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This paper does three things: It proves a central limit theorem for novel permutation statistics
(for example, the number of descents plus the number of descents in the inverse). It provides a
clear illustration of a new approach to proving central limit theorems more generally. It gives us
an opportunity to acknowledge the work of our teacher and friend B. V. Rao.
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1. INTRODUCTION

Let Sn be the group of all n! permutations of {1, . . . , n}. A variety of statistics T (π) are used to

enable tasks such as tests of randomness of a time series, comparison of voter profiles when candidates

are ranked, non-parametric statistical tests and evaluation of search engine rankings. A basic feature

of a permutation is a local ‘up-down’ pattern. Let the number of descents be defined as

D(π) := |{i : 1 ≤ i ≤ n− 1, π(i + 1) < π(i)}| .

For example, when n = 10, the permutation π = (7 1 5 3 10 8 6 2 4 9) has D(π) = 5.

The enumerative theory of permutations by descents has been intensively studied since Euler. An

overview is in Section 3 below. In seeking to make a metric on permutations using descents we were

led to study

T (π) := D(π) + D(π−1) . (1.1)

For a statistician or a probabilist it is natural to ask “Pick π ∈ Sn uniformly; what is the distribu-

tion of T (π)?” While a host of limit theorems are known for D(π), we found T (π) challenging. A

main result of this paper establishes a central limit theorem.
1Sourav Chatterjee’s research was partially supported by NSF grant DMS-1441513.
2Persi Diaconis’s research was partially supported by NSF grant DMS-1208775.
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Theorem 1.1 — For π chosen uniformly from the symmetric group Sn, and T (π) defined by (1.1),

for n ≥ 2

E(T (π)) = n− 1 , Var(T(π)) =
n + 7

6
− 1

n
,

and, normalized by its mean and variance, T (π) has a limiting standard normal distribution.

The proof of Theorem 1.1 uses a method of proving central limit theorems for complicated func-

tions of independent random variables due to Chatterjee [3]. This seems to be a useful extension of

Stein’s approach. Indeed, we were unable to prove Theorem 1.1 by standard variations of Stein’s

method such as dependency graphs, exchangeable pairs or size-biased couplings. Theorem 1.1 is a

special case of the following more general result. Call a statistic F on Sn “local of degree k” if F can

be expressed as

F (π) =
n−k∑

i=0

fi(π) ,

where the quantity fi(π) depends only on the relative ordering of π(i+1), . . . , π(i+k). For example,

the number of descents is local of degree 2, and the number of peaks is local of degree 3. We will

refer to f0, . . . , fn−k as the “local components” of F .

Theorem 1.2 — Suppose that F and G are local statistics of degree k on Sn, as defined above.

Suppose further that the absolute values of the local components of F and G are uniformly bounded

by 1. Let π be be chosen uniformly from Sn and let

W := F (π) + G(π−1) .

Let s2 := Var(W). Then the Wasserstein distance between (W − E(W ))/s and the standard

normal distribution is bounded by C(n1/2s−2 + ns−3)k3, where C is a universal constant.

After the first draft of this paper was posted on arXiv, it was brought to our notice that the joint

normality of D(π), D(π−1) was proved in Vatutin [27] in 1996 via a technical tour de force with

generating functions. The asymptotic normality in Theorem 1.1 follows as a corollary of Vatutin’s

theorem. Theorem 1.2 is a new contribution of this paper.

In outline, Section 2 describes metrics on permutations and our motivation for the study of T (π).

Section 3 reviews the probability and combinatorics of D(π) and T (π). Section 4 describes Chatter-

jee’s central limit theorem. Section 5 proves Theorem 1.1. The proof of Theorem 1.2 is in Section 6.

Section 7 outlines some other problems where the present approach should work.

2. METRICS ON PERMUTATIONS

A variety of metrics are in widespread use in statistics, machine learning, probability, computer

science and the social sciences. They are used in conjunction with statistical tests, evaluation of
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election results (when voters rank order a list of candidates), and for combing results of search engine

rankings. The book by Marden [17] gives a comprehensive account of various approaches to statistics

on permutations. The book by Critchlow [9] extends the use of metrics on permutations to partially

ranked data (top k out of n) and other quotient spaces of the symmetric group. The Ph.D. thesis

of Eric Sibony (available on the web) has a comprehensive review of machine learning methods for

studying partially ranked data. Finally, the book by Diaconis [11, Chapter 6] contains many metrics

on groups and an extensive list of applications.

Some widely used metrics are:

• Spearman’s footrule: ds(π, σ) =
∑n

i=1 |π(i)− σ(i)|.

• Spearman’s rho: d2
ρ(π, σ) =

∑n
i=1(π(i)− σ(i))2.

• Kendall’s tau: dτ (π, σ) = minimum number of adjacent transpositions to bring σ to π.

• Cayley: dC(π, σ) = minimum number of transpositions to bring σ to π.

• Hamming: dH(π, σ) = |{i : π(i) 6= σ(i)}|.

• Ulam: dU (π, σ) = n− length of longest increasing subsequence in πσ−1.

All of these have known means, variances and limit laws [11]. Some of this is quite deep math-

ematically. For example, the limit law for Ulam’s metric is the Tracy-Widom distribution of random

matrix theory.

In addition to the metric properties, metrics can be classified by their invariance properties; for

example, right invariance (d(π, σ) = d(πη, ση)), left invariance (d(π, σ) = d(ηπ, ησ)), two-sided

invariance (d(π, σ) = d(η1πη2, η1ση2)), and conjugacy invariance (d(π, σ) = d(η−1πη, η−1ση)).

Common sense requires right invariance; if π and σ are the rankings of a class on the midterm and

on the final, we would not want d(π, σ) to depend on the class being listed by last name or identity

number. All of the metrics above are right invariant. Only the Cayley and Hamming metrics are

bi-invariant.

A metric from descent structure?

It is natural to try and make a metric from descents. Let us call this dD(π, σ). By right invariance

only the distance dD(id, σ) must be defined (and then dD(π, σ) = dD(id, σπ−1)). A zeroth try is

d0
D(id, σ) = D(σ); at least d0

D(id, id) = 0. However, symmetry requires d0
D(id, σ) = d0

D(σ, id) =

d0
D(id, σ−1) and D(σ) 6= D(σ−1) for many σ (for example, when n = 4, σ = (2 4 1 3), σ−1 =
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(3 1 4 2), D(σ) = 1, D(σ−1) = 2). In small samples D(σ) = D(σ−1) occurs fairly often. However,

in Section 5 we will prove a bivariate central limit theorem for D(σ), D(σ−1), which suggests that

the chance of D(σ) = D(σ−1) is asymptotic to Cn−1/2 when n is large.

A next try is d1
D(id, σ) = D(σ)+D(σ−1). Then d1

D(π, σ) = D(σπ−1)+D(πσ−1) = d1
D(σ, π).

Alas, Ron Graham showed us simple examples where this definition fails to satisfy the triangle in-

equality! Take π = (3 4 1 2 5), σ = (1 4 5 2 3). A simple check shows that

2 + 2 = d1
D(π, id) + d1

D(id, σ) < d1
D(π, σ) = 6 .

The next idea does work. Form a graph with vertices the n! permutations and an edge from π

to σ with weight D(πσ−1) + D(σπ−1). Define d2
D(π, σ) as the minimum sum of the weights of

paths from π to σ. Experiments show that usually the minimum path is the edge from π to σ. But

the example above shows this is not always the case. We believe that for almost all pairs the graph

distance equals the edge weight.

The statistic T (π) = D(π) + D(π−1) arose from these considerations. Of course, T does not

have to give rise to a metric to be a useful measure of disarray. The Kullback–Leibler ‘divergence’ is

a case in point.

3. COMBINATORICS AND PROBABILITY FOR DESCENTS

The study of descents starts with Euler. In studying power series which allow closed form evaluation,

Euler showed that ∞∑

k=0

kntk =
An(t)

(1− t)n+1
, (3.1)

where the Eulerian polynomial is

An(t) =
∑

π∈Sn

tD(π)+1 =
n∑

i=1

An,it
i ,

with An,i = |{π ∈ Sn : D(π) = i− 1}|, the Eulerian numbers. Thus,

∞∑

k=0

tk =
1

1− t
,

∞∑

k=0

ktk =
t

(1− t)2
,

∞∑

k=0

k2tk =
t + t2

(1− t)3
, . . .

Fulman [12] connects (3.1) and other descent identities to ‘higher math’.

The Eulerian numbers and polynomials satisfy a host of identities and have neat generating func-

tions. We recommend Carlitz [5], Petersen [18], Stanley [23, p. 6], Graham-Knuth-Patashnik [15,
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Chapter 6], the book by Petersen [19] and the references in Sloane [22, Seq A008292] for basics with

pointers to a large literature.

The probability theory of descents is similarly well studied. The central limit theorem reads:

Theorem 3.1 — For π chosen uniformly in Sn,

E(D(π)) =
n − 1

2
, Var(D(π)) =

n + 1
12

,

and, normalized by its mean and variance, D(π) has a limiting standard normal distribution.

Remark : We point here to six different approaches to the proof of Theorem 3.1. Each comes with

an error term (for the Kolmogorov distance) of order n−1/2. The first proof uses m-dependence: For

1 ≤ i ≤ n− 1, let

Xi(π) =





1 if π(i + 1) < π(i),

0 else.

It is easy to see that X1, . . . , Xn−1 are 2-dependent. The central limit theorem follows. See Chen

and Shao [7] for a version with error terms. A second proof uses a geometrical interpretation due to

Stanley [23]. Let U1, . . . , Un be independent uniform random variables on [0, 1]. Stanley shows that

for all n and 0 ≤ j ≤ n− 1,

P(D(π) = j) = P(j < U1 + · · ·+ Un < j + 1) .

From here the classical central limit theorem for sums of i.i.d. random variables gives the claimed

result. A third proof due to Harper [16] uses the surprising fact that the generating function An(t)

has all real zeros. Now, general theorems for such generating functions show that D(π) has the

same distribution as the sum of n independent Bernoulli random variables with success probabilities

determined by the zeros. Pitman [20] surveys this topic and shows

sup
−∞<x<∞

∣∣∣∣∣∣
P


D(π)− n−1

2√
n+1
12

≤ x


− Φ(x)

∣∣∣∣∣∣
≤

√
12
n

,

where Φ is the standard normal cumulative distribution function.

A fourth approach due to Fulman [13] uses a clever version of Stein’s method of exchangeable

pairs (see also Conger [8]). Each of the papers cited above gives pointers to yet other proofs. A

related probabilistic development is in Borodin, Fulman and Diaconis [2]. They show that the descent

process is a determinantal point process and hence the many general theorems for determinantal point

processes apply.
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The fifth approach is due to Bender [1], who uses generating functions to prove the CLT. Lastly,

David and Barton [10] give a proof using the method of moments.

We make two points regarding the above paragraphs. First, all of the proofs depend on some

sort of combinatorial magic trick. Second, we were unable to get any of these techniques to work

for T (π).

There have been some applications of descents and related local structures (for example, peaks)

in statistics. This is nicely surveyed in Warren and Seneta [29] and Stigler [25].

Joint distribution of D(π), D(π−1)

There have been a number of papers that study the joint distribution of D(π), D(π−1) (indeed,

along with other statistics). We mention Rawlings [21] and Garsia and Gessel [14]. As shown below,

these papers derive generating functions in a sufficiently arcane form that we have not seen any way

of deriving the information we need from them.

Two other papers seem more useful. The first by Kyle Petersen [18] treats only D(π), D(π−1)

and is very accessible. The second, by Carlitz, Roselle and Scoville [6], gives useful recurrences via

‘manipulatorics’.

First, let

An,r,s = |{π ∈ Sn : D(π) = r − 1, D(π−1) = s− 1}| .

A table of A8,r,s from Peterson [18, p. 12] shows a roughly elliptic shape and suggests that the

limiting distribution of D(π), D(π−1) might be a bivariate normal distribution with vanishing corre-

lations. Theorem 5.1 from Section 5 proves normality with limiting correlation zero.

Carlitz et al. [6] delineate which r, s are possible:

An,r,s = 0 ⇐⇒ r ≥ s− 1
s

n + 1 .

Let

An(u, v) =
∑

π∈Sn

uD(π)+1vD(π−1)+1 =
n∑

i,j=1

An,i,ju
ivj .

Petersen [18, Theorem 2] gives the following formula for the generating function defined above:

An(u, v)
(1− u)n+1(1− v)n+1

=
∑

k,l≥0

(
kl + n− 1

n

)
ukvl .
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From this, he derives a recurrence which may be useful for deriving moments:

nAn(u, v) = (n2uv + (n− 1)(1− u)(1− v))An−1(u, v)

+ nuv(1− u)
∂

∂u
An−1(u, v) + nuv(1− v)

∂

∂v
An−1(u, v)

+ uv(1− u)(1− v)
∂2

∂u∂v
An−1(u, v) .

From the above identity, he derives a complicated recurrence for An,i,j . We are interested in

D(π) + D(π−1), so the relevant generating function is

An(u, u) = (1− u)2n+2
∑

k,l≥0

(
kl + n− 1

n

)
uk+l .

Finally, Carlitz et al. [6] give

∞∑

n=0

∞∑

i=0

∞∑

j=0

An,i,jz
ixjyn(1− x)−(n+1)(1− z)−(n+1) =

∞∑

k=0

zk

1− x(1− y)−k
.

Complicated and seemingly intractable as they are, the generating functions displayed above are

in fact amenable to analysis. In a remarkable piece of work from twenty years ago, Vatutin [27]

was able to use these generating functions to prove a class of multivariate central limit theorems for

functions of π and π−1. The results were generalized to other settings in Vatutin [26] and Vatutin and

Mikhailov [28].

4. THE METHOD OF INTERACTION GRAPHS

One motivation for the present paper is to call attention to a new approach to proving central limit

theorems for non-linear functions of independent random variables. Since most random variables can

be so presented, the method has broad scope. The method is presented in [3] in abstract form and used

to solve a spatial statistics problem of Bickel; this involved ‘locally dependent’ summands where the

notion of local itself is determined from the data. A very different application is given in [4]. We

hope that the applications in Sections 5 and 7 will show the utility of this new approach.

The technique of defining ‘local neighborhoods’ using the data was named ‘the method of interac-

tion graphs’ in [3]. The method can be described very briefly as follows. LetX be a set endowed with

a sigma algebra and let f : X n → R be a measurable map, where n ≥ 1 is a given positive integer.

Suppose that G is a map that associates to every x ∈ X n a simple graph G(x) on [n] := {1, . . . , n}.

Such a map will be called a graphical rule on X n. We will say that a graphical rule G is symmetric
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if for any permutation π of [n] and any (x1, . . . , xn) ∈ X n, the set of edges in G(xπ(1), . . . , xπ(n)) is

exactly

{{π(i), π(j)} : {i, j} is an edge of G(x1, . . . , xn)}.

For m ≥ n, a symmetric graphical rule G′ on Xm will be called an extension of G if for any

(x1, . . . , xm) ∈ Xm, G(x1, . . . , xn) is a subgraph of G′(x1, . . . , xm).

Now take any x, x′ ∈ X n. For each i ∈ [n], let xi be the vector obtained by replacing xi with x′i
in the vector x. For any two distinct elements i and j of [n], let xij be the vector obtained by replacing

xi with x′i and xj with x′j . We will say that the coordinates i and j are non-interacting for the triple

(f, x, x′) if

f(x)− f(xj) = f(xi)− f(xij).

We will say that a graphical rule G is an interaction rule for a function f if for any choice of x, x′

and i, j, the event that {i, j} is not an edge in the graphs G(x), G(xi), G(xj), and G(xij) implies that i

and j are non-interacting vertices for the triple (f, x, x′). The following theorem implies central limit

behavior if one can construct an interaction graph that has, with high probability, small maximum

degree.

Theorem 4.1 — [3]. Let f : X n → R be a measurable map that admits a symmetric interaction

rule G. Let X1, X2, . . . be a sequence of i.i.d.X -valued random variables and let X = (X1, . . . , Xn).

Let W := f(X) and σ2 := Var(W). Let X ′ = (X ′
1, . . . , X

′
n) be an independent copy of X . For

each j, define

∆jf(X) = W − f(X1, . . . , Xj−1, X
′
j , Xj+1, . . . , Xn),

and let M = maxj |∆jf(X)|. Let G′ be an extension of G on X n+4, and put

δ := 1 + degree of the vertex 1 in G′(X1, . . . , Xn+4).

Then

δW ≤ Cn1/2

σ2
E(M8)1/4E(δ4)1/4 +

1
2σ3

n∑

j=1

E|∆jf(X)|3,

where δW is the L1 Wasserstein distance between (W −E(W ))/σ and N(0, 1), and C is a universal

constant.

5. PROOF OF THEOREM 1.1

We now apply Theorem 4.1 to prove Theorem 1.1. Take X = [0, 1]2, and let X1, X2, . . . be indepen-

dent uniformly distributed points on X . Let X = (X1, . . . , Xn). Write each Xi as a pair (Ui, Vi).
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Define the x-rank of the point Xi as the rank of Ui among all the Uj’s, and the y-rank of the point

Xi as the rank of Vi among all the Vj’s. More accurately, we should say “x-rank of Xi in X” and

“y-rank of Xi in X”.

Let X(1), . . . , X(n) be the Xi’s arranged according to their x-ranks, and let X(1), . . . , X(n) be the

Xi’s arranged according to their y-ranks. Write X(i) = (U(i), V(i)) and X(i) = (U (i), V (i)). Let π(i)

be the y-rank of X(i). Then clearly π is a uniform random permutation. Let σ(i) be the x-rank of

X(i). Then X(i) = X(σ(i)). Therefore

π(σ(i)) = the y-rank of X(σ(i)) = the y-rank of X(i) = i .

Thus, σ = π−1. Let

W = f(X) :=
n−1∑

i=1

1{π(i)>π(i+1)} +
n−1∑

i=1

1{σ(i)>σ(i+1)}

=
n−1∑

i=1

1{V(i)>V(i+1)} +
n−1∑

i=1

1{U(i)>U(i+1)} .

Now suppose that one of the Xi’s is replaced by an independent copy X ′
i. Then W can change

by at most 4. Therefore in the notation of Theorem 4.1, |∆jf(X)| ≤ 4 for every j and hence M ≤ 4.

For x ∈ X n, define a simple graph G(x) on [n] as follows. For any 1 ≤ i 6= j ≤ n, let {i, j} be

an edge if and only if the x-rank of xi and the x-rank of xj differ by at most 1, or the y-rank of xi and

the y-rank of xj differ by at most 1. This construction is clearly invariant under relabeling of indices,

and hence G is a symmetric graphical rule.

Given x, x′ ∈ X n, let xi, xj and xij be defined as in the paragraphs preceding the statement of

Theorem 4.1. Suppose that {i, j} is not an edge in the graphs G(x), G(xi), G(xj) and G(xij). Since

the difference f(x)− f(xi) is determined only by those xk’s such that k is a neighbor of i in G(x) or

in G(xi), and the difference f(xj)−f(xij) is determined only by those xk’s such that k is a neighbor

of i in G(xj) or in G(xij), the above condition implies that i and j are non-interacting for the triple

(f, x, x′). Thus, G is a symmetric interaction rule for f .

Next, define a graphical rule G′ on X n+4 as follows. For any x ∈ X n+4 and 1 ≤ i 6= j ≤ n + 4,

let {i, j} be an edge if and only if the x-rank of xi and the x-rank of xj differ by at most 5, or if the

y-rank of xi and the y-rank of xj differ by at most 5. Then G′ is a symmetric graphical rule. Since

the addition of four extra points can alter the difference between the ranks of two points by at most 4,

any edge of G(x1, . . . , xn) is also an edge of G′(x1, . . . , xn+4). Thus, G′ is an extension of G.
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Since the degree of G′(x) is bounded by 10 for any x ∈ X n+4, the quantity δ of Theorem 4.1 is

bounded by 10 in this example. The upper bounds on ∆jf(X), M and δ obtained above imply that

for this W ,

δW ≤ Cn1/2

σ2
+

Cn

σ3
,

where σ2 = Var(W) and δW is the Wasserstein distance between (W − E(W ))/σ and N(0, 1).

To complete the proof of Theorem 1.1, we derive the given expression for Var(T(π)). We thank

Walter Stromquist for the following elegant calculation. From classically available generating func-

tions, it is straightforward to show that

E(D(π)) =
n− 1

2
, Var(D(π)) =

n + 1
12

,

as given in Theorem 3.1 (see Fulman [13]). Consider, with obvious notation,

E(D(π)D(π−1)) = E
(n−1∑

i=1

n−1∑

j=1

Di(π)Dj(π−1)
)

.

For a given π, the (n−1)2 terms in the sum may be broken into three types, depending on the size

of the set {π(i), π(i + 1)} ∩ {j, j + 1}, which may be 0, 1 or 2. Carefully working out the expected

value in each case, it follows that

E(D(π)D(π−1)) =
(n− 1)2

4
+

n− 1
2n

.

From this,

Cov(D(π),D(π−1)) =
n − 1
2n

, Var(D(π) + D(π−1)) = 2
(

n + 1
12

)
+ 2

(
n − 1
2n

)
=

n + 7
6

− 1
n

.

This completes the proof of Theorem 1.1.

Remarks : The argument used to prove Theorem 1.1 can be adapted to prove the joint limiting

normality of (D(π), D(π−1)). Fix real (s, t) and consider Ts,t(π) = sD(π) + tD(π−1). The same

symmetric graph G can be used. Because s, t are fixed, the limiting normality follows as above. The

limiting variance follows from Cov(D(π),D(π−1)). We state the conclusion:

Theorem 5.1 — For π chosen uniformly from the symmetric group Sn,

D(π)− n−1

2√
n+1
12

,
D(π−1)− n−1

2√
n+1
12


 d−→ Z2 ,
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where Z2 is bivariate normal with mean (0, 0) and identity covariance matrix.

Like Theorem 1.1, Theorem 5.1 can also be deduced as a corollary of the results in [27].

6. PROOF OF THEOREM 1.2

The proof goes exactly as the proof of Theorem 1.1, except for slight differences in the definitions

of the interaction graphs G and G′. Recall the quantity k from the statement of Theorem 1.2. With

all the same notation as in the previous section, define the interaction graph G as follows. For any

1 ≤ i 6= j ≤ n, let {i, j} be an edge if and only if the x-rank of xi and the x-rank of xj differ by at

most k−1, or the y-rank of xi and the y-rank of xj differ by at most k−1. It is easy to see that this is

indeed an interaction graph for F (π) + G(π−1). Define the extended graph G′ similarly, with k − 1

replaced by k + 3. Everything goes through as before, except that the quantity M of Theorem 4.1 is

now bounded by C1k (since the local components of F and G are bounded by 1) and the quantity δ

of Theorem 4.1 is now bounded by C2k, where C1 and C2 are universal constants. The proof is now

easily completed by plugging in these bounds in Theorem 4.1.

7. GOING FURTHER

There are two directions where the methods of this paper should allow natural limit theorems to be

proved. The first is to develop a similar theory for global patterns in subsequences (for example

triples i < j < k with π(i) < π(j) < π(k)). Of course, inversions, the simplest case (i < j with

π(i) > π(j)), have a nice probabilistic and combinatorial theory, so perhaps the joint distribution of

the number of occurrences of a fixed pattern in π and π−1 does as well.

The second direction of natural generalization is to other finite reflection groups. There is a notion

of ‘descents’ — the number of simple positive roots sent to negative roots. The question of number of

number of descents in x plus the number of descents in x−1 makes sense and present methods should

apply. In specific contexts, for example the hyperoctahedral group of signed permutations, these are

concrete interesting questions.

Lastly, it would be interesting to see if the dependence of the error bound on k in Theorem 1.2

can be improved, and to figure out what is the optimal dependence.
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