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The paper deals with the existence of weak positive solutions for a new class of quasilinear sin-
gular elliptic systems involving critical Caffarelli–Kohn–Nirenberg exponent with sign-changing
weight functions using the method of sub-super solutions. Our results are natural extensions from
the previous ones in [3].
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1. INTRODUCTION

During the past few years, the treatise of positive solutions of singular partial differential equations

or systems has been an extremely active research area. The singular nonlinear problems emerge

naturally and they take a main role in the interdisciplinary field between analysis, biology, geometry,

mathematical physics, elasticity, etc.

This article deals with the existence of positive solutions of the following boundary value problem




−div
(
|x|−ap |∇u|p−2∇u

)
= λ |x|−(a+1)p+c1 [g (x) A (u) + f (v)] , in Ω,

−div
(
|x|−bq |∇v|q−2∇v

)
= λ |x|−(b+1)q+c2 [g (x)B (v) + h (u)] , in Ω,

u = v = 0 on ∂Ω,

(1.1)
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where Ω is a bounded domain in RN and

1 < p, q < N, 0 ≤ a ≤ N − p

N
,

with

0 ≤ b ≤ N − q

N
, c1,c2 are positive parameters.

g (x) is a C1 sign-changing the weight function, that possibly negative nearby the boundary and

f, h, A,B are C1 nondecreasing functions satisfy

A (0) ≥ 0, B (0) ≥ 0.

The study of this kind of problems is motivated by its different applications, for example, popu-

lation genetics, in fluid mechanics, Newtonian fluids, glaciology and flow through porous media (see

for more detail [4, 9, 16, 21]).

On the other hand, there is an extensive practical background for quasilinear elliptic systems

have. They are described in the multiplicative chemical reaction stimulated by the catalyst grains

under variant temperature or constant, in the quasi-regular and quasi-conformal theory mappings in

Riemannian manifolds with boundary, or in the description of many physical phenomena such as the

pulses propagation in Kerr-like photorefractive media and birefringent optical fibers (see [19, 30]).

Moreover, for additional results on elliptic problems, see ([1, 3, 6, 20, 24]). For the regular case,

the quasilinear elliptic equation has been intensively studied by many authors where c1 = p, c2 = q

and a = b = 0, (see for example [2]). In the current work we concentrate on further extending the

study in [5] for the quasilinear elliptic systems involving singularity. The extensions are nontrivial

and challenging due to the singularity in the weights. Our approach is based on the method of sub

and super solutions.

2. TECHNICAL ASSUMPTIONS AND AUXILIARY RESULTS

Let Ω be a bounded domain in RN with its smooth boundary, 0 ∈ Ω and W 1,p
0

(
Ω, |x|−ap) denote the

completion of C∞
0 (Ω) with the norm

‖u‖ =




∫

Ω

|x|−ap |∇u|p dx




1
p

.

We consider the following nonlinear eigenvalue problem




−div
(
|x|−sr |∇φ|r−2∇φ

)
= λ |x|−(s+1)r+t |φ|r−2 φ, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

(2.1)
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For t = c1 and r = p, s = a, we assume φ1,p the eigenfunction corresponding to the first

eigenvalue λ1,p of problem (2.1) where

φ1,p > 0 in Ω and ‖φ1,p‖∞ = 1.

We consider the following assumptions similar to that in [26]:

For s = b, r = q, and t = c2, we assume φ1,q the eigenfunction corresponding to the first

eigenvalue λ1,q of problem (2.1) where

φ1,q > 0 in Ω and ‖φ1,q‖∞ = 1.

The maximum principle gives that

∂φr

∂n
< 0 on ∂Ω for r ∈ {p, q},

where n is the outward normal. Then, there are positive constants m0, δ and σp, σq ∈ (0, 1) such that





λ1,r |x|−(s+1)r+t φr
1,r − |x|−sr |∇φ1,r|r ≤ −m0, x ∈ Ωδ.

φ1,r ≥ σr, x ∈ Ω\Ωδ,

(2.2)

with

r ∈ {p, q}, s ∈ {a, b}, t ∈ {c1, c2} and Ωδ = {x ∈ Ω : d (x, ∂Ω) ≤ δ} .

We also assume the unique solution (ζp (x) , ζq (x)) ∈ W 1,p
0

(
Ω, |x|−ap) ×W 1,q

0

(
Ω, |x|−bq

)
of

the following quasilinear singular system




−div
(
|x|−ap |ζp|p−2∇ζp

)
= |x|−(a+1)p+c1 , x ∈ Ω,

−div
(
|x|−bq |ζq|q−2∇ζq

)
= |x|−(b+1)q+c2 , x ∈ Ω,

ζp = ζq = 0, x ∈ ∂Ω,

(2.3)

where

‖ζp‖∞ = µp and ‖ζq‖∞ = µq.

Then, according [26], we have ζr > 0 in and ∂φr

∂n < 0 on ∂Ω for r ∈ {p, q}.
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Throughout this work, we consider that the weight function g (x) hold negative values in Ωδ.

However, it requires to be strictly positive in Ω\Ωδ. Precisely, we assume that there exist a positive

constants β and η satisfy

g (x) ≥ −β on Ωδ and g (x) ≥ η on Ω\Ωδ. (2.4)

Let s0 ≥ 0 such that

ηA (s) + f (s) > 0, ηB (s) + h (s) > 0 for s > s0 (2.5)

and

f0 = max {0,−f (0)} , h0 = max {0,−h (0)} . (2.6)

3. MAIN RESULT

Putting

X = W 1,p
0

(
Ω, |x|−ap)×W 1,q

0

(
Ω, |x|−bq

)
.

We give the following definition of weak solution and sub-super solution of the problem (1.1):

Definition 1 — A pair of nonnegative functions (ψ1, ψ2) , (z1, z2) in X are called a weak subso-

lution and supersolution of (1.1) if they satisfy: for (ψ1, ψ2) = (z1, z2) = (0, 0) on ∂Ω
∫

Ω

|x|−ap |∇ψ1|p−2∇ψ1∇ω1dx ≤ λ

∫

Ω

λ |x|−(a+1)p+c1 [g (x)A (ψ1) + f (ψ2)]ω1dx,

∫

Ω

|x|−bq |∇ψ2|q−2∇ψ2∇ω2dx ≤ λ

∫

Ω

|x|−(b+1)q+c2 [g (x)B (ψ2) + h (ψ1)]ω2dx

and ∫

Ω

|x|−ap |∇z1|p−2∇z1∇ω1dx ≥ λ

∫

Ω

|x|−(a+1)p+c1 [g (x)A (z1) + f (z2)]ω1dx,

∫

Ω

|x|−bq |∇z2|q−2∇z2∇ω2dx ≥ λ

∫

Ω

|x|−(b+1)q+c2 [g (x) B (z2) + h (z1)]ω2dx,

for all test functions

ω1 (x) ∈ W 1,p
0

(
Ω, |x|−ap)

and

ω2 (x) ∈ W 1,p
0

(
Ω, |x|−bq

)
,
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with ω1, ω2 ≥ 0.Then the following result holds:

Lemma 1 — (ref. [20]). Suppose there exist sub and super-solutions (ψ1, ψ2) and (z1, z2) respec-

tively of (1.1) such that (ψ1, ψ2) ≤ (z1, z2) . Then (1.1) has a weak solution (u, v) such that

(u, v) ∈ [(ψ1, ψ2) , (z1, z2)] .

In order to give the main result of this paper, we consider the following assumptions:

(A1) we have for every constant K > 0 :

lim
s→+∞

f
(
K

(
h (s)

1
q−1

))

sp−1
= 0.

(A2)

lim
s→+∞ f (s) = lim

s→+∞h (s) = +∞.

(A3)

lim
s→+∞

A (s)
sp−1

= lim
s→+∞

B (s)
sp−1

= 0.

(A4) If αp = p−1
p σ

p
p−1 , αq = q−1

q σ
q

q−1 , and α = min {αp, αq} then there exists γ > s0
α such

that

max





γλ1,p

ηA
(
γ

1
p−1 αp

)
+ f

(
γ

1
q−1 αq

) ,
γλ1,q

ηB
(
γ

1
q−1 αq

)
+ h

(
γ

1
p−1 αp

)




< min





m0γ

βA
(
γ

1
p−1

)
+ f0

,
m0γ

βB
(
γ

1
q−1

)
+ h0



 .

We recall that m0, σp and σq are introduced in relation (2.2) while s0 is defined in (2.5). We now

state our main result for the problem (1.1).

Theorem 1 — Suppose that (A1)−(A4) hold, then for every λ ∈ [A,B], system (1.1) has at least

one positive weak solution.

PROOF : Choose r > 0 such that r ≤ min
{
|x|−(a+1)p+c1 , |x|−(b+1)q+c2

}
in Ωδ.

We take γ > s0
α as in hypothesis (A4). Define

A = max





γλ1,p

ηA
(
γ

1
p−1 αp

)
+ f

(
γ

1
q−1 αq

) ,
γλ1,q

ηB
(
γ

1
q−1 αq

)
+ h

(
γ

1
p−1 αp

)






710 SALAH BOULAARAS, RAFIK GUEFAIFIA AND TAHAR BOUALI

and

B = min





m0γ

βA
(
γ

1
p−1

)
+ f0

,
m0γ

βB
(
γ

1
q−1

)
+ h0



 .

Setting

ψ1 = (γr)
1

p−1
p− 1

p
φ

p
p−1

1,p and ψ2 = (γr)
1

q−1
q − 1

q
φ

q
q−1

1,q .

We will check that (ψ1, ψ2) is a sub-solution of (1.1) for λ ∈ [A,B].

Indeed, let ω1 with ω1 ≥ 0 in. Then, it can be shown that





∫
Ω

|x|−ap |∇ψ1|p−2∇ψ1∇ω1dx = γr
∫
Ω

|x|−ap φ1,p |∇φ1,p|p−2∇φ1,p.∇ω1dx

= γr

{∫
Ω

|x|−ap |∇φ1,p|p−2∇φ1,p. [∇ (φ1,pω1)−∇φ1,pω1] dx

}

= γr
∫
Ω

[
λ1,p |x|−(a+1)p+c1 φp

1,p − |x|−ap |∇φ1,p|p
]
ω1dx.

(3.1)

Similarly we get 2
∫

Ω

|x|−bq |∇ψ2|q−2∇ψ2∇ω2dx = γr

∫

Ω

[
λ1,q |x|−(b+1)q+c2 φq

1,q − |x|−bq |∇φ1,q|q
]
ω2dx. (3.2)

Now, on Ωδ by relation (2.2) we have

γ
(
λ1,p |x|−(a+1)p+c1 φp

1,p − |x|−ap |∇φ1,p|p
)
≤ −m0γ.

Since λ ≤ B then we have

λ ≤ m0γ

βA
(
γ

1
p−1

)
+ f0

,

thus 



γ
(
λ1,p |x|−(a+1)p+c1 φp

1,p − |x|−ap |∇φ1,p|p
)
≤ −m0γ

≤ λ
(
−βA

(
γ

1
p−1

)
− f0

)

≤ λ

(
g (x) A

(
γ

1
p−1 p−1

p φ
p

p−1

1,p

)
+ f

(
γ

1
q−1 q−1

q φ
q

q−1

1,q

))
,

then

γr
(
λ1,p |x|−(a+1)p+c1 φp

1,p − |x|−ap |∇φ1,p|p
)
≤ λ |x|−(a+1)p+c1 [g (x) A (ψ1) + f (ψ2)] .
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By using (3.1)
∫

Ωδ

|x|−ap |∇ψ1|p−2∇ψ1∇ω1dx ≤ λ

∫

Ωδ

|x|−(a+1)p+c1 [g (x) A (ψ1) + f (ψ2)]ω1dx. (3.3)

Similarly, we shows that
∫

Ωδ

|x|−bq |∇ψ2|q−2∇ψ2∇ω2dx ≤ λ

∫

Ωδ

|x|−(b+1)q+c2 [g (x)B (ψ2) + h (ψ1)]ω2dx. (3.4)

Next, on Ω\Ωδ. Since λ ≥ A, then

λ ≥ γλ1,p

ηA
(
γ

1
p−1 αp

)
+ f

(
γ

1
q−1 αq

) ,

thus, we have

γ
(
λ1,p |x|−(a+1)p+c1 φp

1,p − |x|−ap |∇φ1,p|p
)

≤ γλ1,p

≤ λ
[
ηA

(
γ

1
p−1 αp

)
+ f

(
γ

1
q−1 αq

)]

and

γr
(
λ1,p |x|−(a+1)p+c1 φp

1,p − |x|−ap |∇φ1,p|p
)
≤ λ |x|−(a+1)p+c1 [g (x) A (ψ1) + f (ψ2)] , (3.5)

so by (3.1)
∫

Ω\Ωδ

|x|−ap |∇ψ1|p−2∇ψ1∇ω1dx ≤ λ

∫

Ω\Ωδ

|x|−(a+1)p+c1 [g (x) A (ψ1) + f (ψ2)]ω1dx. (3.6)

Similarly, we shows that for all λ ∈ [A,B]
∫

Ω\Ωδ

|x|−bq |∇ψ2|q−2∇ψ2∇ω2dx ≤ λ

∫

Ω\Ωδ

|x|−(b+1)q+c2 [g (x) B (ψ2) + h (ψ1)]ω2dx (3.7)

(3.3) and (3.6) give:
∫

Ω

|x|−ap |∇ψ1|p−2∇ψ1∇ω1dx ≤ λ

∫

Ω

|x|−(a+1)p+c1 [g (x) A (ψ1) + f (ψ2)]ω1dx. (3.8)

Similarly, we shows that
∫

Ω

|x|−bq |∇ψ2|q−2∇ψ2∇ω2dx ≤ λ

∫

Ω

|x|−(b+1)q+c2 [g (x)B (ψ2) + h (ψ1)]ω2dx. (3.9)
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From (3.8) and (3.9), we deduce that (ψ1, ψ2) is a sub-solution of (1.1). However, we have ψ1 > 0

and ψ2 > 0 in Ω.

Next, we introduce a supersolution of problem (1.1). For this intent, we can prove that there exists

a large enough positive constant C so that

(z1, z2) =
(

C

µp
λ

1
p−1 ζp,

[
2h

(
Cλ

1
q−1

)] 1
q−1

λ
1

q−1 ζq

)
.

Let ω1 ∈ W 1,p
0

(
Ω, |x|−ap) with ω1 ≥ 0.

For sufficient C large

µp−1
p

[
‖g‖∞A

(
Cλ

1
p−1

)
+ f

(
2h

(
Cλ

1
q−1

)) 1
q−1

λ
1

q−1 µq

]

Cp−1
≤ 1,

then

∫
Ω

|x|−ap |∇z1|p−2∇z1∇ω1dx = λ
(

C
µp

)p−1 ∫
Ω

|x|−ap |∇ζp|p−2∇ζp∇ω1dx

= λ
(

C
µp

)p−1 ∫
Ω

|x|−(a+1)p+c1 ω1dx

≥ λ
∫
Ω

|x|−(a+1)p+c1

[
‖g‖∞A

(
Cλ

1
p−1

)
+ f

(
2h

(
Cλ

1
q−1

)) 1
q−1

λ
1

q−1 µq

]
ω1dx

≥ λ
∫
Ω

|x|−(a+1)p+c1

[
‖g‖∞A

(
Cλ

1
p−1

ζp

µp

)
+ f

(
2h

(
Cλ

1
q−1

)) 1
q−1

λ
1

q−1 ζq

]
ω1dx

= λ
∫
Ω

|x|−(a+1)p+c1 [g (x) A (z1) + f (z2)]ω1dx.

(3.10)

Similarly, we choose C large so that

‖g‖∞
(

B
(
2h

(
Cλ

1
p−1

)) 1
q−1

λ
1

q−1 µq

)

h
(
Cλ

1
p−1

) ≤ 1.
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Let ω1 ∈ W 1,p
0

(
Ω, |x|−ap) with ω1 ≥ 0, then

∫
Ω

|x|−bq |∇z2|q−2∇z2∇ω2dx = 2λh
(
Cλ

1
p−1

) ∫
Ω

|x|−bq |∇ζq|p−2∇ζq∇ω2dx

= 2λh
(
Cλ

1
p−1

) ∫
Ω

|x|−(b+1)q+c2 ω2dx

≥ λ
∫
Ω

|x|−(b+1)q+c2 ‖g‖∞
(

B
(
2h

(
Cλ

1
p−1

)) 1
q−1

λ
1

q−1 µq

)
ω2dx

= λ
∫
Ω

|x|−(b+1)q+c2 [g (x) B (z2) + h (z1)]ω2dx.

(3.11)

From (3.10) and (3.11) yield that (z1, z2) is a super-solution of problem (1.1) with ψ1 ≤ z1 and

ψ2 ≤ z2 for C > 0 large.

Hence by Lemma (1.1), there exist a positive solution (u, v) of (1.1), where

(ψ1, ψ2) ≤ (u, v) ≤ (z1, z2).
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