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We present here two classes of infinite series and the associated continued fractions involving
π and Catalan’s constant based on the work of Euler and Ramanujan. A few sundry continued
fractions are also given.
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1. INTRODUCTION

A continued fraction is an expression of the general form

b0 +
a1

b1 +
a2

b2 +
a3

b3 + · · ·

with a1, a2, . . . and b0, b1, b2, . . . real numbers. The following space-saving notation can be used:

b0 +
a1

b1 +
a2

b2 +
a3

b3 +
· · ·

or the shorter notation b0 +K∞
n=1

an

bn
, where the letter K comes from the German word Kettenbrüche

(Ketten - chain, Brüche - fraction) for a continued fraction.
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It is not known when, where and by whom continued fractions were first used, but the notion

seems to be quite old. For an overview, see [3]. Euclid’s algorithm for finding the greatest common

divisor of two integers in effect converts a fraction into a terminating continued fraction. Continued

fractions were used in India in the 6th century by Aryabhata to solve linear Diophantine equations and

in the 12th century by Bhaskaracharya for solving the ‘Pell’ equation. Rafael Bombelli (1526-1572)

and Pietro Antonio Cataldi (1548-1626), both of Bologna (Italy), gave continued fractions for
√

13

and
√

18 respectively. The first continued fraction for a number other than the quadratic irrationals is

due to William Brouncker (1620-84) who converted the product
4
π

=
∞∏

n=1

(2n + 1)2

2n(2n + 2)
submitted to

him by John Wallis (1616-1703) in 1655 (see [20, p. 182]):

4
π

= 1 +
∞
K
n=1

(2n− 1)2

2
= 1 +

12

2 +
32

2 +
52

2 + · · ·

.

It was one of the sequence of continued fractions found by Brouncker [19, p. 307].

2. EULER’S CONTINUED FRACTIONS FOR π

Leonhard Euler (1707–1783) laid the foundation of the theory of continued fractions in a dozen

papers (six published in his life-time and six posthumously) and chapter 18 of his Introductio in

Analysin Infinitorum (1748). Of these, five papers written between 1737 and 1780, with Eneström

index numbers: E071, E123, E522, E593 and E745, are of interest to us here. Brouncker’s fraction

occurs in E071 [5, §4]. Euler explains the method of converting an infinite series into a continued

fraction in E593 [8]. He gives among others this formula in [6, §7]:

∫ 1

0

xn−1dx

1 + xm
=

1

n +
n2

m +
(m + n)2

m +
(2m + n)2

m +
(3m + n)2

m + · · ·

.

Now
∫

xdx

1 + x4
=

1
2

arctanx2 + C. So taking m = 4, n = 2, we get Brouncker’s fraction in

disguise:
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π

8
=

1

2 +
22

4 +
62

4 +
102

4 +
142

4 + · · ·

.

We find in [8, §18] Euler’s Theorem I:

If such an infinite series will have been proposed

s =
1
α
− 1

β
+

1
γ
− 1

δ
+

1
ε
− · · · ,

a continued fraction of the form

1
s

= α +
αα

β − α +
ββ

γ − β +
γγ

δ − γ + · · ·

can always be formed from it.

Taking the Leibnitz series
∞∑

n=1

(−1)n−1

2n− 1
=

π

4
, Euler deduced Brouncker’s fraction.

We find this theorem as Theorem II in [8, §23]:

If the proposed series is of this form

s =
1
ab
− 1

bc
+

1
cd
− 1

de
+

1
ef
− · · · ,

from this, the following continued fraction springs forth

1
as

= b +
ab

c− a +
bc

d− b +
cd

e− c +
de

f − d · · ·

.
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Noting that
∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1)
=

π

4
− 1

2
, he deduced

4
π − 2

= 3 +
1 · 3

4 +
3 · 5

4 +
5 · 7

4 +
7 · 9

4 + · · ·
or

π

2
− 1 =

2

3 +
1 · 3

4 +
3 · 5

4 +
5 · 7

4 + · · ·

.

Note that the convergents of this continued fraction cn =
pn

qn
satisfy the following relations:

p0 = q0 = 1, pn+1 = (2n + 3)pn + (−1)n2(2n− 1)!!, qn = (2n + 1)!!,

for n = 0, 1, 2, . . ., where n!! = n · (n− 2) · (n− 4) · . . . · 1 for n odd, with (−1)!! = 1.

This continued fraction is a special case of a more general one which can be deduced from a

formula of Ramanujan giving a continued fraction for a product of quotients of gamma function

values [17, p. 227]:

General Formula: Let

P−1 =
1
2
, P2m =

m∏

k=1

2k(2k + 2)
(2k + 1)2

, P2m+1 = P2m · 2m + 2
2m + 3

(m = 0, 1, 2, . . .).

Then we have

π

4Pn
− 1 =

(−1)n+12

4(n + 2) + (−1)n +
1 · 3

4(n + 2) +
3 · 5

4(n + 2) +
5 · 7

4(n + 2) + · · ·
It may be compared with [17, p. 227, eq(30a)]. Note that these continued fractions give π as a

combination of the partial products of Wallis’s formula and a continued fraction. For instance, for
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n = 4 we have:
π

4
=

2
3
· 4
3
· 4
5
· 6
5
· [1−

2

25 +
1 · 3

24 +
3 · 5

24 +
5 · 7

24 +
. . .

].

Euler gave the following two continued fractions and a couple more in [6, §31, §33]:

π

2
= 1 +

1

1 +
1 · 2

1 +
2 · 3

1 +
3 · 4

1 + · · ·

,

π

2
= 2−

1

2 +
12

2 +
22

2 +
32

2 + · · ·

.

He obtained this fraction with partial denominators 4n from his general formula in [7, §18] and

[8, §36]:

6
√

3
π

= 3 +
3 · 12

8 +
3 · 32

12 +
3 · 52

16 +
3 · 72

20 + · · ·

.

These continued fractions with partial denominators 3n − 2 and 5n − 3 are due to Glaisher [10,

11].

2
π

= 1−
1 · 1

4−
2 · 3

7−
3 · 5

10−
4 · 7

13− · · ·

,
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3
√

3
π

= 2−
2(1 · 1)

7−
2(2 · 3)

12−
2(3 · 5)

17− · · ·

.

They were converted from the following series:

π

2
= 1 +

1
3

+
1 · 2
3 · 5 +

1 · 2 · 3
3 · 5 · 7 +

1 · 2 · 3 · 4
3 · 5 · 7 · 9 + · · · ,

2π

3
√

3
= 1 +

1
2 · 3 +

1 · 2
3 · 4 · 5 +

1 · 2 · 3
4 · 5 · 6 · 7 +

1 · 2 · 3 · 4
5 · 6 · 7 · 8 · 9 + · · · .

We will now obtain some new continued fractions for π.

3. SERIES WITH LINEAR FACTORS AND CONTINUED FRACTIONS

If we define:

yk =
∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1)(2n + 3) · · · (2n + 2k − 3)(2n + 2k − 1)

then the following recurrence relation with k ∈ N is easy to establish:

yk =
1
k
· yk−1 − 1

2k · 1 · 3 · 5 · · · (2k − 3) · (2k − 1)
.

Indeed, we have that:

2kyk = 2k
∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1) · · · (2n + 2k − 3)(2n + 2k − 1)

=
∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1) · · · (2n + 2k − 5)(2n + 2k − 3)

−
∞∑

n=1

(−1)n−1

(2n + 1) · · · (2n + 2k − 3)(2n + 2k − 1)
.

By shifting the index of summation, the last sum on the right can be rewritten as:

−
∞∑

n=2

(−1)n−1

(2n− 1)(2n + 1) · · · (2n + 2k − 5)(2n + 2k − 3)

=
1

1 · 3 · 5 · · · (2k − 1)
−

∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1) · · · (2n + 2k − 5)(2n + 2k − 3)

immediately leading to the expected result. See also [15].
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Using this recurrence with y0 =
π

4
(Leibnitz’s series), we get a class of series with an increasing

number of factors in the denominator:

π

8
− 1

3
=

∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1)(2n + 3)
, (1)

π

24
− 11

90
=

∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1)(2n + 3)(2n + 5)
,

π

96
− 2

63
=

∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1)(2n + 3)(2n + 5)(2n + 7)
.

Following Euler’s method, we obtain

8
3π − 8

= 5 +
1 · 5

6 +
3 · 7

6 +
5 · 9

6 +
7 · 11

6 + · · ·

,

24
15π − 44

= 7 +
1 · 7

8 +
3 · 9

8 +
5 · 11

8 +
7 · 13

8 + · · ·

,

96
105π − 320

= 9 +
1 · 9

10 +
3 · 11

10 +
5 · 13

10 +
7 · 15

10 + · · ·

.

It may be noted that the numerator of the left hand side is 4(k!) while the multiple of π is (2k−1)!!,

where (2k−1) is the constant in the largest factor 2n+2k−1 in the denominator of the series. These

continued fractions are all special cases of:
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Theorem 1 — Let s =
∞∑

n=1

(−1)n−1

∏k
j=1 (2n + 2j − 3)

, then we have

1
(2k − 1)!! s

= 2k + 1 +
1 · (2k + 1)

2k + 2 +
3 · (2k + 3)

2k + 2 +
5 · (2k + 5)

2k + 2 +
7 · (2k + 7)

2k + 2 + · · ·

.

To illustrate how the continued fractions are derived from the corresponding series (Euler’s theo-

rem I), we give an example (see also [14]). We will convert the following series given in [12, p. 269,

Ex. 109(c)]:
∞∑

n=1

(−1)n−1

2n(2n + 1)(2n + 2)
=

π − 3
4

(2)

into
1

π − 3
= 6 +

12

6 +
32

6 +
52

6 + · · ·

,

the “new” continued fraction derived in 1999 by Lange [13] though it already occurs in a 1988 paper

of Castellanos [4] who rightly ascribed it to Euler. This continued fraction is related to Brouncker’s.

Let us define zn = (−1)n

(
π − 3

4
−

n∑

k=1

(−1)k−1

2k(2k + 1)(2k + 2)

)
. From this it follows that:

zn + zn−1 =
1

2n(2n + 1)(2n + 2)
, and zn+1 + zn =

1
(2n + 2)(2n + 3)(2n + 4)

.

Dividing both equations, we find:

zn+1 + zn

zn + zn−1
=

n(n + 1)(2n + 1)
(n + 1)(n + 2)(2n + 3)

=
n(2n + 1)

(n + 2)(2n + 3)
.

We now get rid of the denominators:

(2n + 3)(n + 2)zn+1 + [(2n + 3)(n + 2)− (2n + 1)n]zn = (2n + 1)nzn−1

or

(2n + 3)(n + 2)zn+1 + 6(n + 1)zn = (2n + 1)nzn−1.
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If we use the transformation wn = (n + 1)zn, we have:

(2n + 3)wn+1 + 6wn = (2n + 1)wn−1 ⇒ (2n + 3)
wn+1

wn
+ 6 =

2n + 1
wn

wn−1

giving the relation that generates the continued fraction on taking n = 1, 2, 3, · · ·
wn

wn−1
=

(2n + 1)

6 + (2n + 3)
wn+1

wn

.

The value of the continued fraction obtained in this way is given by:

w1

w0
=

2z1

z0
= 2 · −(π−3

4 − 1
2·3·4)

π−3
4

.

Some manipulations lead to the desired form. Other continued fractions for π can be obtained in

a similar way. We derived this interesting series by combining (1) and (2):
∞∑

n=1

(−1)n−1

(2n− 1)2n(2n + 1)(2n + 2)(2n + 3)
=

10− 3π

72
(3)

which gives the second convergent for π :

π =
22
7
− 24

∞∑

n=2

(−1)n

(2n + 1)(2n + 2)(2n + 3)(2n + 4)(2n + 5)
.

We converted the preceding series into the following continued fraction:

6
10− 3π

= 10 +
1 · 5

10 +
3 · 7

10 +
5 · 9

10 +
7 · 11

10 +
9 · 13

10 + · · ·
which may be compared with the continued fraction derived earlier (with ak = 10, ∀ k ∈ N) and one

given by Euler in [9, §12] and also by Osler [16]:

16
π

= 5 +
12

10 +
32

10 +
52

10 +
72

10 +
92

10 + · · ·
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Osler [16] (also in [17, p. 226, eq(28a)]) gives the following two classes of continued fractions

related to Brouncker’s. They were already known to John Wallis [20]. Let

P0 = 1, and Pn =
n∏

k=1

(2k − 1)(2k + 1)
(2k)2

.

Then for n = 0, 1, 2, 3, · · · we have:

(4n + 1) +
12

2(4n + 1) +
32

2(4n + 1) +
52

2(4n + 1) + · · ·

=
(2n + 1)

Pn

4
π

,

(4n + 3) +
12

2(4n + 3) +
32

2(4n + 3) +
52

2(4n + 3) + · · ·

= (2n + 1)Pnπ.

These formulas are special cases of the known formula

4Γ
(

x + 3 + y

4

)
Γ

(
x + 3− y

4

)

Γ
(

x + 1 + y

4

)
Γ

(
x + 1− y

4

) = x +
12 − y2

2x +
32 − y2

2x +
52 − y2

2x + · · ·
valid for either y an odd integer and x any complex number or y any complex number and <(x) > 0.

Originally due to Euler [6, §67], it occurs in an inverted form in [1, p. 140].

4. SERIES WITH QUADRATIC FACTORS AND CONTINUED FRACTIONS

Ramanujan’s Notebook II [1, pp. 151, 153] contains these two continued fractions for Catalan’s

constant G =
∞∑

n=1

(−1)n−1

(2n− 1)2
= 0.915965594177 . . . :

2G = 2−
1

3 +
22

1 +
22

3 +
42

1 +
42

3 + · · ·
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and

2G = 1 +
12

1
2 +

1 · 2

1
2 +

22

1
2 +

2 · 3

1
2 +

32

1
2 + · · ·

.

We find in Ramanujan’s Manuscript Book 1 [18, Ch. XIV, p. 107, entry 14] (and in [1, p. 123,

entry 16]) this formula with m,n /∈ Z−:

∞∑

k=1

(−1)k+1

(m + k)(n + k)
=

1

m + n + 1 + mn +
(m + 1)2(n + 1)2

m + n + 3 +
(m + 2)2(n + 2)2

m + n + 5 +
(m + 3)2(n + 3)2

m + n + 7 + · · ·

Setting m = n = −1
2 and doing a little manipulation, the last formula yields a fraction given in

[2]:

G =
1

1 +
14

8 +
34

16 +
54

24 + · · ·

. (4)

Using a generalisation of the series defining G, we will obtain new continued fractions for this

constant and for π. In the Appendix we prove that yk defined by

yk =
∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2(2n + 3)2 · · · (2n + 2k − 3)2

satisfies the recurrence

yk =
10k2 + 8k + 1
2(2k + 1)!!2

− 4k(k + 1)3yk+2.

Since y1 = G and y2 = 1
2 − π

8 (which can be proved using a partial fraction expansion and

telescoping), the previous recurrence gives for y4, y6 and y8:
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∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2(2n + 3)2(2n + 5)2
=

2!3

4!31!
π − 7

4050

∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2 · · · (2n + 9)2
= − 3!3

6!32!
π +

41
44651250

∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2 · · · (2n + 13)2
=

4!3

8!33!
π − 14789

134221791453750

and for y3, y5 and y7:

∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2(2n + 3)3
= −1!!31!

2!421
G +

19
576

∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2(2n + 3)2(2n + 5)2(2n + 7)3
=

3!!32!
4!422

G− 3919
108380160

∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2 · · · (2n + 11)2
= −5!!33!

6!423
G +

22133579
2549361475584000

.

Note that an odd number of consecutive odd squares in the denominator gives a series for G while

an even number of these squares gives a series for π.

In general we found the following sums for the series related to π: (k = 0, 1, 2, · · · )
∞∑

n=1−k

(−1)n−1

∏2k+1
j=0 (2n + 2j − 1)2

= (−1)k+1

(
(k + 1)!3

(2k + 2)!3k!
π − 1

2(2k + 1)!!4

)
.

For the series above the corresponding continued fractions are given in the following theorem:

Theorem 2 — Let

S =
∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2(2n + 3)2 · · · (2n + (2k − 1))2
.

Then,

1
(2k − 1)!!2 S

= (2k + 1)2 +
12(2k + 1)2

(2k + 3)2 − 12 +
32(2k + 3)2

(2k + 5)2 − 32 +
52(2k + 5)2

(2k + 7)2 − 52 + · · ·

.

Using the above formulas and the theorem we get:
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4.1 Continued fractions for π

The values k = 1, 3, 5 give

8
4− π

= 32 +
1232

(52 − 12) +
3252

(72 − 32) +
5272

(92 − 52) +
7292

(112 − 72) + · · ·

,

576
75π − 224

= 72 +
1272

(92 − 12) +
3292

(112 − 32) +
52112

(132 − 52) +
72132

(112 − 72) + · · ·

and

25600
20992− 6615π

= 112 +
12112

(132 − 12) +
32132

(152 − 32) +
52152

(172 − 52) +
72172

(192 − 72) + · · ·

.

4.2 Continued fractions for G

The values k = 0, 2, 4 give

1
G

= 12 +
14

(32 − 12) +
34

(52 − 32) +
54

(72 − 52) +
74

(92 − 72) + · · ·

,

(this is the same one as (4))
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64
19− 18G

= 52 +
1252

(72 − 12) +
3272

(92 − 32) +
5292

(112 − 52) +
72112

(132 − 72) + · · ·
and

49152
22050G− 19595

= 92 +
1292

(112 − 12) +
32112

(132 − 32) +
52132

(152 − 52) +
72152

(172 − 72) + · · ·

.

5. OTHER CONTINUED FRACTIONS FOR G

While looking for continued fractions for G related to (4) in the same way that Lange’s continued

fraction for π is related to Brouncker’s, we found these:

25

6G− 1
= 7 + 3 ·

14

3(32 − 12) +
34

3(52 − 32) +
54

3(72 − 52) +
74

3(92 − 72) + · · ·

(5)

213

82G− 19
= 145 + 41 ·

14

5(32 − 12) +
34

5(52 − 32) +
54

5(72 − 52) +
74

5(92 − 72) + · · ·
217

882G− 713
3

= 229 + 49 ·
14

7(32 − 12) +
34

7(52 − 32) +
54

7(72 − 52) +
74

7(92 − 72) + · · ·
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and it goes on like this. We’ll prove (5). This continued fraction is related to the following series:

∞∑

n=1

(−1)n−1

(4(n− 1)2 + 3)(4n2 + 3)(2n− 1)2

as can be checked using Euler’s method to transform a series into a continued fraction. Now the sum

of this series can be calculated like this:
∞∑

n=1

(−1)n−1

(4(n− 1)2 + 3)(4n2 + 3)(2n− 1)2

=
∞∑

n=1

(−1)n−1

(
− 1

32(4(n− 1)2 + 3)
− 1

32(4n2 + 3)
+

1
16(2n− 1)2

)

= − 1
32

∞∑

n=1

(−1)n−1

4(n− 1)2 + 3
− 1

32

∞∑

n=1

(−1)n−1

4n2 + 3
+

1
16

∞∑

n=1

(−1)n−1

(2n− 1)2

= − 1
3 · 32

+
1
16

G

as a consequence of telescoping and the definition of G.

The series needed to prove the value of the other 2 continued fractions for G are:

∞∑

n=1

(−1)n−1

r(n− 1)r(n)(2n− 1)2

with r(n) = 16n4 + 88n2 + 41 and r(n) = 64n6 + 1168n4 + 3628n2 + 1323 respectively.
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APPENDIX

The series ym (m = 1, 2, 3, . . .) defined by

ym =
∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2(2n + 3)2 · · · (2n + 2m− 3)2

satisfy the recurrence relation:

ym =
10m2 + 8m + 1
2(2m + 1)!!2

− 4m(m + 1)3ym+2.

Proof. By manipulating the terms of the series, we immediately get the result. We have:

ym+2 =
∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2 · · · (2n + 2m− 1)2(2n + 2m + 1)2

=
1

2m + 2

∞∑
n=1

(−1)n−1

[
1

(2n− 1)2(2n + 1)2 · · · (2n + 2m− 1)2(2n + 2m + 1)

− 1
(2n− 1)(2n + 1)2 · · · (2n + 2m + 1)2

]

=
1

(2m + 2)2

∞∑
n=1

(−1)n−1

[
1

(2n− 1)2(2n + 1)2 · · · (2n + 2m− 1)2

− 1
(2n− 1)(2n + 1)2 · · · (2n + 2m− 1)2(2n + 2m + 1)

− 1
(2n− 1)(2n + 1)2 · · · (2n + 2m− 1)2(2n + 2m + 1)

+
1

(2n + 1)2(2n + 3)2 · · · (2n + 2m + 1)2

]

or

(2m + 2)2ym+2 =
∞∑

n=1

(−1)n−1

(2n− 1)2(2n + 1)2 · · · (2n + 2m− 1)2

− 2
∞∑

n=1

(−1)n−1

(2n− 1)(2n + 1)2 · · · (2n + 2m− 1)2(2n + 2m + 1)

−
∞∑

n=2

(−1)n−1

(2n− 1)2(2n + 1)2 · · · (2n + 2m− 1)2

where we have shifted the summation index of the last series. Now the first and last sum cancel out, leaving
one term, and the previous equation reduces to:

(2m + 2)2ym+2 =
1

(2m + 1)!!2
− 2

∞∑
n=1

(−1)n−1

(2n− 1)(2n + 1)2 · · · (2n + 2m− 1)2(2n + 2m + 1)
.
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We now repeat the two steps we used at the beginning of the proof to rewrite the remaining series. We get:

∞∑
n=1

(−1)n−1

(2n− 1)(2n + 1)2 · · · (2n + 2m− 1)2(2n + 2m + 1)

=
1

2m(2m + 2)

[
1

(2m− 1)!!2(2m + 1)
− 2

∞∑
n=1

(−1)n−1

(2n + 1)2(2n + 3)2 · · · (2n + 2m− 1)2

]

=
1

2m(2m + 2)

[
1

(2m− 1)!!2(2m + 1)
+ 2ym − 2

(2m− 1)!!2

]

where again we have shifted the summation index in the last step. Combining everything leads to the desired
result.

Note: E. Fabry (Théorie des Séries à Termes Constants: Applications aux Calculs Numériques, A. Hermann &
fils, Paris, 1910, p.135) proved this recurrence using Kummer’s transformation. Our proof is more straightfor-
ward.


