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This paper is mainly concerned with the interactions of the elementary waves for the one-dimensional
ideal Magnetogasdynamics with transverse magnetic field. By applying the method of the charac-
teristic analysis, we obtain constructively the solutions of the all possible wave interactions when
the initial data are three piecewise constant states. We find that the result is very different from
that of the corresponding case of the conventional gas dynamics. However, the result is consistent
with that of the corresponding case for Euler equations when the magnetic field vanishes.
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1. INTRODUCTION

It is well known that Magnetogasdynamics plays a very important role in studying engineering physics
and many other aspects ([1, 4, 8, 9, 10, 13, 14, 19] and the references cited therein) and it is also an
important example of the hyperbolic system’s theory.

One-dimensional inviscid and perfectly conducting compressible fluid, subject to a transverse
magnetic field, is described by the following conservation laws⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τt − ux = 0,

ut + (p + B2

2μ )x = 0,

(E + B2τ
2μ )t + (pu + B2u

2μ )x = 0,

(1.1)
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under the assumption B = kρ, where k is positive constant [6, 15, 16], τ , u, p, E and B ≥ 0

denote the specific volume, velocity, pressure, the specific total energy and transverse magnetic field,
respectively. E = e+ u2

2 and e is specific internal energy. Here ρ = 1
τ is the density, μ is the magnetic

permeability. For the polytropic gas, e = pτ
γ−1 where γ is the adiabatic gas constant and 1 < γ < 3

for most gases.

Hu and Sheng [6] studied the system (1.1) with the following initial data

(τ, p, u)(x, 0) = (τ±, p±, u±), ± x > 0, (1.2)

where τ±, p±, u± are arbitrary constants, and τ > 0 is the specific volume. They obtained construc-
tively the unique solution of the Riemann problem (1.1) and (1.2) with the characteristic method.

Raja Sekhar and Sharma [15] studied the Riemann problem for one-dimensional unsteady simple
flow of an isentropic, inviscid and perfectly conducting compressible fluid, subject to a transverse
magnetic field ⎧⎪⎨

⎪⎩
ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p + B2

2 )x = 0,
(1.3)

and they obtained the Riemann solutions constructively. Moreover, they discussed the interactions of
the elementary waves.

Shen [16] studied the Riemann problem for (1.3) further and found that the Riemann solutions
converge to the corresponding Riemann solutions of the transport equations by letting both the pres-
sure and the magnetic field vanish.

In [11], we removed the above assumption B = kρ and mainly consider the Riemann problem of
the one-dimensional unsteady flow of an inviscid, perfectly conducting compressible fluid, subject to
a transverse magnetic field for the magnetogasdynamic system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p + B2

2 )x = 0,

(B)t + (Bu)x = 0,

(1.4)

where the pressure p is given by p = Aργ for polytropic gas, A is positive constant and γ is the
adiabatic constant.

The Riemann problem of the conventional gas dynamics is studied by lots of people ([2, 3, 5,
7, 18], etc.). While the results of magnetogasdynamics flow are less than that of the conventional
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gas dynamics since the governing equations are highly nonlinear and complicated even for the one-
dimensional flow.

It is noticed that although the governing equations of magnetogasdynamics are more complex
than that of the conventional gas dynamics system, many results are similar except for the contact
discontinuity. Unlike the conventional gas dynamics, where the image of the contact discontinuity in
the space (τ, p, u) is a straight line parallel to the τ -axis and the projection on the plane (p, u) is a
point, here the contact discontinuity is a plane curve in the space (τ, p, u) and the projection on the
plane (p, u) is a straight line parallel to the p-axis. It induce that the Riemann solutions are more
complex than that of the conventional gas dynamics.

It is important to study the interactions of the elementary waves not only because of their signifi-
cance in practical applications in magnetogasdynamics system such as comparison with the numerical
and experimental results, but also because of their basic role as building blocks for the theory of mag-
netogasdynamics.

In this paper we are concerned with the wave interactions of the elementary waves of (1.1) with
the following initial data

(B, ρ, u)(x, 0) =

⎧⎪⎪⎨
⎪⎪⎩

(Bl, ρl, ul), −∞ < x ≤ x1,

(Bm, ρm, um), x1 < x ≤ x2,

(Br, ρr, ur), x2 < x < ∞,

(1.5)

for arbitrary x1, x2 ∈ R.

There are many results for the wave interactions of the elementary waves of the hyperbolic system
and we refer the readers to the references [2, 3, 11, 12, 15, 16, 17].

Based on investigating the important properties of the elementary waves containing the shock
wave, rarefaction wave and the contact discontinuity in the phase plane (u, p), we obtain construc-
tively the existence and uniqueness of the solution of the initial value problem (1.1) and (1.5) which
embodies the internal mechanism of this model.

The detailed discussions are divided into two cases: one is that the wave interactions containing
no rarefaction wave, the other one is that the wave interactions containing rarefaction wave. For the
former case, we obtain uniquely the global solution by solving a new Riemann problem, while for
the latter case we construct the unique local solution which is still important since it can be used to
construct the approximate solution by Glimm’s scheme and to describe the asymptotic behavior of
the solution as the time tends to infinity.
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Note that we should deal with the contact discontinuity carefully since it is much more compli-
cated than that of the conventional gas dynamics. We find that the result is very different from that of
the corresponding case of the conventional gas dynamics. However, the result is consistent with that
of the corresponding case for Euler equations when the magnetic field B vanishes which indicates
that there is a close connection between the two hyperbolic systems.

The rest of this paper is organized as follows. Section 2 restates the Riemann problem (1.1) and
(1.2) for our later discussions. In Section 3, when the initial date are three pieces of constant states,
the interactions of the elementary waves are considered case by case by investigating the wave curves
in the phase plane (u, p) and we construct uniquely the solution of the initial value problem (1.1) and
(1.5).

2. PRELIMINARIES

In this section, we firstly sketch the results of the Riemann problem for (1.1) with the initial data
(1.2), and we refer the readers to [6] for more details.

The system (1.1) can be rewritten, when we consider a smooth solution, as

⎛
⎜⎜⎜⎝

1 0 0

0 1 0

(e + B2

2μ )τ u ep

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

τ

u

p

⎞
⎟⎟⎟⎠

t

+

⎛
⎜⎜⎜⎝

0 −1 0

BBτ
μ 0 1

uBBτ
μ p + B2

2μ u

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

τ

u

p

⎞
⎟⎟⎟⎠

x

= 0. (2.1)

It defines the eigenvalues λ0 = 0, λ± = ±
√

p−ep
BBτ

μ
+eτ

ep
. If ep > 0 and eτ +p > 0, they are real

and distinct, thus (1.1) is a strictly hyperbolic system. It is easily shown that the characteristic fields
λ± are genuinely nonlinear and the characteristic field λ0 is linearly degenerate.

2.1 Rarefaction waves

There are piecewise smooth solutions of (1.1), which are of the form U(x
t ), such that

U(x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ul,
x
t ≤ λ±(Ul),

U(x
t ), λ±(Ul) ≤ x

t ≤ λ±(Ur),

Ur, λ±(Ur) ≤ x
t .

(2.2)

If we set ξ = x
t , the system (1.1) becomes
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

λdτ = −d(u),

λdu = d(p + B2

2μ ),

λd(E + B2τ
2μ ) = d(pu + B2u

2μ ).

(2.3)

Besides the constant state solution (τ, p, u) = const., for the polytropic gas, the forward or
backward rarefaction wave in the (τ, p, u) space passing though the point Q0(τ0, p0, u0) is given by

−→←−
R :

⎧⎪⎨
⎪⎩

pτ γ = p0τ
γ
0 ,

u = u0 ±
∫ p

p0

√
γpτ+B2τ

μ

γp
dp.

(2.4)

2.2 Discontinuity

For the system (1.1), the Rankine-Hugoniot (RH) jump conditions are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ[τ ] = −[u],

σ[u] = [p + B2

2μ ],

σ[E + B2τ
2μ ] = [pu + B2u

2μ ],

(2.5)

where [u] = ur − ul, etc.

By solving (2.5) we obtain two kinds of discontinuities as follows.

Contact discontinuity:

J :

⎧⎨
⎩

σ = 0,

[u] = [p + B2

2μ ],
(2.6)

and it is easy to see that J is a curve with u = Const. in the (τ, p, u) space and the projection on the
(p, u) plane is a straight line parallel to the p-axis.

For the polytropic gas, the forward or backward shock wave in the (τ, p, u) space passing though
the point Q0(τ0, p0, u0) is given by

−→←−
S :

⎧⎪⎨
⎪⎩

(p + θ2p0 + θ2(3B2

2μ
+

B2
0

2μ
))τ = (p0 + θ2p + θ2(

3B2
0

2μ
+ B2

2μ
))τ0,

u = u0 ± (p + B2

2μ
− p0 − B2

0

2μ
)(− τ−τ0

p+B2

2μ
−p0−B2

0
2μ

)
1
2 ,

(2.7)

where θ2 = γ−1
γ+1 and B0 = k

τ0
.
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For convenience and conciseness, denote the projection of
−→←−
R (

−→←−
S ) on the (τ, p) plane and (p, u)

plane by Ru(Su) and
−→←−
R τ (

−→←−
S τ ), respectively. Denote the contact discontinuity J by

<
J when

pl < pr, τl < τr, and
>
J when pl > pr, τl > τr.

For our later discussions, we restate the following properties of the shock wave curves (see
Lemma 3.5. in [6]).

Lemma 2.1—The wave curve
−→
S τ (Q0τ ) is concave and monotonically increasing, while

←−
S τ (Q0τ )

is convex and monotonically decreasing.

In a similar way with Lemma 3.3.7. in [2], we have the following result and the proof is omitted
for simplicity.

Lemma 2.2 — Suppose the point Q2 ∈
−→←−
R τ (Q1) ∪

−→←−
S τ (Q1), then the curve

−→←−
S τ (Q1) does not

intersects with
−→←−
S τ (Q2) on the side where p increases while

−→←−
R τ (Q1) does not intersects with

−→←−
R τ (Q2)

on the side where p decreases.

In order to construct the Riemann problem of (1.1) and (1.2), we denote
←−
W−τ (Q−τ ) =

←−
R−τ (Q−τ )∪←−

S −τ (Q−τ ) and
−→
W+τ (Q+τ ) =

−→
R+τ (Q+τ ) ∪ −→

S +τ (Q+τ ), where Q−τ and Q+τ are respectively the
projections of Q− and Q+ on the plane (p, u).

Draw
←−
W−τ (Q−τ ) from Q−τ and

−→
W+τ (Q+τ ) from Q+τ in the plane (p, u) respectively.

According to the properties of
←−
W−τ (Q−τ ) and

−→
W+τ (Q+τ ), they intersect with each other at most

once. Therefore, there are five cases:
←−
W−τ (Q−τ ) ∩ −→

W+τ (Q+τ ) = (
←−
R−τ (Q−τ ) ∩ −→

R+τ (Q+τ )) or
(
←−
S −τ (Q−τ ) ∩ −→

R+τ (Q+τ )) or (
←−
R−τ (Q−τ ) ∩ −→

S +τ (Q+τ )) or (
←−
S −τ (Q−τ ) ∩ −→

S +τ (Q+τ )) or ∅.

For the last case, we easily know there is a vacuum solution. In what follows, we just need to
consider the first case since the other cases can be studied similarly.

Suppose
←−
W−τ (Q−τ ) ∩ −→

W+τ (Q+τ ) =
←−
R−τ (Q−τ ) ∩ −→

R+τ (Q+τ ) = {Q∗τ} (Fig. 2.1.), we know
there exists (p∗, u∗) satisfying

u∗ = u− +
∫ p∗

p−

√
γpτ + kB

μ

γp
dp, pτγ = p−τγ

−, (2.8)

u∗ = u+ −
∫ p∗

p+

√
γpτ + kB

μ

γp
dp, pτγ = p+τγ

+. (2.9)
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�
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�

(+)

(−)

p

u

(∗)
−→
R+τ

←−
R−τ

−→
S +τ

←−
S −τ

Fig. 2.1.
←−
R−τ ∩ −→

R+τ = {Q∗τ}.

Denote

f1(p1) := u− +
∫ p−

p1

√
γpτ + kB(τ)

μ

γp
dp, pτγ = p−τγ

−, p1 ∈ [0, p−],

f2(p2) := u+ −
∫ p+

p2

√
γpτ + kB(τ)

μ

γp
dp, pτγ = p−τγ

−, p2 ∈ [0, p+],

g1(p1) := p1 +
B2

1(τ1)
2μ

,

g2(p2) := p2 +
B2

2(τ2)
2μ

,

where τ1 satisfies

−→←−
S :

⎧⎨
⎩

(p1 + θ2p− + θ2(
3B2

1(τ1)

2μ
+

B2
−

2μ
))τ1 = (p− + θ2p1 + θ2(

3B2
−(τ1)

2μ
+

B2
1

2μ
))τ−, p1 > p−,

p1τ
γ
1 = p−τ γ

−, p1 ≤ p−,

(2.10)

and τ2 satisfies

−→←−
S :

⎧⎨
⎩

(p2 + θ2p+ + θ2(
3B2

2(τ2)

2μ
+

B2
+

2μ
))τ2 = (p+ + θ2p2 + θ2(

3B2
+(τ2)

2μ
+

B2
2

2μ
))τ+, p2 > p+,

p2τ
γ
2 = p+τ γ

+, p2 ≤ p+.

(2.11)
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Denote

h1(p1) := u− −
√

(p1 +
B2

1(τ1)
2μ

− p− − B2−
2μ

)(τ− − τ1),

h2(p2) := u+ +

√
(p2 +

B2
2(τ2)
2μ

− p+ − B2
+

2μ
)(τ+ − τ2),

where τ1 satisfies the first equation of (2.10) and τ2 satisfies the first equation of (2.11).
Let ⎧⎨

⎩
f1(p1) = f2(p2),

g1(p1) = g2(p2),
(2.12)

⎧⎨
⎩

f1(p1) = h2(p2),

g1(p1) = g2(p2),
(2.13)

⎧⎨
⎩

h1(p1) = f2(p2),

g1(p1) = g2(p2).
(2.14)

In [6], the authors proved that only one of the above three equations (2.12), (2.13) and (2.14) is
solvable and the solution is unique, which implies that there exists a unique contact discontinuity J

joining the two states which are located on
−→←−
R and

←−−→
S respectively.

Case 1 : p−τγ
− = p+τγ

+.

In this case, we have g1(p∗) = g2(p∗), and the Riemann solution is
←−
R +

−→
R where the symbol

“ + ” means “followed by”. We notice that for this case there is no contact discontinuity.

Case 2 : p−τγ
− < p+τγ

+. In this case, we know that g1(p∗) > g2(p∗) and should look for the
solution in {(p1, p2)|0 ≤ p1 < p∗, p2 > p∗}. There are two possibilities as follows.

Subcase 2.1 : f1(0) ≤ u+. (Fig. 2.2.)

It is obvious that there exists a point p̂1 ∈ (p∗, p+) such that f1(0) = f2(p̂1) and g1(0) < g2(p̂1).
It follows that there exists a point (p1, p2) : 0 < p1 < p∗, p∗ < p2 < p̂1 and the Riemann solution

is
←−
R +

<
J +

−→
R .

Subcase 2.2 : f1(0) > u+. (Fig. 2.3.)

Since there exists a point p̂2 ∈ (0, p∗) such that f1(p̂2) = u+, we divide it into two subcases.
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Subcase 2.2.1 : If g1(p̂2) ≤ g2(p+), we know that there exists a point (p1, p2) : p̂2 ≤ p1 <

p∗, p∗ < p2 < p+ and it follows that the Riemann solution is
←−
R +

<
J +

−→
R .

Subcase 2.2.2 : If g1(p̂2) > g2(p+), similarly we obtain that there exists a point (p1, p2) : 0 <

p1 < p̂2, p+ < p2 < p̂3 and the Riemann solution is
←−
R +

<
J +

−→
S , where p̂3 ∈ (p+, +∞) satisfying

f1(0) = h2(p̂3).

� �

��

(+)

(∗)
−→
R+τ (−)

←−
S −τ

←−
R−τ

−→
S +τ

p

u

(+)

(−)

p̂2p̂1 p̂3

−→
S +τ

←−
S −τ

−→
R+τ

←−
R−τ

(∗)

p

u

Fig. 2.2. f1(0) ≤ u+ = f2(p+). Fig. 2.3. f1(0) > u+ = f2(p+).

�

�

�

�

�

�

Case 3 : p−τγ
− > p+τγ

+. In this case, we know that g1(p∗) < g2(p∗) and should look for the
solution in {(p1, p2)|p1 > p∗, 0 ≤ p2 < p∗}. We divide it into two subcases as follows.

Subcase 3.1 : u− ≤ f2(0) (Fig. 2.4.)

It is obvious that there exists a point p̂4 ∈ (p∗, p−) such that f1(p̂4) = f2(0) and g1(p̂4) > g2(0).

And we get the Riemann solution
←−
R +

>
J +

−→
R .

Subcase 3.2 : u− > f2(0) (Fig. 2.5.)

Since there exists a point p̂5 ∈ (0, p∗) such that f2(p̂5) = u−, we divide it into two subcases.

Subcase 3.2.1 : If g1(p−) ≥ g2(p̂5), similarly as the above discussions there exists a point

(p1, p2) : p∗ < p1 < p−, p̂5 ≤ p2 < p∗ and the Riemann solution is
←−
R +

>
J +

−→
R .

Subcase 3.2.2 : If g1(p−) < g2(p̂5), since there exists a point (p1, p2) : p− < p1 < p̂6, 0 <

p2 < p̂5, the Riemann solution is
←−
S +

>
J +

−→
R , where p̂6 satisfies h1(p̂6) = f2(0).

From the above discussions, we obtain the following result [6].
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f2(0)

u− (−)

(+)

p̂4

−→
R+τ

−→
S +τ

←−
R−τ

←−
S −τ

(∗)

←−
R−τ

←−
S −τ

−→
R+τ

−→
S +τ

(∗)

(+)

(−)u−

p̂5 p̂6

f2(0)

Fig. 2.4. f1(p−) = u− ≤ f2(0). Fig. 2.5. f1(p−) = u− > f2(0).
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�

�

Theorem 2.1 — For any initial constant states U− and U+, there exists uniquely the entropy
solution of the Riemann problem (1.1) and (1.2).

3. INTERACTIONS OF THE ELEMENTARY WAVES

Now we consider the kinds of interactions of the elementary waves obtained from the Riemann prob-
lem (1.1) and (1.2). We divide the discussions into two cases: the interactions of the elementary
waves containing no R and the interactions of the elementary waves containing R.

3.1 Interactions of the elementary waves containing no R

In this case, we discuss the wave interactions case by case and can obtain the global solution by
solving a new Riemann problem.

Case (i) :
−→
S

>
J .

Since −→
S rτ (Qr) : u = ur +

√
(p + B2

2μ − pr − B2
r

2μ )(τr − τ),

−→
S mτ (Qm) : u = um +

√
(p + B2

2μ − pm − B2
m

2μ )(τm − τ),

where Br = k
τr
, Bm = k

τm
and um = ur, pm + B2

m
2μ = pr + B2

r
2μ . From the properties of the contact

discontinuity, we have τm > τr ⇔ Bm < Br, it follows that the curve
−→
S rτ (Qr) lies always above

the curve
−→
S mτ (Qm). Thus,

−→
S rτ (Qr) intersects with

←−
R lτ (Ql) atQ∗τ where a new Riemann problem

is formed. In order to construct the solution of this new Riemann problem, we discuss as follows.

Case 1 : τ∗l < τ∗r. In this case, g1(p∗) > g2(p∗) and we should seek a solution in {(p̄1, p̄2)|0 <

p̄1 < p∗, p∗ < p̄2 < +∞}.
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It is obvious that there exists a point p̂1 ∈ (p∗, +∞) which satisfies f1(0) = h2(p̂1) and 0 =

g1(0) < g2(p̂1). It follows that there exists a point (p̄1, p̄2) : 0 < p̄1 < p∗, p∗ < p̄2 < p̂1 and the

solution is given by
−→
S

>
J → ←−

R
<
J
−→
S .

Case 2 : τ∗l = τ∗r. Since there is no contact discontinuity of the new Riemann solution in this
case, the state Ql is connected to the state Qr by the state Q∗ directly and we obtain that the solution
is
−→
S

>
J → ←−

R
−→
S .

Case 3 : τ∗l > τ∗r. This means that g1(p∗) < g2(p∗), i.e., p∗l+
B2

∗l
2μ < p∗r+

B2∗r
2μ , whereB∗l = k

τ∗l
,

B∗r = k
τ∗r
.

In view of ul > ur, if there is a contact discontinuity (p̄1, p̄2) of the solution for the new Riemann
problem, we know that the following equality

p̄1 +
B̄2

1

2μ
= p̄2 +

B̄2
2

2μ
, (3.1)

holds, where p̄1 > p∗, 0 < p̄2 < p∗ (Fig. 3.1.).

�

�
p

u

−→
S rτ

←−
R lτ

←−
S lτ

−→
R rτ

(l)
(r)

(∗)

p̂3p̂2

Fig. 3.1. The interaction of
−→
S and

>
J .

ul

ur
(m)

�

�

(l) (m) (r)

x1 x2
x

t

−→
S

>
J

�

��

�

Subcase 3.1 : g1(pl) ≥ g2(p̂2), where p̂2 is determined by ul = u−→
S rτ

(p̂2), i.e., we choose p̂2 such
that the value of u along the curve

−→
S rτ as p = p̂2 equals to the value of ul. Therefore there exists a

point (p̄1, p̄2) : p∗ < p̄1 < pl, p̂2 < p̄2 < p∗ and the solution lies between ul and u∗ which is given

by
−→
S

>
J → ←−

R
>
J
−→
S .

Subcase 3.2 : g1(pl) < g2(p̂2). On the other hand, we have

p̂3 +
B̂2

3

2μ
> pr +

B2
r

2μ
, (3.2)
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where p̂3 is determined by u←−
S lτ

(p̂3) = ur. In fact, due to pm + B2
m

2μ = pr + B2
r

2μ ,

um = ur = u(p̂3) = ul −
√

(p̂3 +
B̂2

3

2μ
− pl −

B2
l

2μ
)(τl − τ̂3),

and

um = ul −
√

(pl +
B2

l

2μ
− pm − B2

m

2μ
)(τm − τl),

where p̂3 > pl > pm. From Lemma 2.1., dτ
dp < 0 holds for

←−
S which yields that τ̂3 < τl < τm. It

follows that

p̂3 +
B̂2

3

2μ
> pl +

B2
l

2μ
> pm +

B2
m

2μ
= pr +

B2
r

2μ
,

that is to say, (3.2) holds.

Hence there exists a point (p̄1, p̄2) : pl < p̄1 < p̂3, pr < p̄2 < p̂2 and the solution is described

by
−→
S

>
J → ←−

S
>
J
−→
S .

Similarly, the interaction between
<
J and

←−
S can also be obtained and here omitted.

Theorem 3.1—When a shock collides with a contact discontinuity which is of a jump increase in
density in the propagating direction of the shock, the shock will cross the contact discontinuity at once
and a new rarefaction wave or a new shock wave propagating in the opposite direction will appear.
Furthermore, after the interaction the contact discontinuity may appear or disappear.

Case (ii) :
−→
S

<
J . Similar discussions as the above case, it follows that the curve

−→
S mτ (Qm) lies

always above the curve
−→
S rτ (Qr). Thus, there are two possibilities:

←−
S lτ (Ql) intersects with

−→
S rτ (Qr)

at Q∗τ where a new Riemann problem is formed, or
←−
S lτ (Ql) intersects with

−→
R rτ (Qr) at Q∗τ where

a new Riemann problem is formed. In what follows, we construct the solution of the new Riemann
problem as follows.

Case 1 : p̂1 ≥ pr, where p̂1 satisfies ur = u←−
S lτ

(p̂1). In this case, we know thatQ∗τ ∈ ←−
S lτ (Ql)∪−→

S rτ (Qr) (Fig. 3.2.).
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Fig. 3.2. The interaction of
−→
S and

<
J , p̂1 ≥ pr .
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Subcase 1.1 : τ∗l < τ∗r. This means that g1(p∗) > g2(p∗). If there exists a contact discontinuity
(p̄1, p̄2) of the new Riemann problem, (3.1) must hold. There are two possibilities.

Subcase 1.1.1 : g1(pl) ≤ g2(p̂2), where p̂2 is determined by

ul = u−→
S rτ

(p̂2). (3.3)

Therefore the solution lies between ul and u∗ and the result is
−→
S

<
J → ←−

S
<
J
−→
S .

Subcase 1.1.2 : g1(pl) > g2(p̂3). On the other hand, 0 = g1(0) < g2(p̂3) holds obviously, where
p̂3 is determined by u←−

R lτ (Ql)
(0) = u−→

S rτ
(p̂3). It follows that there exists (p̄1, p̄2) which satisfies

0 < p̄1 < pl, p̂2 < p̄2 < p̂3 and
−→
S

<
J → ←−

R
<
J
−→
S .

Subcase 1.2 : τ∗l = τ∗r. There is no contact discontinuity of the new Riemann solution and the
result is given by

−→
S

<
J → ←−

S
−→
S .

Subcase 1.3 : τ∗l > τ∗r.

This means that g1(p∗) < g2(p∗). On the other hand, it is evident that

pr +
B2

r

2μ
= pm +

B2
m

2μ
< p̂1 +

B̂2
1

2μ
.

It yields that there exists (p̄1, p̄2) : p∗ < p̄1 < p̂1, pr < p̄2 < p∗ such that (3.1) holds. Thus, we

have
−→
S

<
J → ←−

S
>
J
−→
S .

Case 2 : p̂1 < pr. In this case, we can see that Q∗τ ∈ ←−
S lτ (Ql) ∪ −→

R rτ (Qr) (Fig. 3.3.).
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Fig. 3.3. The interaction of
−→
S and

<
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Subcase 2.1 : τ∗l < τ∗r. This means that p∗l + B2
∗l
2 > p∗r + B2∗r

2 . Therefore, we have obviously
that

p̂1 +
B̂2

1

2μ
> pm +

B2
m

2μ
= pr +

B2
r

2μ
.

and there is no solution between u∗ and ur.

Subcase 2.1.1 : g1(pl) ≤ g2(p̂2), where p̂2 satisfies (3.3). Thus, there exists a point (p̄1, p̄2) which

satisfies pl < p̄1 < p∗, pr < p̄2 < p̂3 and
−→
S

<
J → ←−

S
<
J
−→
S .

Subcase 2.1.2 : g1(pl) > g2(p̂2). The solution lies between 0 and ul and
−→
S

<
J → ←−

R
<
J
−→
S .

Subcase 2.2 : τ∗l = τ∗r. There is no contact discontinuity of the new Riemann solution and the
result is

−→
S

<
J → ←−

S
−→
R .

Subcase 2.3 : τ∗l > τ∗r. This means that p∗l + B2
∗l

2μ < p∗r + B2∗r
2μ . It is obvious that 0 < p̂4 + B̂2

4
2μ ,

where p̂4 satisfies u−→
R rτ (Qr)

(0) = u←−
S lτ (Ql)

(p̂4). Therefore there exists (p̄1, p̄2) : p̂1 < p̄1 < p̂4, 0 <

p̄2 < pr such that (3.1) holds which indicates that
−→
S

<
J → ←−

S
>
J
−→
R .

Similarly, the interaction between
>
J and

←−
S can be investigated and omitted for simplicity.

Theorem 3.2— When a shock collides with a contact discontinuity which is of a jump decrease
in density in the propagating direction of the shock, the shock will cross the contact discontinuity at
once or a new rarefaction wave will appear, and after the interaction the contact discontinuity may
appear or disappear. Furthermore, a new shock wave or a new rarefaction wave propagating in the
opposite direction will appear.
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Case (iii) :
−→
S
←−
S . In this case, it is obvious that

−→
S will intersect with

←−
S in a finite time and

a new Riemann problem is formed. From Lemma 2.2., we know that
←−
S τ (Ql) does not intersect

with
←−
S τ (Qm) and

−→
S τ (Qr) does not intersect with

−→
S τ (Qm), respectively. It follows that Q∗ ∈

←−
S τ (Ql) ∪ −→

S τ (Qr) (Fig. 3.4.) and we construct the solution as follows.
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Fig. 3.4. The interaction of
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←−
S lτ

−→
R rτ

−→
S rτ

�

�

�

�

Case 1 : τ∗l > τ∗r. In this case, g1(p∗) < g2(p∗) and we should seek a solution in {(p1, p2)|p1 >

p∗, 0 < p2 < p∗}. Obviously, there exist p̂1 and p̂2 which satisfies respectively that ur = u←−
S lτ

(p̂1), p̂1 ∈
(p∗, p̂2) and u−→

R rτ
(0) = u←−

S lτ
(p̂2), p̂2 > p̂1 > p∗.

Subcase 1.1 : g1(p̂1) ≥ g2(pr). From the continuity of the wave curves, we know there exists a

point (p̄1, p̄2) such that p∗ < p̄1 < p̂1, pr < p̄2 < p∗, and the solution is
−→
S
←−
S → ←−

S
>
J
−→
S .

Subcase 1.2 : g1(p̂1) < g2(pr). Similarly, we know there exists a point (p̄1, p̄2) satisfying p̂1 <

p̄1 < p̂2 and 0 < p̄2 < pr and the result is described by
−→
S
←−
S → ←−

S
>
J
−→
R .

Case 2 : τ∗l = τ∗r. In this case, g1(p∗) = g2(p∗) and there is no contact discontinuity of the new
Riemann solution, the stateQl is connected to the stateQr by the stateQ∗ directly and we obtain that
the solution is

−→
S

>
J → ←−

S
−→
S .

Case 3 : τ∗l < τ∗r. This means that g1(p∗) > g2(p∗) and we should seek solution in {(p̄1, p̄2)|0 <

p̄1 < p∗, p̄2 > p∗}. It is easily shown that there exist p̂3 and p̂4 which satisfies respectively that
ul = u−→

S rτ
(p̂3) and u←−

R lτ
(0) = u−→

S rτ
(p̂4), p∗ < p̂3 < p̂4.

Subcase 3.1 : g1(p̂3) ≥ g2(pl). From the continuity of the wave curves, we know there exists a

point (p̄1, p̄2) satisfying pl < p̄1 < p∗, p∗ < p̄2 < p̂3, and the solution is given by
−→
S
←−
S → ←−

S
<
J
−→
S .

Subcase 3.2 : g1(p̂3) < g2(pl). Similarly, there exists a point (p̄1, p̄2) satisfying 0 < p̄1 < pl and
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p̂3 < p̄2 < p̂4 which indicates that the solution is
−→
S
←−
S → ←−

R
<
J
−→
S .

Theorem 3.3— When a forward shock collides with a backward shock, the forward (backward)
shock will cross the backward (forward) shock at once or a new forward (backward) rarefaction wave
will appear. Moreover, the contact discontinuity may appear or not after the interaction.

3.2 Interactions of the elementary waves containing R

In this case, since there is a process of penetration in the interaction, we can not obtain the global
solution by solving the new Riemann problem as in the above section. However, the solution of the
corresponding Riemann problem is still important for investigating the global solution because this
can be used to construct the approximate solution by Glimm’s scheme and for describing the asymp-
totic behavior of the solution as the time tends to infinity [2]. Now we discuss the wave interactions
case by case.

Case (i) :
−→
R

>
J . In this case, we know ul < um = ur and pm > pr.

Since
−→
R rτ (Qr) : u = ur +

∫ p
pr

√
γpτ+

kB(τ)
μ

γp dp,

−→
Rmτ (Qm) : u = um +

∫ p
pm

√
γpτ+

kB(τ)
μ

γp dp,

pm + B2
m

2μ = pr + B2
r

2μ , um = ur and pm > pr, it follows that the curve
−→
R rτ (Qr) lies always above the

curve
−→
Rmτ (Qm). Thus, there are two possibilities:

←−
R lτ (Ql) intersects with

−→
R rτ (Qr) atQ∗τ where a

new Riemann problem is formed, or
←−
R lτ (Ql) intersects with

−→
S rτ (Qr) at Q∗τ where a new Riemann

problem is formed. In order to construct the solution of this new Riemann problem, we discuss as
follows.

Case 1 : p̃1 ≥ pr, where p̃1 satisfies ur = u←−
R lτ

(p̃1) which means that
←−
R lτ (Ql) intersects with−→

S rτ (Qr) at Q∗τ (Fig. 3.5.).

Subcase 1.1 : τ∗l = τ∗r, which indicates that g1(p∗) = g2(p∗). There is no contact discontinuity

of the new Riemann solution and the result is
−→
R

>
J → ←−

R
−→
S .

Subcase 1.2 : τ∗l < τ∗r, in this case we have g1(p∗) > g2(p∗). It follows that there exists a point

(p̄1, p̄2) which satisfies 0 < p̄1 < p∗ < pl, p̄2 > p∗ > pr and the solution is given by
−→
R

>
J → ←−

R
<
J
−→
S .

Subcase 1.3 : τ∗l > τ∗r, similarly it holds that g1(p∗) < g2(p∗). In this case, we should seek the
solution in {(p̄1, p̄2)|p̄1 > p∗, 0 < p̄2 < p∗}. In view of ul < ur, we divide our discussions into the
following two subcases.
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Subcase 1.3.1 : u−→
R rτ

(0) < ul < ur.

Subcase 1.3.1.1 : g2(pr) ≤ g1(p̃1). From the continuity of the wave curves, we know that there
exists a point (p̄1, p̄2) satisfying p∗ < p̄1 < p̃1 and pr < p̄2 < p∗. Thus, the solution is described by
−→
R

>
J → ←−

R
>
J
−→
S .

Subcase 1.3.1.2 : g2(pr) > g1(p̃1) and g1(pl) ≥ g2(p̃2), where p̃2 is determined by
ul = u−→

R rτ
(p̃2). Thus, there exists a point (p̄1, p̄2) which satisfies p̃1 < p̄1 < pl and p̃2 < p̄2 < pr,

and we know that the solution is
−→
R

>
J → ←−

R
>
J
−→
R .

Subcase 1.3.1.3 : g2(pr) > g1(p̃1) and g1(pl) < g2(p̃2). Obviously, it holds that g1(p̃3) > g2(0),
where p̃3 satisfies u−→

R rτ
(0) = u←−

S lτ
(p̃3). Therefore there exists a point (p̄1, p̄2) satisfying pl < p̄1 <

p̃3 and 0 < p̄2 < p̃2 and the solution is
−→
R

>
J → ←−

S
>
J
−→
R .

�

�
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u

Fig. 3.5. The interaction of
−→
R and

>
J , p̃1 ≥ pr .
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Subcase 1.3.2 : ul < u−→
R rτ

(0) < ur.

It is obvious that there exists a point p̃4 < pl such that u−→
R rτ

(0) = u←−
R lτ

(p̃4).

Subcase 1.3.2.1 : g1(p̃1) ≥ g2(pr). Since there exists a point (p̄1, p̄2) satisfying p∗ < p̄1 < p̃1

and pr < p̄2 < p∗, we know that the solution is described by
−→
R

>
J → ←−

R
>
J
−→
S .

Subcase 1.3.2.2 : g1(p̃1) < g2(pr). It is obvious that g1(p̃4) > g2(0). From the continuity, there
exists a point (p̄1, p̄2) which satisfies p̃1 < p̄1 < p̃4 and 0 < p̄2 < pr which indicates that the solution

is
−→
R

>
J → ←−

R
>
J
−→
R .

Case 2 : p̃1 < pr, in this case we know that
←−
R lτ (Ql) intersects with

−→
R rτ (Qr) at Q∗τ (Fig. 3.6.).

Subcase 2.1 : plτ
γ
l = prτ

γ
r .
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In this case, we have g1(p∗) = g2(p∗), and the solution is
−→
R

>
J → ←−

R
−→
R . Note that for this case

there is no contact discontinuity.

Subcase 2.2 : plτ
γ
l < prτ

γ
r . In this case, g1(p∗) > g2(p∗) and we should look for the solution in

{(p̄1, p̄2)|0 ≤ p̄1 < p∗, p̄2 > p∗}. There are two possibilities as follows.

Subcase 2.2.1. f1(0) ≤ ur.

It is easily shown that there exists p̂1 ∈ (p∗, p+) such that u←−
R lτ

(0) = u−→
R rτ

(p̂1) and g1(0) <

g2(p̂1). It follows that there exists a point (p̄1, p̄2) : 0 < p̄1 < p∗, p∗ < p̄2 < p̂1 and the solution is
−→
R

>
J → ←−

R
<
J
−→
R .

Subcase 2.2.2 : f1(0) > ur.

Since there exists a point 0 < p̂2 < p∗ such that u←−
R lτ

(p̂2) = ur, we divide it into two subcases.

Subcase 2.2.2.1 : g1(p̂2) ≤ g2(pr), we know that there exists a point (p̄1, p̄2) : p̃2 ≤ p̄1 <

p∗, p∗ < p̄2 < pr and it follows that the solution is
−→
R

>
J → ←−

R
<
J
−→
R .

Subcase 2.2.2.2 : g1(p̂2) > g2(pr), similarly we obtain that there exists a point (p̄1, p̄2) : 0 <

p̄1 < p̂2, pr < p̄2 < p̂3, where p̂3 is determined by u←−
R lτ

(0) = u−→
S rτ

(p̂3), and the solution is
−→
R

>
J → ←−

R
<
J
−→
S .
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Fig. 3.6. The interaction of
−→
R and

>
J , p̃1 < pr .
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Subcase 2.3 : plτ
γ
l > prτ

γ
r . In this case, we know g1(p∗) < g2(p∗) and should look for the

solution in {(p̄1, p̄2)|p̄1 > p∗, 0 ≤ p̄2 < p∗}. We divide it into two subcases as follows.

Subcase 2.3.1 : ul ≤ f2(0).
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It is obvious that there exists a point p̂4 ∈ (p∗, pl) such that u←−
R lτ

(p̂4) = u−→
R rτ

(0) and g1(p̂4) >

g2(0). And we get the solution is
−→
R

>
J → ←−

R
>
J
−→
R .

Subcase 2.3.2 : ul > f2(0).

Since there exists a point p̂5 ∈ (0, p∗) such that ul = u−→
R rτ

(p̂5), we divide it into two subcases.

Subcase 2.3.2.1 : g1(pl) ≥ g2(p̂5), similarly as the above discussions there exists a point (p̄1, p̄2) : p∗ <

p̄1 < pl, p̂5 ≤ p̄2 < p∗ and the solution is
−→
R

>
J → ←−

R
>
J
−→
R .

Subcase 2.3.2.2 : g1(pl) < g2(p̂5), since there exists a point (p̄1, p̄2) : pl < p̄1 < p̂6, 0 < p̄2 <

p̂5, where p̂6 satisfies u←−
S lτ

(p̂6) = u−→
R rτ

(0), and we get the solution is
−→
R

>
J → ←−

S
>
J
−→
R .

Similarly, the interaction between
<
J and

←−
R can be investigated and omitted for simplicity.

Theorem 3.4—When a rarefaction wave collides with a contact discontinuity which is of a jump
increase in density in the propagating direction of the rarefaction wave, the local solution of the
interaction is that the rarefaction wave continues to move forward in its propagating direction or a
new shock wave will appear. Meanwhile, a new rarefaction wave or a new shock wave propagating
in the opposite direction will appear. Furthermore, the contact discontinuity may appear or not after
the interaction.

Case (ii) :
−→
R

<
J .

In this case, it holds that ul < um = ur and pm < pr. Similarly with the discussions in Case (i)
of this subsection, we know that the curve

−→
Rmτ (Qm) lies always above the curve

−→
R rτ (Qr) and the

curve
←−
S lτ (Ql) intersects with

−→
R rτ (Qr) at the point Q∗τ (Fig. 3.7.).
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Subcase 1 : τ∗l = τ∗r.

Similarly, it holds that g1(p∗) = g2(p∗) which means that there is no contact discontinuity, and

we get the solution is
−→
R

<
J → ←−

S
−→
R .

Subcase 2 : τ∗l > τ∗r. In this case, we know g1(p∗) < g2(p∗) and should look for the solution in
{(p̄1, p̄2)|p̄1 > p∗, 0 < p̄2 < p∗}. Obviously, we can define p̃1 which satisfies u−→

R rτ
(0) = u←−

S lτ
(p̃1).

Therefore, there exists a point (p̄1, p̄2) : p∗ < p̄1 < p̃1, 0 < p̄2 < p∗ and the solution is
−→
R

<
J →

←−
S

>
J
−→
R .

Subcase 3 : τ∗l < τ∗r. In this case, we know that g1(p∗) > g2(p∗) and should look for the solution
in {(p̄1, p̄2)|0 < p̄1 < p∗, p̄2 > p∗}. There are two possibilities as follows.

Subcase 3.1 : ul < ur < u←−
R lτ

(0). Since there exists 0 < p̃2 < pl and p∗ < p̃3 < pr such that
ur = u←−

R lτ
(p̃2) and ul = u−→

R rτ
(p̃3), respectively.

Subcase 3.1.1 : g1(pl) ≤ g2(p̃3). Similarly with the above discussions, there exists a point

(p̄1, p̄2) : pl ≤ p̄1 < p∗, p∗ ≤ p̄2 ≤ p̃3 and the solution is
−→
R

<
J → ←−

S
<
J
−→
R .

Subcase 3.1.2 : g1(pl) > g2(p̃3) and g2(pr) ≥ g1(p̃2). Since there exists a point (p̄1, p̄2) : p̃2 <

p̄1 ≤ pl, p̃3 < p̄2 < pr, we get the solution is
−→
R

<
J → ←−

R
<
J
−→
R .

Subcase 3.1.3 : g1(pl) > g2(p̃3) and g2(pr) < g1(p̃2). Since there exists a point (p̄1, p̄2) : 0 <

p̄1 < p̃2, pr < p̄2 < p̃4, where p̃4 satisfies u←−
R lτ

(0) = u−→
S rτ

(p̃4), we obtain that the solution is
−→
R

<
J → ←−

R
<
J
−→
S .

Subcase 3.2 : ul < u←−
R lτ

(0) < ur. Define p̃5 > p∗ and p̃5 < p̃6 < pr such that ul = u−→
R rτ

(p̃5)

and u←−
R lτ

(0) = u−→
R rτ

(p̃6), respectively.

Subcase 3.2.1 : g1(pl) ≤ g2(p̃5). Similarly with the above discussions, there exists (p̄1, p̄2) : pl ≤
p̄1 < p∗, p∗ ≤ p̄2 ≤ p̃5 and the solution is

−→
R

<
J → ←−

S
<
J
−→
R .

Subcase 3.2.2 : g1(pl) > g2(p̃5). In view of g2(p̃6) > g1(0), it follows that there exists

(p̄1, p̄2) : 0 < p̄1 < pl, p̃5 < p̄2 ≤ p̃6 and the solution is
−→
R

<
J → ←−

R
<
J
−→
R .

Similarly, the interaction between
>
J and

←−
R can be investigated and omitted for simplicity.

Theorem 3.5—When a rarefaction wave collides with a contact discontinuity which is of a jump
decrease in density in the propagating direction of the rarefaction wave, the local solution of the
interaction is that the rarefaction wave continues to move forward in its propagating direction or a
new shock wave will appear, meanwhile, a new rarefaction wave or a new shock wave propagating in



ELEMENTARY WAVE INTERACTIONS IN MAGNETOGASDYNAMICS 53

the opposite direction will appear. Furthermore, after the interaction the contact discontinuity may
appear or not.

�
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Fig. 3.8. The interaction of
−→
R and

←−
R .
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Case (iii) :
−→
R
←−
R . In this case, we know ul < um and um < ur. Similar with Case (i) of this

subsection, we know that the curve
−→
R rτ (Qr) lies always above the curve

−→
Rmτ (Qm) and the curve

←−
Rmτ (Qm) lies always above the curve

←−
R lτ (Ql). It yields that

←−
R lτ (Ql) intersects with

−→
R rτ (Qr) at

Q∗τ where a new Riemann problem is formed (Fig. 3.8.). In order to construct the solution of this
new Riemann problem, we discuss as follows.

Subcase 1 : plτ
γ
l = prτ

γ
r .

It holds that g1(p∗) = g2(p∗) and there is no contact discontinuity. Similarly, we get the solution
is
−→
R
←−
R → ←−

R
−→
R .

Subcase 2 : plτ
γ
l < prτ

γ
r . In this case, we know that g1(p∗) > g2(p∗) and should look for the

solution in {(p̄1, p̄2)|0 < p̄1 < p∗, p̄2 > p∗}. There are two possibilities as follows.

Subcase 2.1 : ur ≥ f1(0). Obviously, we may define p̃1 which satisfies u−→
R rτ

(p̃1) = f1(0).
Therefore, there exists a point (p̄1, p̄2) : 0 < p̄1 < p∗, p∗ < p̄2 < p̃1 and the solution is

−→
R
←−
R →

←−
R

<
J
−→
R .

Subcase 2.2 : ur < f1(0). There exists 0 < p̃2 < p∗ such that u←−
R lτ

(p̃2) = ur. We divide into
two subcases.

Subcase 2.2.1 : g1(p̃2) ≤ g2(pr). There exists a point (p̄1, p̄2) : p̃2 < p̄1 < p∗, p∗ < p̄2 < pr

and the solution is
−→
R
←−
R → ←−

R
<
J
−→
R .



54 YUJIN LIU AND WENHUA SUN

Subcase 2.2.2 : g1(p̃2) > g2(pr). There exists a point (p̄1, p̄2) : 0 < p̄1 < p̃2, pr < p̄2 < p̃3 and

the solution is
−→
R
←−
R → ←−

R
<
J
−→
S , where p̃3 satisfies u←−

R lτ
(0) = u−→

S rτ
(p̃3).

Subcase 3 : plτ
γ
l > prτ

γ
r . In this case, we know g1(p∗) < g2(p∗) and should look for the solution

in {(p̄1, p̄2)|p̄1 > p∗, 0 < p̄2 < p∗}. There are two possibilities as follows.

Subcase 3.1 : ul ≤ f2(0).

It is obvious that there exists a point p̃4 ∈ (p∗, pl) such that u←−
R lτ

(p̃4) = u−→
R rτ

(0) and g1(p̃4) >

g2(0). And we get the solution is
−→
R
←−
R → ←−

R
>
J
−→
R .

Subcase 3.2 : ul > f2(0). Since there exists a point p̃5 ∈ (0, p∗) such that ul = u−→
R rτ

(p̃5), we
divide it into two subcases.

Subcase 3.2.1 : g1(pl) ≥ g2(p̃5), similarly wih the above discussions there exists a point (p̄1, p̄2) :

p∗ < p̄1 < pl, p̃5 ≤ p̄2 < p∗ and the solution is
−→
R
←−
R → ←−

R
>
J
−→
R .

Subcase 3.2.2 : g1(pl) < g2(p̃5), since there exists a point (p̄1, p̄2) : pl < p̄1 < p̃6, 0 < p̄2 < p̃5,

where p̃6 satisfies u←−
S lτ

(p̃6) = u−→
R rτ

(0), and we get the solution is
−→
R
←−
R → ←−

S
>
J
−→
R .

Theorem 3.6 — When a forward rarefaction wave collides with a backward rarefaction wave,
the local solution of the interaction is that the forward (backward) rarefaction wave continues to
move forward in its propagating direction or a new forward (backward) shock wave will appear.
Furthermore, the contact discontinuity may appear or not after the interaction.

Case (iv) :
−→
R
←−
S . Similar with the above case, we know that the curve

−→
Rmτ (Qm) lies always

above the curve
−→
R rτ (Qr) and the curve

←−
S mτ (Qm) lies always above the curve

←−
S lτ (Ql). It yields

that
←−
S lτ (Ql) intersects with

−→
R rτ (Qr) at Q∗τ where a new Riemann problem is formed (Fig. 3.9.).

In order to construct the solution of this new Riemann problem, we discuss as follows.

Subcase 1 : τ∗l = τ∗r. We know g1(p∗) = g2(p∗) and there is no contact discontinuity. Thus, the
result is given by

−→
R
←−
S → ←−

S
−→
R .

Subcase 2 : τ∗l > τ∗r. This means that g1(p∗) < g2(p∗). Since there exists (p̄1, p̄2) : p∗ <

p̄1 < p̃1, 0 < p̄2 < p∗ where p̃1 > p∗ satisfies u−→
R rτ

(0) = u←−
S lτ

(p̃1). It follows that the result is
−→
R
←−
S → ←−

S
>
J
−→
R .

Subcase 3 : τ∗l < τ∗r. This means that g1(p∗) > g2(p∗). There are three possibilities as follows.
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Fig. 3.9. The interaction of
−→
R and

←−
S .
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Subcase 3.1 : ul ≥ ur. It is easy to show that there exists p̃2 which satisfies ur = u←−
R lτ

(p̃2).

Subcase 3.1.1 : g1(p̃2) ≤ g2(pr), since there exists (p̄1, p̄2) : p̃2 < p̄1 < p∗, p∗ < p̄2 < pr, the

result is
−→
R
←−
S → ←−

S
<
J
−→
R .

Subcase 3.1.2 : g1(p̃2) > g2(pr) and g1(pl) ≤ g2(p̃3), where p̃3 > pr satisfies ul = u−→
R rτ

(p̃3).

Since there exists (p̄1, p̄2) : pl < p̄1 < p̃2, pr < p̄2 < p̃3, the result is
−→
R
←−
S → ←−

S
<
J
−→
S .

Subcase 3.1.3 : g1(p̃2) > g2(pr) and g1(pl) > g2(p̃3). Since there exists (p̄1, p̄2) : 0 < p̄1 <

pl, p̃3 < p̄2 < p̃4, where p̃4 is determined by u←−
R lτ

(0) = u−→
S rτ

(p̃4). Thus, the result is
−→
R
←−
S →

←−
R

<
J
−→
S .

Subcase 3.2 : ul < ur < u←−
R lτ

(0). There exist 0 < p̃5 < pl and p∗ < p̃6 < pr satisfies
respectively that ul = u−→

R rτ
(p̃5) and ur = u←−

R lτ
(p̃6).

Subcase 3.2.1 : g2(p̃5) ≥ g1(pl), since there exists (p̄1, p̄2) : pl < p̄1 < p∗, p∗ < p̄2 < p̃5, the

result is
−→
R
←−
S → ←−

S
<
J
−→
R .

Subcase 3.2.2 : g2(p̃5) < g1(pl) and g2(pr) ≥ g1(p̃6). Since there exists (p̄1, p̄2) : p̃6 < p̄1 <

pl, p̃5 < p̄2 < pr, the result is
−→
R
←−
S → ←−

R
<
J
−→
R .

Subcase 3.2.3 : g2(p̃5) < g1(pl) and g2(pr) < g1(p̃6). Since there exists (p̄1, p̄2) : 0 < p̄1 <

p̃6, pr < p̄2 < p̃7, where p̃7 is determined by u←−
R lτ

(0) = u−→
S rτ

(p̃7). Thus, the result is
−→
R
←−
S →

←−
R

<
J
−→
S .
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Subcase 3.3 : ul < u←−
R lτ (Ql)

(0) < ur. There exist p̃8 > p∗ and p̃5 < p̃9 < pr satisfies
respectively that ul = u−→

R rτ
(p̃8) and u←−

R lτ
(0) = u−→

R rτ
(p̃9).

Subcase 3.3.1 : g1(pl) ≤ g2(p̃8), there exists a point (p̄1, p̄2) which satisfies pl < p̄1 < p∗, p∗ <

p̄2 < p̃8 and
−→
R
←−
S → ←−

S
<
J
−→
R .

Subcase 3.3.2 : g1(pl) > g2(p̃8). Since there exists a point (p̄1, p̄2) which satisfies 0 < p̄1 <

pl, p̃8 < p̄2 < p̃9, the solution is given by
−→
R
←−
S → ←−

R
<
J
−→
R .

Similarly, the interaction between
−→
S and

←−
R can be investigated and omitted for simplicity.

Theorem 3.7 — When a rarefaction wave collides with a shock wave, the local solution of the
interaction is that the rarefaction wave continues to move forward in its propagating direction or a
new shock wave will appear, meanwhile, the shock wave continues to move forward in its propagating
direction or a new rarefaction wave will appear. Furthermore, the contact discontinuity may appear
or not after the interaction.

So far, we have finished the all possible interactions of the elementary waves and we can see that
wave interactions have a more complicated structure for Magnetogasdynamics system (1.1) than the
conventional gas dynamics. This is due to the projection of the contact discontinuity on the phase
plane (p, u) which is a straight line parallel to the p-axis, however, the projection of the contact
discontinuity for the conventional gas dynamics on the phase plane (p, u) which is just a point. More-
over, when the magnetic field B vanishes, our results are consistent with that of the corresponding
cases of the conventional gas dynamics.

Based on the above analysis, we obtain the following result.

Theorem 3.8— There exists uniquely the solution of the initial value problem (1.1) and (1.5).
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