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1. INTRODUCTION

Studying inequalities with power-exponential functions is the one of the most interesting fields of

mathematical analysis. Coronel and Huancas [1] introduced the literature and history of this subject

and mathematicians [1-13] studied inequalities with power-exponential functions and conjectured

some open inequalities. Especially, the following symmetric inequality is the one of the simplest

shaped form; ifa andb are nonnegative real numbers witha+b = 1, then the inequalitya2b+b2a ≤ 1

holds. The inequality is posed by Cı̂rtoaje [3] as Conjecture 4.8 and proved by himself in [4] and

Matej́ıčka [6]. In [3, 4, 6] and [9], it is known that the following other symmetric inequalities hold; the

inequalitiesa2b+b2a ≤ 2 anda3b+b3a ≤ 2 hold for nonnegative real numbersa andb with a+b = 2

and moreover, the inequality with double power exponential functionsa(2b)k
+ b(2a)k ≤ 1 holds for

nonnegative real numbersa andb with a + b = 1 andk ≥ 1. The above symmetric inequalities look

like very simple forms, but these proofs are not immediate. In this paper, we establish symmetric

inequalities as follows.

Theorem1.1 — If a andb are nonnegative real numbers witha + b = 1/2, then the inequality

a2b + b2a ≤ 1 holds.

Theorem1.2 — If a and b are nonnegative real numbers witha + b = c, then the inequality

a2b + b2a ≤ 1 holds for1/2 ≤ c ≤ 1.
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2. PROOFS OFMAIN THEOREMS

2.1 PROOF OFTHEOREM 1.1

Without loss of generality, we may assume that0 ≤ a ≤ 1/4 ≤ b ≤ 1/2. Here, we set

F (a) = 1 + (−4 + 8 ln 2) (a− 1/4) +
(−4− 16 ln 2 + 16 (ln 2)2

)
(a− 1/4)2

for 0 < a < 1/4. We obtain lemmas related toF (a).

Lemma2.1 — For any0 < a < 1/4, we have

0 < F (a) < 1.

PROOF : The derivatives ofF (a) are

F ′(a) = −4 + 8ln 2 + 2
(
−1

4
+ a

)(−4− 16ln 2 + 16(ln 2)2
)

and

F ′′(a) = 2
(−4− 16ln 2 + 16(ln 2)2

)

∼= 2× (−7.40311) < 0 .

Thus,F ′(a) is strictly decreasing for0 < a < 1/4. SinceF ′(a) > F ′(1/4) = −4+8 ln 2 ∼= 1.54518,

we haveF (a) is strictly increasing for0 < a < 1/4. FromF (0) =
(
7− 12ln 2 + 4(ln 2)2

)
/4 ∼=

0.151011 andF (1/4) = 1, we obtain0 < F (a) < 1. 2

Lemma2.2 — For any0 < t < 1, we have

ln (1 + t) > (ln 2)t.

PROOF : We setf(t) = ln (1 + t) − (ln 2)t. The derivative off(t) is f ′(t) = 1/(1 + t) − ln 2.

Therefore,f ′(t) > 0 for 0 < t < (1 − ln 2)/(ln 2) andf ′(t) < 0 for (1 − ln 2)/(ln 2) < t < 1.

Sincef(t) is strictly increasing for0 < t < (1 − ln 2)/(ln 2) andf(t) is strictly decreasing for

(1 − ln 2)/(ln 2) < t < 1, we can getf(t) > min{f(0), f(1)}. Fromf(0) = f(1) = 0, we have

f(t) > 0 for 0 < t < 1. 2

Lemma2.3 — For any0 < a < 1/4, we have

(ln 2)F (a) > 2a (ln a).
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PROOF : We setf(a) = (ln 2)F (a)− 2a ln a. The derivatives off(a) are

f ′(a) = 2
(−1− ln 2− 4aln 2 + 8(ln 2)2 − 16a(ln 2)2 − 4(ln 2)3 + 16a(ln 2)3 − ln a

)

and

f ′′(a) =
2

(−1− 4aln 2 + 16a(−1 + ln 2)(ln 2)2
)

a
.

From−1 + ln 2 ∼= −0.306853, we havef ′′(a) < 0 andf ′(a) is strictly decreasing for0 < a <

1/4. Since

f ′(a) >f ′
(

1
4

)

=2
(−1− 2ln 2 + 4(ln 2)2 + 2ln 2

)

∼=1.84362 ,

we can getf ′(a) > 0 andf(a) is strictly increasing for0 < a < 1/4. From f(0+) = (ln 2)(
7− 12ln 2 + 4(ln 2)2

)
/4 and−12ln 2 + 4(ln 2)2 ∼= −6.39595, we can getf(a) > 0 for 0 < a <

1/4. 2

From Lemmas 2.1 and 2.2, the inequalityln (1 + F (a)) > (ln 2)F (a) holds. Moreover, by

Lemma 2.3, we have(ln 2)F (a) > 2a(ln a). Hence, for0 < a < 1/4, we can get1 + F (a) ≥ a2a.

Therefore, the inequalitya(1 + F (a)) ≥ a1+2a holds. Thus, it suffices to show that the inequality

1 − a (1 + F (a)) > (1/2− a)2a holds for0 < a < 1/4. We denotet = 1/2 − a. The inequality is

equivalent to

1−
(

1
2
− t

){
2 + (−4 + 8ln 2)

(
1
4
− t

)

+
(−4− 16ln 2 + 16(ln 2)2

) (
1
4
− t

)2
}

> t1−2t

for 1/4 < t < 1/2. We denote

G(t) = 1−
(

1
2
− t

){
2 + (−4 + 8ln 2)

(
1
4
− t

)

+
(−4− 16ln 2 + 16(ln 2)2

) (
1
4
− t

)2
}
− t1−2t .

The derivatives ofG(t) are

G′(t) = 2 +
1
4
(−17 + 64t− 48t2 + 4ln 2 + 64tln 2− 192t2ln 2

+ 20(ln 2)2 − 128t(ln 2)2 + 192t2(ln 2)2)− t1−2t

(
1− 2t

t
− 2ln t

)
,
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G′′(t) =
(

1 + 2t

t2

)
t1−2t +

1
4
(64− 96t + 64ln 2− 384tln 2

− 128(ln 2)2 + 384t(ln 2)2)− t1−2t

(
1− 2t

t
− 2ln t

)2

and

G′′′(t) = 24
(−1− 4ln 2 + 4(ln 2)2

)
+ 4t−1−2tG1(t) ,

whereG1(t) = 1− 6t + 2t2 − 9tln t + 6t2ln t− 3t(ln t)2 + 6t2(ln t)2 + 2t2(ln t)3.

Lemma2.4 — For any1/4 < t < 1/2, we have

G1(t) <
6
5

.

PROOF : We set

f(t) = 1− 6t + 2t2 − 9tln t + 6t2ln t− 3t(ln t)2 + 5t2(ln t)2 + 2t2(ln t)3

andg(t) = t2(ln t)2. Then the derivatives off(t) are

f ′(t) = −15 + 10t− 15ln t + 22tln t− 3(ln t)2 + 16t(ln t)2 + 4t(ln t)3 ,

f ′′(t) = 32− 15
t

+ 54ln t− 6ln t

t
+ 28(ln t)2 + 4(ln t)3 ,

f ′′′(t) =
9 + 54t + 6ln t + 56tln t + 12t(ln t)2

t2

=
h(t)
t2

.

Here, the derivative ofh(t) is

h′(t) = 110 +
6
t

+ 80 ln t + 12(ln t)2

≥ 110 + 12 + 80 ln
(

1
4

)

∼= 11.0965.

By h′(t) > 0 for 1/4 < t < 1/2, h(t) is strictly increasing for1/4 < t < 1/2. From

h

(
1
4

)
=

45
2
− 40 ln 2 + 12(ln 2)2

∼= 0.539549
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andf ′′′(t) > 0, f ′′(t) is strictly increasing for1/4 < t < 1/2. By

f ′′
(

1
2

)
= 2− 42 ln 2 + 28(ln 2)2 − 4(ln 2)3

∼= −14.9916

andf ′′(t) < 0, f ′(t) is strictly decreasing for1/4 < t < 1/2. From

f ′
(

1
4

)
= −25

2
+ 19 ln 2 + 4(ln 2)2 − 8(ln 2)3

∼= −0.0725887

andf ′(t) < 0, f(t) is strictly decreasing for1/4 < t < 1/2. Therefore,

f(t) ≤ f

(
1
4

)

= −3
8

+
15 (ln 2)

4
− 7 (ln 2)2

4
− (ln 2)3

for 1/4 < t < 1/2. On the other hand,g(t) ≤ g(1/e) = 1/e2 for 1/4 < t < 1/2. Hence, we have

G1(t) = f(t) + g(t)

≤ −3
8

+
15 (ln 2)

4
− 7 (ln 2)2

4
− (ln 2)3 +

1
e2

∼= 1.18582

<
6
5

PROOF OF THEOREM 1.1 : Since t−1−2t is strictly decreasing for1/4 < t < 1/2,

by Lemma 2.4, we have

G′′′(t) < 24
(−1− 4ln 2 + 4(ln 2)2

)
+ 4t−1−2t

(
6
5

)

< 24
(−1− 4ln 2 + 4(ln 2)2

)
+ 4

(
1
4

)−1−2( 1
4) (

6
5

)

∼= −6.01864 .

Thus,G′′(t) is strictly decreasing for1/4 < t < 1/2. Since we have

G′′
(

1
4

)
= −2(−10 + 8(ln 2)2 + 8 ln 2)

∼= 1.2224

.
2
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and

G′′
(

1
2

)
= 4(3− 8 ln 2 + 3(ln 2)2)

∼= −4.41527 ,

there exists a unique real numbert1 with 1/4 < t1 < 1/2 such thatG′′(t) > 0 for 1/4 < t < t1 and

G′′(t) < 0 for t1 < t < 1/2. Hence,G′(t) is strictly increasing for1/4 < t < t1 andG′(t) is strictly

decreasing fort1 < t < 1/2. FromG′(1/4) = 0 and

G′
(

1
2

)
=

11
4
− 5 ln 2 + (ln 2)2

∼= −0.235283 ,

there exists a unique real numbert2 with 1/4 < t2 < 1/2 such thatG′(t) > 0 for 1/4 < t < t2 and

G′(t) < 0 for t2 < t < 1/2. Thus,G(t) is strictly increasing for1/4 < t < t2 andG(t) is strictly

decreasing fort2 < t < 1/2. By G(1/4) = G(1/2) = 0, we can obtainG(t) > 0 for 1/4 < t < 1/2.

Froma(1 + F (a)) ≥ a1+2a, 1− a (1 + F (a)) > (1/2− a)2a holds for0 < a < 1/4, so the proof of

Theorem 1.1 is complete. 2

2.2 PROOF OFTHEOREM 1.2

Without loss of generality, we may assume that0 ≤ a ≤ c/2 ≤ b ≤ c. Here, we setH(c) =

a2(−a+c) + (−a + c)2a − 1. The derivative ofH(c) is

H ′(c) = 2a(−a + c)−1+2a + 2a2(−a+c)ln a

= 2a2(−a+c)
(
a1−2(−a+c)(−a + c)−1+2a + ln a

)

= 2a2(−a+c)I(c)

and the derivative ofI(c) is

I ′(c) =
a1+2a−2c(−a + c)2a(−1 + 2a + 2aln a− 2cln a)

(a− c)2
.

Lemma2.5 — For any1/2 ≤ c ≤ 1 and0 < a < c/2, we have

−1 + 2a + 2a ln a− 2c ln a > 0.

PROOF : We setf(a) = −1 + 2a + 2a ln a− 2cln a. The derivative off(a) is

f ′(a) =
2(2a− c + a ln a)

a
< 0 .
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Sincef(a) is strictly decreasing for0 < a < c/2, f(a) > f(c/2) = −1 + c − c ln (c/2). We

denoteg(c) = −1 + c − c ln (c/2). The derivative ofg(c) is g′(c) = −ln (c/2) > 0. Sinceg(c)

is strictly increasing for1/2 < c < 1 andg(c) > g(1/2) = −1/2 + ln 2 ∼= 0.193147, we can get

f(a) > 0. 2

From Lemma 2.5, we haveI ′(c) > 0 andI(c) is strictly increasing for1/2 < c < 1. If c = 1/2,

then by Theorem 1.1, we have(1/2− a)2a < 1 − a1−2a for 0 < a < 1/4. Thus the following

inequality holds.

I

(
1
2

)
=

(
1
2
− a

)−1+2a

a1−2( 1
2
−a) + ln a

=

(
1
2 − a

)2a
a2a + (1

2 − a)ln a
1
2 − a

≤ a2a − a +
(

1
2 − a

)
ln a

1
2 − a

.

Lemma2.6 — For any0 < a < 1/4, we have

a2a − a +
(

1
2
− a

)
ln a < 0.

PROOF : We set

f(a) = (ln a)2a− ln
(

a−
(

1
2
− a

)
ln a

)
.

The derivative off(a) is

f ′(a) =
(−1 + 2a)

(−1 + 2a + 4aln a + 2a(ln a)2
)

a(2a + (−1 + 2a)ln a)
.

We denoteg(a) = −1/2+4a ln a+2a(ln a)2. The derivative ofg(a) isg′(a) = 2
(
2 + 4ln a + (ln a)2

)
.

Therefore, we obtaing′(a) > 0 for 0 < a < e−2−√2 andg′(a) < 0 for e−2−√2 < a < 1/4. Hence,

we have

g(a) ≤ g
(
e−2−√2

)

=
e−2−√2

2

(
8 + 8

√
2− e2+

√
2
)

∼= −0.182268
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for 0 < a < 1/4. Since−1 + 2a + 4aln a + 2a(ln a)2 < g(a) < 0 and(−1 + 2a)ln a > 0, we have

f ′(a) > 0 andf(a) is strictly increasing for0 < a < 1/4. From

f

(
1
4

)
= −ln 2− ln

(
1
4

+
ln 2
2

)

∼= −0.176595 ,

we havef(a) < 0 for 0 < a < 1/4. 2

By Lemma 2.6, we haveI(1/2) < 0. If c = 1, thenI (1) = (1−a)−1+2aa−1+2a +ln a. We may

show thatI(1) > 0.

Lemma2.7 — For any0 < a < 1/2, we have

(1− a)−1+2a > 1.

PROOF : We setf(a) = (−1 + 2a)ln (1− a). The derivatives off(a) are

f ′(a) = −−1 + 2a

1− a
+ 2ln (1− a)

and

f ′′(a) =
−3 + 2a

(−1 + a)2
.

By f ′′(a) < 0 for 0 < a < 1/2, f ′(a) is strictly decreasing for0 < a < 1/2. Fromf ′(0) = 1

andf ′(1/2) = −2 ln 2 ∼= −1.38629, there exists a unique real numbera1 with 0 < a1 < 1/2 such

thatf ′(a) > 0 for 0 < a < a1 andf ′(a) < 0 for a1 < a < 1/2. Therefore,f(a) is strictly increasing

for 0 < a < a1 andf(a) is strictly decreasing fora1 < a < 1/2. By f(0) = f(1/2) = 0, we can

obtainf(a) > 0 for 0 < a < 1/2. 2

Lemma2.8 — For any0 < a < 1/2, we have

a ln a > −2
5

.

PROOF : We setf(a) = a ln a + 2/5. The derivative off(a) is f ′(a) = 1 + ln a. Sincef ′(a)

is strictly increasing for0 < a < 1/2 and we havef ′(a) < 0 for 0 < a < 1/e andf ′(a) > 0

for 1/e < a < 1/2, f(a) > f(1/e) = 2/5 − 1/e ∼= 0.0321206. Thus, we can getf(a) > 0 for

0 < a < 1/2. 2

Lemma2.9 — For any0 < a < 1/2, we have

a2a >
2
5

.
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PROOF : We setf(a) = 2aln a− ln (2/5). The derivative off(a) is f ′(a) = 2(1 + ln a). Since

f ′(a) < 0 for 0 < a < 1/e andf ′(a) > 0 for 1/e < a < 1/2, f(a) > f(1/e) = −2/e + ln (5/2) ∼=
0.180532. Thus, we can getf(a) > 0 for 0 < a < 1/2. 2

PROOF OFTHEOREM 1.2 : By Lemmas 2.7, 2.8 and 2.9, we haveI(1) > 0. SinceI(c) is strictly

increasing for1/2 < c < 1 andI(1/2) < 0 andI(1) > 0, there exists a unique functionc = J(a)

such thatI(J(a)) < 0 for 1/2 < c < J(a) andI(J(a)) > 0 for J(a) < c < 1. Thus,H(c) is strictly

decreasing for1/2 < c < J(a) andH(c) is strictly increasing forJ(a) < c < 1. Since Theorem 1.1

and the inequalitya2b + b2a ≤ 1 holds fora + b = 1, we haveH(1/2) ≤ 0 andH(1) ≤ 0. Hence,

we can obtainH(c) ≤ 0 and the proof of Theorem 1.2 is complete. 2

We propose the following conjecture.

Conjecture2.10 — If a andb are nonnegative real numbers witha + b = 1/2, then the inequality

1
2
≤ a(2b)k

+ b(2a)k ≤ 1

holds for0 ≤ k ≤ 1.
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