) = f(1) and f(ξ) > f(1) for all ξ ∈ (ξ∗, 1). The proof is divided

into two cases.

Case I : f is a differentiable function on (ξ∗, 1). In this case, we find by the Mean Value Theorem

that there exists a point ξm ∈ (ξ∗, 1) such that f ′(ξm) = 0. On the other hand, we see by the second

equation of (3.1) and the fact f(ξ) > f(1) in (ξ∗, 1) that f ′(ξ) 6= 0 for all ξ ∈ (ξ∗, 1), which leads to

a contradiction.

Case II : f is not a differentiable function on (ξ∗, 1). This case indicates that there exists a point

ξn ∈ (ξ∗, 1) such that I1(ξn) = 0 and I1(ξ) < 0 for all ξ ∈ (ξn, 1]. Thanks to f(ξ) > 0, g(ξ) > 0 in

(ξ∗, 1], it follows by (3.1) that

lim
ξ→ξ+

n

1
I1(ξ)

= −∞, lim
ξ→ξ+

n

f ′(ξ) = −∞, lim
ξ→ξ+

n

g′(ξ) = −∞,

which combined with (3.5) yields

lim
ξ→ξ+

n

I ′1(ξ) = +∞,

which implies that there exists a small positive constant ε1 such that I ′1(ξ) > 0 for all ξ ∈ (ξn, ξn+ε1).

However, due to the previous analysis, we have I1(ξn) = 0 and I1(ξ) < 0 in (ξn, ξn + ε1), which
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indicates by the Mean Value Theorem that there exists at least a point ξ∗ ∈ (ξn, ξn + ε1) such that

I ′1(ξ∗) < 0, a contradiction.

Thus, we have shown f(ξ) > f(1) for all ξ ∈ [ξ̂, 1). Making use of the same argument, the

details of which we omit here, we can obtain the conclusion that I1(ξ) < 0 for all ξ ∈ [ξ̂, 1). 2

PROOF OF THEOREM 1 : For γ1 = 1, we prove that the theorem by contradiction. Suppose that

f(ξ) 6= ξ for all ξ ∈ (ξ̄, 1]. Then it follows by the fact f(1) < 1 that f(ξ) < ξ for all ξ ∈ (ξ̄, 1].

According to Lemma 3.1, it suggests that f(ξ) > f(1) and I1(ξ) < 0 for all ξ ∈ (ξ̄, 1). Hence we

have f ′(ξ) < 0, g′(ξ) < 0 and h′(ξ) < 0 for all ξ ∈ (ξ̄, 1) and then the functions f, g, h are strictly

monotone decreasing. One thus has

0 < f(1) ≤ lim
ξ→ξ̄+

f(ξ) ≤ ξ̄ < 1,

which together with the ODE system (3.1) obtains that lim
ξ→ξ̄+

h(ξ) and lim
ξ→ξ̄+

g(ξ) are bounded. There-

ξ
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Figure 1: The numerical solution of problem (2.3) (2.6). Here γ1 = 1, γ2 = 2, A1 = 1
γ1

, A2 =
1
γ2

, ρ0 = ϕ0 = 1,M = 2.

fore, the positive continuous solution (h, f, g)(ξ) for the problem (3.1) (3.2) can be extended to the

larger interval (ξ̄ − ε2, 1] for some constant ε2 > 0, which contradicts the fact that (ξ̄, 1] is the maxi-

mal interval of existence of the positive continuous solution. For the uniqueness of ξb, we assume that

there exists another point ξd ∈ (ξ̄, ξb) such that f(ξd)− ξd = 0 and f(ξ)− ξ > 0 for all ξ ∈ (ξd, ξb).

Then it follows that f ′(ξd) > 1. However, by the equation of f , one has f ′(ξd) = −2 which yields a

contradiction.
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In summary, we have f(ξ) < ξ for all ξ ∈ (ξb, 1] and f(ξb) = ξb and then have by Lemma 3.1

I1(ξ) < 0, from which we have the strictly monotonic decreasing property of f(ξ), h(ξ) and g(ξ).

See Fig. 1 for the numerical solution of problem (2.3) (2.6) with γ1 = 1. So far, we have finished the

proof of Theorem 1 for γ1 = 1.

4. PROOF THEOREM 1 FOR γ1 > 1

In this section, we prove Theorem 1 for the case γ2 > γ1 > 1. We introduce

H(ξ) = h(ξ)γ1−1, γ1 > 1,

and reduce system (2.3) to 



H ′(ξ) = 2(γ1−1)M2fH(ξ−f)
ξ[M2(ξ−f)2−(H+g)]

,

f ′(ξ) = 2f(H+g)
ξ[M2(ξ−f)2−(H+g)]

,

g′(ξ) = 2(γ2−1)M2gf(ξ−f)
ξ[M2(ξ−f)2−(H+g)]

,

(4.1)

with the boundary conditions 



H(1) = ĥγ1−1,

f(1) = 1− 1
ĥ
,

g(1) = γ2A0

γ1
ĥγ2−1,

(4.2)

where ĥ is the unique solution greater than one of equation (2.5). Then we have

M2 =
ĥγ1+1 + A0ĥ

γ2+1 − (1 + A0)ĥ

γ1(ĥ− 1)
. (4.3)

Define an auxiliary function

I(ξ) = M2[ξ − f(ξ)]2 − [H(ξ) + g(ξ)].

Making use of (4.2) and (4.3) gives by the fact ĥ > 1

I(1) = − [γ1ĥ
γ1+1 − (γ1 + 1)ĥγ1 + 1] + A0[γ2ĥ

γ2+1 − (γ2 + 1)ĥγ2 + 1]

γ1ĥ(ĥ− 1)
< 0.

Therefore, it holds

H(1) > 1, 0 < f(1) < 1, g(1) > 0,

H ′(1) < 0, f ′(1) < 0, g′(1) < 0.
(4.4)



SPHERICALLY-SYMMETRIC EULER EQUATIONS 45

Moreover, differentiating the function I(ξ) with respect to ξ leads to

I ′(ξ) = 2M2[ξ − f(ξ)](1− f ′(ξ))− [H ′(ξ) + g′(ξ)]. (4.5)

The local existence of the positive continuous solution to problem (4.1)-(4.2) follows from the

classical existence theory of the nonlinear ODE system. We still use the interval (ξ̄, 1] to denote the

maximal interval of existence in (0, 1] for the positive continuous solution of problem (4.1)-(4.2).

Then we have the following lemma.

Lemma 4.1 — Let (H, f, g)(ξ) be the positive continuous solution for the problem (4.1)-(4.2).

Assume that ξ > f(ξ) in the interval (ξ̂, 1] for some point ξ̂ ∈ [ξ̄, 1). Then I(ξ) < 0 for all ξ ∈ (ξ̂, 1].

PROOF : We show the lemma by contradiction. Suppose that there exists a point ξ∗ ∈ (ξ̂, 1) such

that I(ξ∗) = 0 and I(ξ) < 0 for all ξ ∈ (ξ∗, 1]. Then one arrives

lim
ξ→ξ+∗

1
I(ξ)

= −∞,

from which and the system (4.1) and the positivity of solution (H, f, g)(ξ) in (ξ̄, 1], we obtain

lim
ξ→ξ+∗

f ′(ξ) = −∞, lim
ξ→ξ+∗

H ′(ξ) = −∞, lim
ξ→ξ+∗

g′(ξ) = −∞,

which together with (4.5) gives

lim
ξ→ξ+∗

I ′(ξ) = +∞.

By a similar argument as in Lemma 3.1, we can get a contradiction and then finish the proof of

the lemma. 2

Furthermore, we have

Lemma 4.2— Let (H, f, g)(ξ) be the positive continuous solution for the problem (4.1)-(4.2). If

ξ > f(ξ) in the interval (ξ̂, 1] for some number ξ̂ ∈ [ξ̄, 1), then f(ξ) > f(1),H(ξ) > H(1) and

g(ξ) > g(1) for all ξ ∈ (ξ̂, 1].

PROOF : The proof is divided into three cases:

Case I : There exists a point ξ1 ∈ (ξ̂, 1) such that f(ξ1) = f(1),H(ξ1) ≥ H(1), g(ξ1) ≥ g(1)

and f(ξ) > f(1),H(ξ) > H(1), g(ξ) > g(1) for all ξ ∈ (ξ1, 1];

Case II : There exists a point ξ2 ∈ (ξ̂, 1) such that f(ξ2) ≥ f(1), H(ξ2) = H(1), g(ξ2) ≥ g(1)

and f(ξ) > f(1),H(ξ) > H(1), g(ξ) > g(1) for all ξ ∈ (ξ2, 1];
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Case III : There exists a point ξ3 ∈ (ξ̂, 1) such that f(ξ3) ≥ f(1),H(ξ3) ≥ H(1), g(ξ3) = g(1)

and f(ξ) > f(1),H(ξ) > H(1), g(ξ) > g(1) for all ξ ∈ (ξ3, 1].

We only show Case I and the others are symmetric arguments. In this case, there exists a point

ξ1∗ ∈ (ξ1, 1) such that f ′(ξ1∗) > 0 by the facts f(1) > 0 and f ′(1) < 0. On the other hand, we see

by Lemma 4.1 that f(ξ) > 0,H(ξ) > 0, g(ξ) > 0 and I(ξ) < 0 for all ξ ∈ (ξ1, 1]. Then we get by

the equation of f in (4.1) that f ′(ξ) < 0 for all ξ ∈ (ξ1, 1], which leads to a contradiction. 2

Finally, we establish the following lemma.

Lemma 4.3 — Let (H, f, g)(ξ) be the positive continuous solution for the problem (4.1)-(4.2).

Then there exists a unique ξb ∈ (ξ̄, 1) such that f(ξb) = ξb.

PROOF : Assume the contrary: if f(ξ) 6= ξ for any ξ ∈ (ξ̄, 1], then it follows by f(1) < 1 that

f(ξ) < ξ for all ξ ∈ (ξ̄, 1]. According to Lemma 4.2 and Lemma 4.3, we know that I(ξ) < 0,

f(ξ) > f(1), H(ξ) > H(1) and g(ξ) > g(1) for all ξ ∈ (ξ̄, 1] which mean by system (4.1) that

f ′(ξ) < 0,H ′(ξ) < 0 and g′(ξ) < 0. Thus the functions f, H and g are strictly decreasing on the

interval (ξ̄, 1]. Then we use Lemma 4.2 again to obtain f(1) < f(ξ) < ξ ≤ 1 for any ξ ∈ (ξ̄, 1],

which means that

f(1) ≤ ξ̄ < 1.

By the definition of ξ̄ and the uniform boundedness of f on (ξ̄, 1], there must have

lim
ξ→ξ̄+

H(ξ) = +∞, or lim
ξ→ξ̄+

g(ξ) = +∞.

If H(ξ) → +∞ as ξ → ξ̄+, then there exists a point ξ∗ ∈ (ξ̄, 1) and a constant K > 1 such that

H + g −M2(ξ − f)2 ≥ K

holds for all ξ ∈ (ξ̄, ξ∗]. Then we obtain

H ′(ξ) =
2(γ1 − 1)M2Hf(ξ − f)
ξ[M2(ξ − f)2 − (H + g)]

≥ −2(γ1 − 1)M2

Kξ̄
H =: −kH

for all ξ ∈ (ξ̄, ξ∗]. Integrating the above from ξ to ξ∗ suggests

H(ξ) ≤ H(ξ∗)ek(ξ∗−ξ),

for which, we get by taking ξ → ξ̄+ to arrive

lim
ξ→ξ̄+

H(ξ) ≤ H(ξ∗)ek(ξ∗−ξ̄) < +∞,
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Figure 2: The numerical solution of problem (2.3) (2.6). Here γ1 = 5
3 , γ2 = 2, A1 = 1

γ1
, A2 =

1
γ2

, ρ0 = ϕ0 = 1,M = 2.

which achieves a contradiction. If g(ξ) → +∞ as ξ → ξ̄+, we can obtain a contradiction by a similar

procedure.

The proof of the uniqueness of ξb is the same as the case γ1 = 1 in Section 3, so we omit it here.2

PROOF OF THEOREM 1 : For γ1 > 1, it is easily seen that the positive continuous vector function

(H(ξ), f(ξ), g(ξ)), defined on the interval [ξb, 1], satisfies the ODE system (4.1) and the boundary

conditions (4.2) at ξ = 1. Moreover, the function f(ξ) satisfies the boundary condition (2.7) at ξ = ξb

by Lemma 4.3. In addition, we have ξ > f(ξ) for all ξ ∈ (ξb, 1] which along with Lemma 4.1 and

system (4.1) yields f ′(ξ) < 0,H ′(ξ) < 0 and g′(ξ) < 0 on (ξb, 1]. Therefore, f(ξ),H(ξ) and g(ξ)

are strictly decreasing functions of ξ. By the definition of H(ξ) and γ1 > 1, the function h(ξ) is also

strictly decreasing of ξ. Obviously, the vector function (h(ξ), f(ξ), g(ξ)) is the desired solution of

problem (2.3) with the boundary conditions (2.6) and (2.7). See Fig. 2 for the numerical solution of

problem (2.3) (2.6) with γ1 > 1.

In summary, we have completed the proof of Theorem 1 and subsequently established Theorem 2.
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