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1. INTRODUCTION

Studying inequalities with power-exponential functions is the one of the most interesting fields of
mathematical analysis. Coronel and Huancas [1] introduced the literature and history of this subject
and mathematicians [1-13] studied inequalities with power-exponential functions and conjectured
some open inequalities. Especially, the following symmetric inequality is the one of the simplest
shaped form; it: andb are nonnegative real numbers with-b = 1, then the inequality?® +52* < 1

holds. The inequality is posed byirhaje [3] as Conjecture 4.8 and proved by himself in [4] and
Mateijicka [6]. In[3, 4, 6] and [9], it is known that the following other symmetric inequalities hold; the
inequalitiesa® +v2* < 2 anda3’ 4+ 53¢ < 2 hold for nonnegative real numbersindb with a +b = 2

and moreover, the inequality with double power exponential funcid®s + 529" < 1 holds for
nonnegative real numbetisandb with a + b = 1 andk > 1. The above symmetric inequalities look

like very simple forms, but these proofs are not immediate. In this paper, we establish symmetric
inequalities as follows.

Theorem1.1— If a andb are nonnegative real numbers with+ b = 1/2, then the inequality
a?® + p2e¢ < 1 holds.

Theorem1.2— If ¢ and b are nonnegative real numbers with+ b = ¢, then the inequality
a?’ + % < 1 holds forl/2 < ¢ < 1.
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2. PROOFS OFMAIN THEOREMS

2.1 PROOF OFTHEOREM1.1

Without loss of generality, we may assume that « < 1/4 < b < 1/2. Here, we set
Fa) =1+ (4 +8Wn2)(a—1/4) + (=4 — 16102 + 16 (In2)?) (a — 1/4)*

for 0 < a < 1/4. We obtain lemmas related #6(a).

Lemma2.1 — For any) < a < 1/4, we have

0< F(a) <1

PROOF: The derivatives of’(a) are
1
F'(a) = —4+8n2+2 (—4 - a> (=4 —16In2 + 16(In2)?)
and

F"(a) =2 (—4—16In2 + 16(In 2)?)
>~ 9 x (—7.40311) < 0.
Thus,F’(a) is strictly decreasing fai < a < 1/4. SinceF’(a) > F'(1/4) = —4+81n2 = 1.54518,

we haveF'(a) is strictly increasing fof < a < 1/4. FromF(0) = (7 — 12In2 + 4(In2)?) /4 =
0.151011 andF'(1/4) = 1, we obtaind < F'(a) < 1. O

Lemma2.2 — For any0 < t < 1, we have

In(1+¢) > (In2)t.

PROOF: We setf(t) = In (1 + t) — (In2)¢. The derivative off (¢) is f'(t) = 1/(1+t) — In2.
Therefore,f'(t) > 0for0 <t < (1 —In2)/(In2) and f’(t) < 0for (1 —In2)/(In2) < ¢t < 1.
Since f(t) is strictly increasing fo < ¢ < (1 —1In2)/(In2) and f(¢) is strictly decreasing for
(1-In2)/(In2) <t < 1, we can getf(t) > min{f(0), f(1)}. From f(0) = f(1) = 0, we have
f(t)>0for0<t<1. O

Lemma2.3 — For any0 < a < 1/4, we have

(In2)F(a) > 2a(Ina).
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PrROOF: We setf(a) = (In2)F(a) — 2aln a. The derivatives of (a) are
f'(a)=2(-1-1In2—4aln2+ 8(In 2)? — 16a(In2)? — 4(In2)3 + 16a(In2)® — In a)

and
2(—1—4aln2 + 16a(—1 + In2)(In 2)?)

a

1'(@) =

From—1 + In2 = —0.306853, we havef”(a) < 0 and f’(a) is strictly decreasing fob < a <

1/4. Since
/ / }
ra@=r(3)
=2 (-1 —2In2+4(In2)* + 2In 2)
~1.84362

we can getf’(a) > 0 and f(a) is strictly increasing fo0 < a < 1/4. From f(0+) = (In2)
(7—12In2 4+ 4(In2)?) /4 and—12In2 + 4(In 2)* = —6.39595, we can getf(a) > 0for 0 < a <
1/4. 0

From Lemmas 2.1 and 2.2, the inequality(1 + F'(a)) > (In2)F(a) holds. Moreover, by
Lemma 2.3, we havén 2)F(a) > 2a(Ina). Hence, fol0 < a < 1/4, we can getl + F(a) > a®®.
Therefore, the inequality(1 + F(a)) > a'*2® holds. Thus, it suffices to show that the inequality
1—a(1+ F(a)) > (1/2 — a)* holds for0 < a < 1/4. We denote = 1/2 — a. The inequality is

equivalent to
1-— l—t 24 (—4+8n2) l—t
2 AV

1 2
+ (=4 —16In2 + 16(In 2)?) (4 — t> } > ¢

for1/4 <t < 1/2. We denote

G(t)=1- (; —t>{2+ (—4 + 8In2) <111 _t>
+ (—4—16In2 + 16(In2)?) <i - t>2 } e

The derivatives of7(t) are

1
G'(t)=2+ 7 (17 + 64t - 48t% + 4In 2 + 64tIn 2 — 192t%In 2

1—2t
+20(In2)? — 128¢(In 2)? + 192t*(In 2)?) — ¢1% <t —2In t) :
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1+2¢t
t2

1
G (t) = ( >t12t + (64 — 96 + 64In 2 — 3841 2
2 2y 1o (12t ?
—128(In2)* 4 384¢(In2)°) — ¢ — 2Int
and

G"(t) =24 (-1 —4In2+4(In2)?) + 477G (1),

whereGy (t) = 1 — 6t + 2t — 9tInt + 6t%Int — 3t(Int)? + 6t2(Int)? + 2¢2(Int)3.

Lemma2.4 — For anyl /4 < t < 1/2, we have

Gl(t) <

ol &

PROOF: We set
f(t) =1—6t+2t> — 9tint + 6t2Int — 3t(Int)* + 5t*(Int)? + 2t*(Int)?
andg(t) = t?(Int)2. Then the derivatives of(¢) are

f'(t) = =154 10t — 15Int + 22tInt — 3(Int)? + 16t(Int)? + 4t(Int)?,
1 1

f(t) =32 — 75 + 54Int — % + 28(Int)* 4 4(Int)3,

9+ 54t + 6Int + 56¢In ¢ + 12¢(Int)?

f/l/ (t) tz

Here, the derivative of(t) is
6
B (t) =110 + +80Int + 12(Int)?
1
> 1104+ 12+ 801n <4>

= 11.0965.

By #/(t) > 0for1/4 < ¢ < 1/2, h(t) is strictly increasing foi /4 < t < 1/2. From

1 4
h <4> = 55 —40In2 + 12(In 2)?

= 0.539549
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andf"”(t) > 0, f”(t) is strictly increasing foil /4 < t < 1/2. By
f" <;> =2 —42In2 + 28(In2)? — 4(In2)3
= —14.9916
andf”(t) < 0, f'(t) is strictly decreasing fot/4 < ¢t < 1/2. From
f! (i) = —% +191n2 4 4(In2)? — 8(In2)3
= —0.0725887

andf’(t) < 0, f(t) is strictly decreasing fot /4 < t < 1/2. Therefore,

ro<r(y)
3 15(In2) 7(In2)?
=3 + 1 - — (In2)3

for 1/4 <t < 1/2. Onthe other handy(t) < g(1/e) = 1/e? for 1/4 < t < 1/2. Hence, we have

Gi(t) = f(t) + g(t)
3 N 15(In2) 7(In2)?*

- 8 4 4
=~ 1.18582
6

< -
5

1
3
(In2)° + o)

PROOF OF THEOREM 1.1 : Sincet~!172! is strictly decreasing forl/4 < t < 1/2,

by Lemma 2.4, we have

G"(t) < 24 (—1 — 4In2 + 4(In2)?) + 4t~ 12 <§>
ool

= —6.01864.

Thus,G” (t) is strictly decreasing fot/4 < ¢ < 1/2. Since we have

G" <i> = —2(—10+ 8(In2)* 4+ 81n2)

= 1.2224

339
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and
1
G" (> = 4(3 - 81In2+ 3(In2)?)
>~ 441527,

there exists a unique real numbiemwith 1/4 < ¢; < 1/2 such thatG”(¢t) > 0for1/4 < ¢ < t; and
G"(t) < 0fort; <t < 1/2. HenceG'(t) is strictly increasing foil /4 < ¢ < t; andG'(¢) is strictly
decreasing fot; < ¢t < 1/2. FromG’(1/4) = 0 and
1 11
G <2> = ~om2+ (In2)?
>~ _(.235283,

there exists a unique real numbemwith 1/4 < to < 1/2 such thatz’(t) > 0 for 1/4 < t < to and
G'(t) < 0forte <t < 1/2. Thus,G(¢) is strictly increasing foil /4 < t < to andG(¢) is strictly
decreasing foty <t < 1/2. By G(1/4) = G(1/2) = 0, we can obtairtz(¢) > 0for1/4 <t < 1/2.
Froma(1+ F(a)) > a't2,1—a (1 + F(a)) > (1/2 — a)** holds for0 < a < 1/4, so the proof of
Theorem 1.1 is complete. O

2.2 PROOF OFTHEOREM1.2
Without loss of generality, we may assume thak a < ¢/2 < b < ¢. Here, we sef{(c) =
a?(=a+e) 1 (—a + ¢)?* — 1. The derivative off (¢) is
H'(¢) = 2a(—a + ¢) 1120 4 202+ g
_ 2a2(—a+c) (a1—2(—a+c)(7a + C)—1+2a +1In a)
_ 2a2(—a+c)]-(c)
and the derivative of (¢) is

alt20-2¢(_g 4 ¢)20(—1 + 24 + 2alna — 2cln a)

I'(e) = (a— o)

Lemma2.5 — Foranyl/2 < ¢ < 1and0 < a < ¢/2, we have
—1+2a+2alna —2clna > 0.

PROOF: We setf(a) = —1 + 2a + 2alna — 2cIn a. The derivative off (a) is

2(2a —c+alna)
a

f(a) = <0.



SYMMETRIC INEQUALITIES WITH POWER-EXPONENTIAL FUNCTIONS 341

Since f(a) is strictly decreasing fob < a < ¢/2, f(a) > f(¢/2) = =14+ ¢ — cln (¢/2). We
denoteg(c) = —1 + ¢ — cIn (¢/2). The derivative ofy(c) is ¢’(¢c) = —In (¢/2) > 0. Sinceg(c)
is strictly increasing fol /2 < ¢ < 1 andg(c) > ¢g(1/2) = —1/2 4+ 1In2 = 0.193147, we can get
f(a) > 0. O

From Lemma 2.5, we havE(c) > 0 andI(c) is strictly increasing fol /2 < ¢ < 1. If ¢ = 1/2,
then by Theorem 1.1, we havé/2 — a)** < 1 —a'~2% for 0 < a < 1/4. Thus the following
inequality holds.

Lemma2.6 — For any0 < a < 1/4, we have

1
a2“—a+(2—a>lna<0.

f(a) = (na)2a —In <a - <; - a> In a) .

The derivative off (a) is

PROOF: We set

(=14 2a) (=1 + 2a + 4alna + 2a(Ina)?)
a(2a 4+ (=1 + 2a)lna)

f'(a) =

We denotgy(a) = —1/2+4alna+2a(lna)?. The derivative ofi(a) is¢’(a) = 2 (2 + 4lna + (Ina)?).
Therefore, we obtaig’(a) > 0for 0 < a < e 27V2 andg’(a) < 0 for e 2V2 < < 1/4. Hence,
we have

ga) <g (777
e=2-V2
=— (8 +8V2 — 62+\/§>
= —0.182268
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for0 < a < 1/4. Since—1 + 2a + 4alna + 2a(Ina)? < g(a) < 0 and(—1 + 2a)lna > 0, we have
f'(a) > 0andf(a) is strictly increasing fob < a < 1/4. From

1 1 In2
“)=-m2-In (->+—=
1(3) = (5)
~ _(.176595,

we havef(a) < 0for0 < a < 1/4. O

By Lemma 2.6, we havé(1/2) < 0. If ¢ = 1, then! (1) = (1 —a)~1+2¢q~1+2¢ 1 1n a. We may
show that/(1) > 0.

Lemma2.7 — For any0 < a < 1/2, we have

(1—a)~tT2 > 1.

PROOF: We setf(a) = (—1 4 2a)In (1 — a). The derivatives of (a) are

—142a
1—a

fa) = -

+2In(1—a)

and
-3+ 2a

f(a) = Cita?

By f”(a) < 0for0 < a < 1/2, f'(a) is strictly decreasing fod < a < 1/2. From f’(0) = 1
andf/'(1/2) = —21In2 = —1.38629, there exists a unique real numhegrwith 0 < a; < 1/2 such
that f/(a) > 0for0 < a < a; andf’(a) < 0fora; < a < 1/2. Therefore f(a) is strictly increasing
for 0 < a < a; and f(a) is strictly decreasing fot; < a < 1/2. By f(0) = f(1/2) = 0, we can
obtainf(a) > 0for0 <a < 1/2. O

Lemma2.8 — For any0 < a < 1/2, we have

Ina > —-.
amna 5

PROOF: We setf(a) = alna + 2/5. The derivative off (a) is f’(a) = 1 + Ina. Sincef’(a)
is strictly increasing fo < a < 1/2 and we havef’(a) < 0for0 < a < 1/e and f'(a) > 0
forl/e < a < 1/2, f(a) > f(1/e) = 2/5 —1/e = 0.0321206. Thus, we can gef(a) > 0 for
0<a<1/2 O

Lemma2.9 — For any0 < a < 1/2, we have
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PROOF: We setf(a) = 2alna — In (2/5). The derivative off (a) is f'(a) = 2(1 + In a). Since
f'(a) <0for0<a<1l/eandf’'(a) >0forl/e <a<1/2, f(a) > f(1/e) = —2/e+1n (5/2) =
0.180532. Thus, we can gef(a) > 0for0 < a < 1/2. 0

PROOF OFTHEOREM1.2: By Lemmas 2.7, 2.8 and 2.9, we hald) > 0. Since!(c) is strictly
increasing forl /2 < ¢ < 1andI(1/2) < 0 andI(1) > 0, there exists a unique functien= J(a)
suchthat/ (J(a)) < 0for1/2 < ¢ < J(a)andI(J(a)) > 0for J(a) < ¢ < 1. Thus,H(c) is strictly
decreasing fot /2 < ¢ < J(a) andH(c) is strictly increasing fo/ (a) < ¢ < 1. Since Theorem 1.1
and the inequality:?® 4 b2* < 1 holds fora 4 b = 1, we haveH (1/2) < 0 andH(1) < 0. Hence,
we can obtairf{ (¢) < 0 and the proof of Theorem 1.2 is complete. O

We propose the following conjecture.

Conjecture2.10 — If « andb are nonnegative real numbers with- b = 1/2, then the inequality

< a(Zb)k +b(2a)k < 1

N =

holds for0 < k < 1.
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