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We determine the number of centralizers of different non-abelian finite dimensional Lie algebras
over a specific field. Also, the concept of Lie algebras with abelian centralizers are studied and
using a result of Bokut and Kukin [5], for a given residually free Lie algebra L, it is shown that
L is fully residually free if and only if every centralizer of non-zero elements of L is abelian.
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1. INTRODUCTION AND PRELIMINARIES

Let L be a finite dimension Lie algebra over the fixed field F . Then for any element x ∈ L, the

set CL(x) = {y ∈ L | [x, y] = 0} is called the centralizer of x in L. The set of all centralizers

in L is denoted by Cent(L) and |Cent(L)| denotes the number of distinct centralizers in L. A

Lie algebra L is called n-centralizer if |Cent(L)| = n and L is called primitive n-centralizer if

|Cent(L/Z(L))| = |Cent(L)| = n, where Z(L) is the centre of L. A subalgebra K of L is called

proper centralizer of L if K = CL(x), for some x ∈ L \ Z(L).

Similar to group theory, it is clear that L is abelian if and only if |Cent(L)| = 1.
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Lemma 1.1 — Let L1 and L2 be Lie algebras, then

Cent(L1 ⊕ L2) = Cent(L1)⊕ Cent(L2).

PROOF : Clearly, the Lie product of elements of L1 ⊕ L2 is defined by [(x1, x2), (y1, y2)] =

([x1, y1], [x2, y2]), for all xi, yi ∈ Li (i = 1, 2). Now the result follows from the property that

C(L1⊕L2)(x1, x2) = CL1(x1)⊕ CL2(x2), for all x1 ∈ L1 and x2 ∈ L2. 2

Lemma 1.2 — For a Lie algebra L, the centre Z(L), is the intersection of all centralizers in L, i.e.

Z(L) =
⋂

x∈L CL(x), for all x ∈ L.

PROOF : Clearly, Z(L) ⊆ ⋂
x∈L CL(x). Now, suppose that l ∈ ⋂

x∈L CL(x), then [x, l] = 0, for

all x ∈ L and so l ∈ Z(L), which gives the claim. 2

Lemma 1.3 — If L is a non-abelian Lie algebra, then L is the union of centralizers of all non-

central elements of L.

PROOF : Clearly,
⋃

x∈L−Z(L) CL(x) ⊆ L. Let l ∈ Z(L), then by using Lemma 1.2, l ∈
CL(x) for all x ∈ L and since l ∈ CL(l) it follows that l ∈ ⋃

x∈L−Z(L) CL(x). Therefore

L ⊆ ⋃
x∈L−Z(L) CL(x) and the proof is complete. 2

Lemma 1.4 — A Lie algebra L can not are written as a union of two proper Lie subalgebras.

PROOF : Suppose H and K are two proper Lie subalgebras of L such that L = H ∪ K. Let

h ∈ H −K and k ∈ K −H , then either h + k ∈ H or h + k ∈ K, which imply k ∈ H or h ∈ K,

respectively. This gives a contradiction. Therefore h + k 6∈ L, which gives the lemma. 2

Theorem 1.5 — Let L be a non-abelian Lie algebra, then |Cent(L)| ≥ 4.

PROOF : By Lemma 1.3, L is the union of its proper centralizers. Since L is non-abelian, we

have |Cent(L)| > 1. If |Cent(L)| = 2, then L is the proper Lie subalgebra of itself, which is

impossible. Suppose |Cent(L)| = 3, then Cent(L) = {L,CL(x), CL(y)}, where CL(x) and CL(y)

are proper centralizers of L. Therefore L = CL(x) ∪ CL(y), which is impossible by Lemma 1.4.

Hence, |Cent(L)| ≥ 4. 2

2. COUNTING CENTRALIZERS IN LIE ALGEBRAS

In this section, we study the centralizers of low-dimensional Lie algebras over the Galois field of p

elements, Zp, for any prime number p.

Lemma 2.1 — Let Li’s be finite dimensional Lie algebras with |Cent(Li)| = ni, for i =

1, 2, ..., r. Then |Cent(L1 ⊕ L2 ⊕ ...⊕ Lr)| =
∏r

i=1 ni.
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PROOF : Assume L = L1 ⊕ L2 ⊕ ...⊕ Lr. Using Lemma 1.1, we have

CL(x1, x2, ..., xr) = CL1(x1)⊕ CL2(x2)⊕ ...⊕ CLr(xr),

for all (x1, x2, ..., xr) ∈ L. It follows that CL(x1, x2, ..., xr) = CL(y1, y2, ..., yr) if and only if

CLi(xi) = CLi(yi), for all 1 ≤ i ≤ r. This implies that |Cent(L1 ⊕ L2 ⊕ ...⊕ Lr)| =
∏r

i=1 ni. 2

Lemma 2.2 — Let K be a subalgebra of a finite dimensional Lie algebra L. Then |Cent(K)| ≤
|Cent(L)|.

PROOF : Let k1, k2, ..., km be a basis of K, and CK(k1), ..., CK(km) be the distinct centralizers

in K. On the other hand, CK(ki) = K ∩ CL(ki) then CL(ki) 6= CL(kj), for all i 6= j, where

1 ≤ i, j ≤ m, and hence the lemma is obtained. 2

Lemma 2.3 — Let L be n-centralizer Lie algebra with L2 ∩ Z(L) = 0. Then L is a primitive

n-centralizer.

PROOF : Suppose that Cent(L) = {CL(x1), CL(x2), ..., CL(xn)} is the set of all distinct cen-

tralizers in L. One can easily check that CL/Z(L)(x + Z(L)) = CL(x)/Z(L). Hence it is enough

to show that for any 1 ≤ i 6= j ≤ n, CL/Z(L)(xi + Z(L)) 6= CL/Z(L)(xj + Z(L)). So assume

there exist some 1 ≤ i 6= j ≤ n such that CL/Z(L)(xi + Z(L)) = CL/Z(L)(xj + Z(L)). Suppose

y ∈ CL(xi), then y + Z(L) ∈ CL/Z(L)(xi + Z(L)) = CL/Z(L)(xj + Z(L)) and by the assumption

we have [y, xj ] = 0, i.e., CL(xi) ⊆ CL(xj). Using similar argument, we have CL(xj) ⊆ CL(xi)

which gives a contradiction. Thus |Cent(L/Z(L))| = n and hence L is a primitive n-centralizer. 2

In the following, we determine the number of centralizers of 2-dimension non-abelian Lie algebra

over the Galois field of p elements.

Theorem 2.4 — Let L be a 2-dimension non-abelian Lie algebra over the fieldZp. Then
∣∣Cent(L)

∣∣ =

p + 2.

PROOF : Clearly there exists a unique 2-dimension non-abelian Lie algebra over any field. The

centre of this Lie algebra is trivial and the Lie algebra has a basis {x, y} such that its Lie bracket is

described by [x, y] = x. Clearly

CL(x) = 〈x〉, CL(y) = 〈y〉, CL(αx + βy) = 〈αx + βy〉,

and the number of distinct CL(αx + βy) = 〈αx + βy〉 is equal to (p−1)2

p−1 = p − 1, for all non-zero

α, β ∈ Zp. Now adding the centralizers CL(x), CL(y) and L, we have
∣∣Cent(L)

∣∣ = p + 2. 2

Definition 2.5 — Let L be a 3-dimension non-abelian Lie algebra over a field F , with L2 to be

1-dimension so that L2 is contained in Z(L). Such a Lie algebra is known as Heisenberg Lie algebra.
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Theorem 2.6 — Let L be Heisenberg Lie algebra over the field Zp, then |Cent(L)| = p + 2.

PROOF : Clearly there is a unique such a Lie algebra, and it has a basis {f, g, z}, where [f, g] = z

and z lies in Z(L). Hence for every y ∈ CL(f) there exist α, β, γ ∈ Zp such that y = αf +βg + γz,

then

0 = [f, y] = [f, αf + βg + γz] = β[f, g] = βz,

and so β = 0. Thus CL(f) = 〈αf + γz〉. Similarly CL(g) = 〈βg + γz〉, CL(αf + βg) =

〈αf + βg + γ′z〉, CL(f + z) = CL(f), CL(g + z) = CL(g), CL(αf + βg + γz) = CL(αf + βg)

and clearly CL(z) = L. Now for any non-zero elements α, β ∈ Zp, we have (p−1)2

p−1 = p− 1 distinct

centralizers of the form CL(αf + βg). So |Cent(L)| = p− 1 + 3 = p + 2. 2

Example 2.7 : Let L = n(3,Zp) = 〈e12, e13, e23〉 be the Lie algebra of non-zero strictly upper

triangular matrices, then [e12, e23] = e13 and L2 = Z(L). Hence, the above theorem implies that∣∣Cent(L)
∣∣ = p + 2.

As in Theorem 3.2 [8], there exists a unique 3-dimensional Lie algebra over a field F such that

L2 is 1-dimension and L2 6⊆ Z(L). Hence such a Lie algebra is the direct sum of the non-abelian

2-dimension with 1-dimension Lie subalgebras.

Theorem 2.8 — Let L be the 3-dimensional Lie algebra as above over the field Zp. Then

|Cent(L)| = p + 2.

PROOF : By the assumption we may write L = L2 ⊕ L1, where L2 is 2-dimensional non-abelian

and L1 is 1-dimensional Lie algebra overZp. By Lemma 2.1,
∣∣Cent(L)

∣∣ =
∣∣Cent(L2)

∣∣∣∣Cent(L1)
∣∣ =

(p + 2)× 1 = p + 2. 2

The following lemma is very useful for our further study.

Lemma 2.9 — ([8], Lemma 3.3). Let L be a Lie algebra with dimension 3 and dimL2 = 2. Then

(i) L2 is abelian;

(ii) the map adx : L2 → L2 is an isomorphism, for all x ∈ L− L2.

Theorem 2.10 — Let L be a Lie algebra with dimension 3 over the field Zp and dimL2 = 2.

Then
∣∣Cent(L)

∣∣ = p2 + 2.

PROOF : Let {y, z} be a basis for the derived subalgebra L2 and extend it to a basis {x, y, z} for

L. Then the derived subalgebra L2 is abelian, and hence [y, z] = 0. Therefore we have CL(y) = {l =

αx + βy + γz | [y, l] = 0} = 〈βy + γz〉, CL(z) = CL(y), CL(x) = 〈x〉, CL(x + y) = 〈αx + αy〉,
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CL(x + z) = 〈αx + αz〉, CL(y + z) = CL(z) = CL(y), CL(x + y + z) = 〈αx + αy + αz〉,
CL(αx + βy) = 〈αx + βy〉, CL(αx + βz) = 〈αx + βz〉, CL(αx + βy + γz) = 〈αx + βy + γz〉.

Clearly, each cases 〈αx, βy〉 and 〈αx + βz〉, has (p− 1)2 distinct set of centralizers so that every

set contains p − 1 elements. Hence each of these have only (p−1)2

p−1 = p − 1 distinct sets. Also for

CL(αx+βy +γz) = 〈αx+βy +γz〉 we have (p−1)3

p−1 = (p−1)2 distinct sets. Therefore the number

of Cent(L) is equal to (p− 1)2 + 2(p− 1) + 3 = p2 + 2. 2

The following example justifies the above theorem.

Example 2.11 : Consider the 3-dimension Lie algebra L with the basis {x, y, z} as in Theorem

2.10 over the field Z5, then one may calculate all the centralizers of L in the following way:

CL(x) = {0, x, 2x, 3x, 4x}, CL(y) = {0, y, 2y, 3y, 4y}, CL(0) = L,

CL(x + y) = {0, x + y, 2(x + y), 3(x + y), 4(x + y)},

CL(x + z) = {0, x + z, 2(x + z), 3(x + z), 4(x + z)},

CL(y + z) = CL(z) = CL(y),

CL(x + y + z) = {0, x + y + z, 2(x + y + z), 3(x + y + z), 4(x + y + z)},

CL(2x + y) = {0, 2x + y, 4x + 2y, x + 3y, 3x + 4y)},

CL(3x + y) = {0, 3x + y, x + 2y, 4x + 3y, 3x + 4y)},

CL(4x + y) = {0, 4x + y, 3x + 2y, 2x + 3y, x + 4y)},

CL(2x + z) = {0, 2x + z, 4x + 2z, x + 3z, 3x + 4z)},

CL(3x + z) = {0, 3x + z, x + 2z, 4x + 3z, 2x + 4z)},

CL(4x + z) = {0, 4x + z, 3x + 2z, 2x + 3z, x + 4z)},

CL(2x + y + z) = {0, 2x + y + z, 4x + 2y + 2z, x + 3y + 3z, 3x + 4y + 4z)},

CL(3x + y + z) = {0, 3x + y + z, x + 2y + 2z, 4x + 3y + 3z, 3x + 4y + 4z)},

CL(4x + y + z) = {0, 4x + y + z, 3x + 2y + 2z, 2x + 3y + 3z, x + 4y + 4z)},

CL(x + 2y + z) = {0, x + 2y + z, 2x + 4y + 2z, 3x + y + 3z, 4x + 3y + 4z)},

CL(x + 3y + z) = {0, x + 3y + z, 2x + y + 2z, 3x + 4y + 3z, 4x + 2y + 4z)},

CL(x + 4y + z) = {0, x + 4y + z, 2x + 3y + 2z, 3x + 2y + 3z, 4x + y + 4z)},

CL(x + y + 2z) = {0, x + y + 2z, 2x + 2y + 4z, 3x + 3y + z, 4x + 4y + 3z},

CL(x + y + 3z) = {0, x + y + 3z, 2x + 2y + z, 3x + 3y + 4z, 4x + 4y + 2z},

CL(x + y + 4z) = {0, x + y + 4z, 2x + 2y + 3z, 3x + 3y + 2z, 4x + 4y + z},

CL(x + 2y + 3z) = {0, x + 2y + 3z, 2x + 4y + z, 3x + y + 4z, 4x + 3y + 2z)},

CL(x + 3y + 4z) = {0, x + 3y + 4z, 2x + y + 3z, 3x + 4y + 2z, 4x + 2y + z)},

CL(2x + 3y + 4z) = {0, 2x + 3y + 4z, 4x + y + 3z, x + 4y + 2z, 3x + 2y + z)},

CL(x + 2y + 4z) = {0, x + 2y + 4z, 2x + 4y + 3z, 3x + y + 2z, 4x + 3y + z)},
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CL(x + 3y + 2z) = {0, x + 3y + 2z, 2x + y + 4z, 3x + 4y + z, 4x + 2y + 3z}.

One observes that |Cent(L)| = 27. On the other hand, by Theorem 2.10, the number of distinct

centralizers must be 52 + 2 = 27.

Theorem 2.12 — Let L be a Lie algebra over the field Zp such that dimL = 3 and dimL2 = 3.

Then
∣∣Cent(L)

∣∣ = p2 + p + 2.

PROOF : Let x be a non-zero element of the Lie algebra L, then extend x to a basis of L, say

{x, y, z}. Clearly L2 is spanned by {[x, y], [x, z], [y, z]} and this set must be linearly independent. So

we have CL(x) = 〈x〉, CL(y) = 〈y〉, CL(z) = 〈z〉, CL(αx + βy) = 〈αx + βy〉, CL(αx + γz) =

〈αx+ γz〉, CL(βy + γz) = 〈βy + γz〉, CL(αx+βy + γz) = 〈αx+βy + γz〉. Now for all non-zero

elements α, β ∈ Zp, we can write (p − 1)3 sets of centralizers of the form CL(αx + βy + γz) =

〈αx + βy + γz〉, but every set contains p − 1 elements and so we have (p−1)3

p−1 = (p − 1)2 distinct

sets of the form CL(αx + βy + γz). Similarly, we have (p−1)2

p−1 = p − 1 distinct sets of each

CL(αx + βy), CL(αx + γz) and CL(βy + γz). So summing up all together we obtain |Cent(L)| =
(p− 1)2 + 3(p− 1) + 4 = p2 + p + 2. 2

The following example justifies the above theorem.

Example 2.13 : The distinct centralizers of the 3-dimension Lie algebra in Theorem 2.12 over the

field Z3 are as follows:

CL(x) = {0, x, 2x}, CL(y) = {0, y, 2y}, CL(z) = {0, z, 2z}, CL(0) = L,

CL(x + y) = {0, x + y, 2x + 2y},

CL(2x + y) = {0, 2x + y, x + 2y},

CL(x + z) = {0, x + z, 2x + 2z},

CL(2x + z) = {0, 2x + z, x + 2z},

CL(y + z) = {0, y + z, 2y + 2z},

CL(2y + z) = {0, 2y + z, y + 2z},

CL(x + y + z) = {0, x + y + z, 2x + 2y + 2z},

CL(2x + y + z) = {0, 2x + y + z, x + 2y + 2z},

CL(x + 2y + z) = {0, x + 2y + z, 2x + y + 2z},

CL(x + y + 2z) = {0, x + y + 2z, 2x + 2y + z}.

So |Cent(L)| = 14 and using Theorem 2.12, we get the same number, i.e. |Cent(L)| = 32 +

3 + 2 = 14.
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3. LIE ALGEBRAS WITH ABELIAN CENTRALIZERS

In this section we study Lie algebras L, in which every centralizer of non-zero elements of L is

abelian. Such Lie algebras are equivalent to commutative transitive Lie algebras (see Lemma 3.2).

The concept of commutative transitive groups was first introduced and studied by Weisner [11] in

1925.

Definition 3.1 — A Lie algebra L is commutative transitive (henceforth CT), if [x, y] = 0 and

[y, z] = 0 imply that [x, z] = 0, for any non-zero elements x, y, z in L.

The property of CT is clearly subalgebra closed, while it is not quotient closed, as every free Lie

algebra is CT (see [9], Example 4.4 for more detail).

The Frattini subalgebra Φ(L) of a Lie algebra L, is the intersection of all maximal subalgebras of

L or it is L itself, when there are no maximal subalgebras (see also [10]).

In this section, we study the concept of commutative transitive Lie algebras and among other

results, their relationships with fully residually free Lie algebras are established.

Here, we introduce some basic notion and then prove our main results of this section.

Lemma 3.2 — For any Lie algebra L, the following statements are equivalent:

(i) L is CT Lie algebra;

(ii) The centralizers of non-zero elements of L are abelian.

PROOF : (i) ⇒ (ii) Let L be a CT Lie algebra. For any non-zero element x ∈ L, if y, z ∈ CL(x)

we have [y, x] = 0 and [x, z] = 0. The definition of CT implies that [y, z] = 0. Hence CL(x) is

abelian.

(ii) ⇒ (i) Assume x, y, z are non-zero elements of L, with [x, y] = 0 and [y, z] = 0. Obviously

x, z ∈ CL(y). By the assumption CL(y) is abelian and hence [x, z] = 0. Thus L is commutative

transitive. 2

The proof of the following lemma is a routine argument by using Zorn’s Lemma.

Lemma 3.3 — Every abelian subalgebra K of a given Lie algebra L is contained in a maximal

abelian subalgebra.

PROOF : Consider the collection of all abelian subalgebras of L containing K, ordered by inclu-

sion. We first show that in this partially ordered set, every chain has an upper bound. Indeed, given an

ascending chain of abelian subalgebras and consider their union. We need to show that this is again
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abelian. Given an ascending chain of subalbebras then for any two elements x and y in their union,

one has [x, y] = 0. Thus the partially ordered collection of abelian subalgebras containing K satisfies

the condition that every chain has an upper bound in the collection. Zorn’s lemma yields that there

exists a maximal element in the partially ordered collection M , say. Hence K is contained in the

maximal abelian subalgebra M of L. 2

The following fact is needed in proving our main results.

Proposition 3.4 — Let L be a non-abelian Lie algebra with Φ(L) 6= 0. Then L has one maximal

abelian subalgebra.

PROOF : Let L be a non-abelian Lie algebra with non-zero Frattini subalgebra, Φ(L). Without

loss of generality, we may assume that M1 and M2 are maximal abelian subalgebras with M1 6= M2.

Assume there exists an element m1 ∈ M1 \M2, then clearly

M2 ⊆ M2 ⊕ 〈m1〉 ⊆ L.

If M2 ⊕ 〈m1〉 = L, then L is abelian which contradicts our assumption. Hence m1 must be in

M2 and so M1 = M2. 2

Using the above proposition and Lemma 3.3, we obtain the following useful result.

Theorem 3.5 — Every non-abelian Lie algebra L with non-zero Frattini subalgebra is CT.

PROOF : Let L be a non-abelian Lie algebra, for which Φ(L) 6= 0 and assume that [x, y] =

0, [y, z] = 0, for non-zero elements x, y, z in L. Suppose that M1 and M2 are maximal abelian

subalgebras in L, which contain two abelian ideals I1 = 〈x, y〉 and I2 = 〈y, z〉, respectively. Then

Proposition 3.4 implies that M1 = M2, which gives [x, z] = 0 and so L is CT. 2

In 2010, Klep and Moravec [9] classified all finite dimensional commutative transitive Lie alge-

bras over an algebraically closed field of characteristic 0. They proved that these Lie algebras are

either simple or soluble, where the only simple such Lie algebra is sl2. Also, they showed that in

the soluble case, Lie algebras are either abelian or a one-dimensional split extension of abelian Lie

algebra (see [9] for more information).

Now, using Theorem 3.5 one can easily see that every non-abelian Lie algebra with Φ(L) 6= 0

is either simple or soluble. One notes that all the results on CT Lie algebras in [9], carried out the

assumption of non-triviality of Frattini subalgebras.

In the following, we focus on non-abelian CT Lie algebras and give some structural results.

Theorem 3.6 — The centre of a non-abelian CT Lie algebra is trivial.



CENTRALIZERS IN LIE ALGEBRAS 47

PROOF : Assume L is a non-abelian Lie algebra with non-zero centre and z is a non-zero element

in Z(L). Clearly, for every non-zero elements x, y ∈ L

[x, z] = 0, [z, y] = 0,

then the definition of CT Lie algebras implies that [x, y] = 0. Hence L is abelian Lie algebra and this

contradiction gives the result. 2

A derivation of a Lie algebra L over a field F is an F -linear transformation d : L −→ L such that

d([x, y]) = [d(x), y] + [x, d(y)],

for all x, y ∈ L. We denote by Der(L) the vector space of derivations of L, which forms a Lie algebra

with respect to the bracket of linear transformations, called the derivation algebra of L. Clearly, the

space

adL = {adx|x ∈ L}
of inner derivations is an ideal of Der(L).

Theorem 3.7 — Let L be a non-abelian CT Lie algebra, then Z(Der(L)) = 0.

PROOF : It is clear that L is centre less Lie algebra. Assume that d ∈ Z(Der(L)). Then in

particular we have dadx(y) = adxd(y), and hence d([x, y]) = [x, d(y)], for all x, y ∈ L. Hence

by the definition of derivation, [d(x), y] = 0, for all x, y ∈ L. Since L has trivial centre, we obtain

d(x) = 0, i.e., d = 0. Therefore Z(Der(L)) = 0. 2

Let χ be a class of Lie algebras. Then a Lie algebra L is residually χ if for every non-zero

element x ∈ L, there exists a homomorphism φ : L → K, where K is a χ-Lie algebra such that

φ(x) 6= 0. Also a Lie algebra L is fully residually χ, if for finitely many non-zero elements x1, ..., xn

in L there exists a homomorphism φ : L → K, where K is a χ-Lie algebra such that φ(xi) 6= 0, for

all i = 1, ..., n.

In 1967, Baumslag [3] introduced the notion of fully residually free groups and proved that a

residually free group is fully residually free if and only if it is commutative transitive. A group G is

commutative transitive, if [x, y] = 1 and [y, z] = 1 implies that [x, z] = 1, for non-trivial elements

x, y, z in G.

Lemma 3.8 — (Bokut and Kukin [5], Lemma 4.16.2). A Lie algebra L is fully residually free if

and only if, for every two linearly independent elements x1 and x2 in L, there exists a homomorphism

φ from the Lie algebra L into a free Lie algebraF such that the elements φ(x1) and φ(x2) are linearly

independent in F .
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Now, using the above lemma we give the following result concerning free Lie algebras.

Theorem 3.9 — Let L be a residually free Lie algebra. Then L is fully residually free, if and only

if L is CT.

PROOF : Without loss of generality we may assume that L is non-abelian Lie algebra. Now let L

be a non-abelian residually free CT Lie algebra over a field F . Then we show that for given non-zero

linearly independent elements x1 and x2 in L, there exists a homomorphism φ : L → F such that F
is a free Lie algebra and φ(x1) and φ(x2) are linearly independent. Hence Lemma 3.8 implies that L

is fully residually free.

For every non-zero element x1 in L, there exits a homomorphism φ : L → F such that φ(x1) 6= 0,

as by the assumption L is residually free Lie algebra. On the other hand, Theorem 3.6 implies that

Z(L) = 0. Hence, [x1, x2] 6= 0 for some x2 in L. So x1 and x2 are linearly independent in L.

Clearly, [φ(x1), φ(x2)] 6= 0, as F is free Lie algebra. Then φ(x1) and φ(x2) are linearly independent

and hence L is fully residually free.

Conversely, let L be a fully residually free Lie algebra such that [x1, x2] = 0 and [x2, x3] = 0, for

any non-zero elements x1, x2 and x3 in L. Assume that L is not CT and x4 = [x1, x3] 6= 0, then there

exits a homomorphism φ : L → F , where F is a free Lie algebra and φ(xi) 6= 0 for i = 1, 2, 3, 4, as

by the assumption L is fully residually free Lie algebra. Hence, φ(x4) = [φ(x1), φ(x3)] 6= 0. Now,

to prove our claim it is enough to show that either [φ(x1), φ(x2)] 6= 0 or [φ(x2), φ(x3)] 6= 0. But both

of which contradict the assumptions [x1, x2] = 0 and [x2, x3] = 0, respectively. Thus [x1, x3] = 0

and L is CT Lie algebra. 2
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