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We concern the sublinear Schrödinger-Poisson equations



−4u + λV (x)u + φu = f(x, u) in R3,

−4φ = u2 in R3,

where λ > 0 is a parameter, V ∈ C(R3, [0, +∞)), f ∈ C(R3×R,R) and V −1(0) has nonempty
interior. We establish the existence of solution and explore the concentration of solutions on the
set V −1(0) as λ →∞ as well. Our results improve and extend some related works.
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1. INTRODUCTION AND MAIN RESULTS

In this paper, we are concerned with sublinear Schrödinger-Poisson system



−4u + λV (x)u + φu = f(x, u) in R3,

−4φ = u2 in R3,
(1.1)

where λ > 0, V ∈ C(R3, [0, +∞)) and f ∈ C(R3 × R,R). Problem (1.1) arises in applications

from mathematical physics. For more mathematical and physical interpretation, we refer to [1, 2, 3,

11, 30] and the references therein.

In recent years, there has been increasing attention to systems like (1.1) in the superlinear case, see

[5-8, 28, 29] and [4, 12-16] for related sublinear case and the existence and multiplicity of solutions,
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see [17, 19-21, 26]. [19] investigated the existence of solutions of (1.1) by using the variant fountain

theorem established in [10], under the following conditions:

(V ′
1) V (x) ∈ C(R3) and infx∈R3 V (x) ≥ a > 0.

(V ′
2) For any constants b > 0, meas{x ∈ R3 : V (x) ≤ b} < +∞, where meas denotes the

Lebesgue measure in R3.

(h1) F (x, u) = b(x)|u|p+1, where F (x, u) =
∫ u
0 f(x, s)ds, b : R3 → (0,+∞) is a positive

continuous function such that b ∈ L
2

1−p (R3) and 0 < p < 1 is a constant.

(V ′
1)(V

′
2) also appeared in [17-26]. [20] considered the existence and multiplicity of solutions of (1.1)

by using the minimizing theorem and the dual fountain theorem respectively, [21] established the

existence and multiplicity of negative energy solutions for the above problem via the genus properties

in critical point theory, [26] established some existence criteria to guarantee that problem has at least

one or infinitely many nontrivial solutions by using the genus properties in critical point theory.

Motivated by the above papers, we continue to consider problem (1.1) with steep well potential

and establish the existence of nontrivial solution and concentration results (as λ → ∞) under some

mild assumptions (where, f(x, u) is sublinear and indefinite) different from those studied previously.

We make the following assumptions.

(V1) V (x) ∈ C(R3) and V (x) ≥ 0 on R3.

(V2) There is a constant d > 0 such that Vd := {x ∈ R3|V (x) < d} is nonempty and has finite

measure.

(V3) Ω = int{V −1(0)} is nonempty and has smooth boundary with Ω̄ = V −1(0).

(f1) f ∈ C(R3,R) and there exist constants 0 < γ1 < γ2 < · · · < γm < 1 and functions

Ki(x) ∈ L
2

1−γi (R3, (0, +∞)) such that

|f(t, u)| ≤
m∑

i=1

(γi + 1)Ki|u|γi , ∀ (x, u) ∈ R3 × R.

(f2) There exist constants η, δ > 0, γ0 ∈ (1, 2) such that

F (t, u) ,
∫ u

0
f(x, s)ds ≥ η|u|γ0 , for all x ∈ Ω and all |u| ≤ δ.

Theorem 1.1 — Assume that the conditions (V1)-(V3) and (f1)-(f2) hold. Then, for every λ > 0,

problem (1.1) has at least one nontrivial solution uλ.
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Theorem 1.2 — Let uλ be a solution of problem (1.1), then uλ → u0 in H1(R3) as λ → ∞,

where u0 ∈ H1
0 (Ω) is a nontrivial solution of the equation




−4u + φu = f(x, u) in Ω,

−4φ = u2 in Ω.
(1.2)

Remark 1.1 : (f1) is weaker than the condition (h1) and (V1)-(V2) are weaker than(V ′
1)(V

′
2)

which were introduced by Bartsch and Wang [23] (see also [24]) in order to guarantee the compact

embedding of the functional space (see [21, Remark 3.5]). Thus, the (PS)-condition can not be

directly got as done in the literature, which makes the problem more complicated. To overcome this

difficulty, we adopt different method.

Remark 1.2 : The novelty of this paper is to investigate the concentration phenomenon of solutions

on the set V −1(0) as λ →∞. (V3) is used in deriving concentration phenomenon of solutions for the

solutions of problem (1.1). Generally speaking, there may exist some behaviours and phenomenons

for the solutions of problem (1.1) under (V3). To the best of our knowledge, few works concern on

this up to now.

2. VARIATIONAL SETTING AND PROOF OF THEOREM 1.1

Denote the usual Lq-norm with the norm | · |q for 1 ≤ q ≤ ∞, ci, C, Ci stand for different positive

constants. It is well known that D1,2(R3) ↪→ L2∗(R3), where 2∗ = 6 is the critical Sobolev exponent

of R3. Let S be the best embedding constant of this embedding,

|u|26 ≤ S−1‖u‖2
D1,2 . (2.1)

Let X =
{
u ∈ H1(R3) :

∫
R3(|∇u|2 + V (x)u2)dx < ∞}

be equipped with the inner product

and the norm

(u, v) =
∫

R3

(∇u∇v + V (x)uv)dx ‖u‖ = (u, u)1/2, u, v ∈ X.

For λ > 0, we need the following inner product

(u, v)λ =
∫

R3

(∇u∇v + λV (x)uv)dx, ‖u‖2
λ = (u, v)λ u, v ∈ X

Set Xλ = (X, ‖u‖λ), then Xλ is a Hilbert space. By using (V1)-(V3), it is easy to check that there

exists positive constant c0 (independent of λ) such that

‖u‖H1(R3) ≤ c0‖u‖λ, for all u ∈ Xλ.
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The embedding Xλ ↪→ Lp(R3) is continuous for p ∈ [2, 6], and Xλ ↪→ Lp
loc(R

3) is compact for

p ∈ [2, 6), i.e., there are constants cp > 0 such that

|u|p ≤ cp‖u‖H1(R3) ≤ cpc0‖u‖λ, for all u ∈ Xλ, 2 ≤ p ≤ 6. (2.2)

For any given u ∈ H1(R3), the Lax-Milgram theorem implies that there exists a unique φu ∈
D1,2(R3) such that

−4φu = u2. (2.3)

Lemma 2.1 — Let φu ∈ D1,2(R3) be the unique solution of −4φu = u2. Then we have

(1) φu(x) ≥ 0, x ∈ R3.

(2) For u ∈ H1(R3), one has ‖φu‖D1,2 ≤ c|u|212
5

.

(3) If un → u strongly in L
12
5 (R3), then φun → φu strongly in D1,2(R3).

Substituting φ = φu into system (SP ), we can rewrite system (SP ) as the single equation

−4u + λV (x)u + φuu = f(x, u), u ∈ Xλ.

We define the energy functional on Xλ by

Iλ(u) =
1
2

∫

R3

|∇u|2dx +
λ

2

∫

R3

V (x)u2dx +
1
4

∫

R3

φuu2dx−
∫

R3

F (x, u)dx. (2.4)

Lemma 2.2 — Assume that (V1)-(V2) and (f1) hold. Then Iλ : Xλ → R is of class C1(Xλ,R)

and

〈I ′λ(u), v〉 =
∫

R3

∇u∇vdx + λ

∫

R3

V (x)uvdx +
∫

R3

φuuvdx−
∫

R3

f(x, u)vdx. (2.5)

Moreover, the critical points of Iλ are solutions of problem (1.1).

PROOF : From (f1), we have

|F (x, u)| ≤
m∑

i=1

Ki(x)|u|γi+1, for all (x, u) ∈ R3 × R. (2.6)

For any u ∈ E, we obtain from (V1)-(V2), (f1), (2.6) and the Hölder inequality that
∫

R3

|F (x, u(x))|dx ≤
∫

R3

m∑

i=1

Ki(x)|u(x)|γi+1dx

≤
m∑

i=1

(∫

R3

|Ki(x)|
2

1−γi dx

) 1−γi
2

(∫

R3

|u(x)|2dx

) 1+γi
2

≤
m∑

i=1

(c2c0)1+γi |Ki(x)| 2
1−γi

‖u(x)‖1+γi

λ < +∞,

(2.7)
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and by Lemma 2.1 and (2.2), we have, for any position C,

∫

R3

φuu2dx ≤ C‖u‖4
λ. (2.8)

As mentioned above, Iλ is well defined on Xλ. By Lebesgue’s theorem and the Hölder inequality,

it is easy to obtain the claims.

Lemma 2.3 — (see [9]). Let E be a real Banach space and I ∈ C1(E,R) satisfy the (PS)-

condition. If I is bounded from below, then c = infE I is a critical value of I .

Lemma 2.4 — Suppose that (V1)-(V3) and (f1)-(f2) are satisfied. There Iλ is bounded from

below.

PROOF : The proof is standard, and we omit it. 2

Lemma 2.5 — Suppose that (V1)-(V3) and (f1)-(f2) are satisfied. Then Iλ satisfies the (PS)-

condition for each λ > 0.

PROOF : Assume that {un} is a sequence such that {Iλ(un)} is bounded and I ′λ(un) → 0 as

n → ∞. By Lemma 2.4, it is clear that {un} is bounded in Xλ. Thus, there exists a constant C > 0

such that for all n ∈ N

|un|p ≤ cpc0‖un‖λ ≤ C, 2 ≤ p ≤ 6. (2.9)

Passing to a subsequence if necessary, we may assume that un ⇀ u in Xλ. For any ε > 0, by

Ki(x) ∈ L
2

1−γi (R3,R+), we can choose Rε > 0 such that

(∫

R3\BRε

|Ki(x)|
2

1−γi dx

) 1−γi
2

< ε, i = 1, 2, · · · ,m. (2.10)

Since

lim
n→∞

∫

BRε

|un − u|2dx = 0, (2.11)

there exists N0 ∈ N such that

∫

BRε

|un − u|2dx < ε2, for n ≥ N0. (2.12)
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Hence, by (f1), (2.9), (2.12) and the Hölder inequality, we have, for n ≥ N0,

∫

BRε

|f(x, un)− f(x, u)||un − u|dx ≤
(∫

BRε

|f(x, un)− f(x, u)|2dx

)1/2 (∫

BRε

|un − u|2dx

)1/2

≤
(∫

BRε

2(|f(x, un)|2 + |f(x, u)|2)dx

)1/2

ε

≤
{∫

BRε

2m
[ m∑

i=1

(γi + 1)2K2
i (x)|un|2γi +

m∑

i=1

(γi + 1)2K2
i (x)|u|2γi

]
dx

}1/2

ε

≤
√

2m
[ m∑

i=1

(γi + 1)2|Ki(x)|2 2
1−γi

(C2γi + |u|2γi
2 )

]1/2
ε.

(2.13)

On the other hand, by (f1), (2.9), (2.10) and the Hölder inequality, we have for n ∈ N,

∫

R3\BRε

|f(x, un)− f(x, u)||un − u|dx

≤
∫

R3\BRε

m∑

i=1

(γi + 1)Ki(|un|γi+1 + |u|γi+1 + |u|γi |un|+ |un|γi |u|)dx

≤
m∑

i=1

(γi + 1)

(∫

R3\BRε

|Ki|
2

1−γi dx

) 1−γi
2 (|un|1+γi

2 + |u|1+γi
2 + |un|γi

2 |u|2

+ |u|γi
2 |un|2

)

≤ ε
m∑

i=1

(γi + 1)
(
|un|1+γi

2 + |u|1+γi
2 + |un|γi

2 |u|2 + |u|γi
2 |un|2

)

≤ ε
m∑

i=1

(γi + 1)
(

C1+γi + |u|1+γi
2 + Cγi |u|2 + C|u|γi

2

)
.

(2.14)

Since ε is arbitrary, combining (2.13) with (2.14), we have

∫

R3

|f(x, un)− f(x, u)||un − u|dx → 0 as n →∞. (2.15)

Recall that

(xy)1/2(x + y) ≤ x2 + y2, ∀x, y ≥ 0. (2.16)
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Hence we obtain, by Lemma 2.1 and the Hölder’s inequality,
∫

R3

(φununu + φuunu)dx

≤
(∫

R3

φunu2
ndx

)1/2 (∫

R3

φunu2dx

)1/2

+
(∫

R3

φuu2
ndx

)1/2 (∫

R3

φuu2dx

)1/2

=
(∫

R3

∇φun∇φudx

)1/2 (
‖φun‖D1,2 + ‖φu‖D1,2

)

≤
(∫

R3

|∇φun |2dx

)1/4 (∫

R3

|∇φu|2dx

)1/4 (
‖φun‖D1,2 + ‖φu‖D1,2

)

≤ ‖φun‖2
D1,2 + ‖φu‖2

D1,2

=
∫

R3

(φunu2
n + φuu2)dx

which implies that ∫

R3

(φunun − φuu)(un − u)dx ≥ 0. (2.17)

By (2.5), (2.17), one yields

‖un − u‖2
λ =〈I ′λ(un)− I ′λ(u), un − u〉 −

∫

R3

(φunun − φuu)(un − u)dx

+
∫

R3

(f(x, un)− f(x, u))(un − u)dx

≤〈I ′λ(un)− I ′λ(u), un − u〉+
∫

R3

|f(x, un)− f(x, u)||un − u|dx.

(2.18)

Since 〈I ′λ(un)− I ′λ(u), un − u〉 → 0 n → +∞, it follows from (2.15) and (2.18) that un → u

in Xλ. Hence, Iλ satisfies the (PS)-condition. The proof is complete. 2

PROOF OF THEOREM 1 : By Lemmas (2.2)− (2.5), we know that cλ = infXλ
Iλ(u) is a critical

value of Iλ, that is, there exists a critical point uλ ∈ Xλ such that Iλ(uλ) = cλ. Next, we shows that

uλ 6= 0. Let u∗ ∈ H1
0 (Ω) \ {0} and ‖u∗‖∞ ≤ 1, then by (f2) (2.4) and (2.8), we have

Iλ(tu∗) =
t2

2
‖u∗‖λ +

t4

4

∫

R3

φu∗(u∗)2dx−
∫

R3

F (x, tu∗)dx

≤ t2

2
‖u∗‖2

λ +
Ct4

4
‖u∗‖4

λ − ηtγ0

∫

Ω
|u∗|γ0dx,

(2.19)

where 0 < t < δ, δ be given in (f2). Since 1 < γ0 < 2, it follows from (2.19) that Iλ(tu∗) < 0 for

t > 0 small enough. Hence, Iλ(uλ) = cλ < 0, therefore, uλ is a nontrivial solution of problem (1.1).

The proof is finished. 2
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3. CONCENTRATION OF SOLUTIONS

Define c̃ = infH1
0 (Ω) Iλ. From the proof of Theorem (1.1), c̃ < 0 can be achieved. Since H1

0 (Ω) ⊂
Xλ for all λ > 0, we get infXλ

Iλ ≤ infH1
0 (Ω) Iλ < 0, hence, cλ ≤ c̃ < 0.

PROOF OF THEOREM 1.2. : We follow the arguments in [24]. For any sequence λn → ∞, let

un := uλn be the critical points of Iλn obtained in Theorem 1.1. Thus

Iλn(un) ≤ c̃ < 0 (3.1)

which implies

‖un‖λn ≤ c1, (3.2)

for some constant c1 which is independent of (λn). Therefore, we may assume that un ⇀ u0 in Xλ

and un → u0 in Lp
loc(R

3) for 2 ≤ p < 2∗. From Fatou’s lemma, we have

∫

R3

V (x)|u0|2dx ≤ lim inf
n→∞

∫

R3

V (x)|un|2dx ≤ lim inf
n→∞

‖un‖2
λn

λn
= 0,

which implies that u0 = 0 a.e. in R3\V −1(0) and u0 ∈ H1
0 (Ω) by (V3).

By Lions vanishing lemma [10], we can verify that un → u0 in Lp(R3) for 2 ≤ p < 6. Next, for

any ϕ ∈ C∞
0 (Ω), since 〈I ′λn

(un), ϕ〉 = 0 and (V3), it is easy to verify that
∫

Ω
∇u0∇ϕdx +

∫

Ω
φu0u0ϕ =

∫

Ω
f(x, u0)ϕdx. (3.3)

By the density of C∞
0 (Ω) in H1

0 (Ω), (3.3) implies that u0 is a weak solution of problem (1.2).

Finally, we prove that un → u0 in H1(R3). Since 〈I ′λn
(un), un〉 = 〈I ′λn

(un), u0〉 = 0, we have

‖un‖2
λn

+
∫

R3

φunu2
ndx =

∫

R3

f(x, un)undx,

〈un, u0〉λn +
∫

R3

φununu0dx =
∫

R3

f(x, un)u0dx,

∫

R3

(φunu2
n − φununu0)dx → 0,

so

lim
n→∞ ‖un‖2

λn
= lim

n→∞(un, u0)λn = lim
n→∞(un, u0) = ‖u0‖2,

which together with ‖u‖ ≤ ‖u‖λ ( for λ ≥ 1 ) imply that

lim sup
n→∞

‖un‖2 ≤ ‖u0‖2.
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On the other hand, the weakly lower semi-continuity of norm yields that ‖u0‖2 ≤ lim infn→∞ ‖un‖2.

Hence, un → u0 in H1(R3). From (3.1), we have

1
2

∫

Ω
|∇u0|2dx +

∫

R3

φu0u
2
0dx−

∫

Ω
F (x, u0)dx ≤ c̃ < 0,

which implies that u0 6= 0. This completes the proof. 2

REFERENCES

1. A. Ambrosetti and R. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Con-
temp. Math., 10 (2008), 391-404.

2. V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Meth-
ods Nonlinear Anal., 11 (1998), 283-293.

3. L. Pisani and G. Siciliano, Note on a Schrödinger-Poisson system in a bounded domain, Appl. Math.
Lett., 21 (2008), 521-528.

4. A. Mao and X. Zhu, Existence and multiplicity results for kirchhoff problems, Mediterr. J. Math.,
(2017), DOI: 10.1007/s00009-017-0875-0.

5. M. Yang, Ground state solutions for a periodic Schrödinger equation with superlinear nonlinearities,
Nonlinear Anal., 72 (2010), 2620-2627.

6. S. Chen and C. Tang, High energy solutions for the Schrödinger-Maxwell equations, Nonlinear Anal.,
71 (2009), 4927-4934.

7. P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992),
270-291.

8. T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on RN , Arch.
Ration. Mech. Anal., 124 (1993), 261-276.

9. M. Willem, Minimax theorems, Birkhäuser, Berlin. (1996).
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