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We explain the explicit integral form of the heat kernel for the sub-Laplacian on two step nilpotent
Lie groups G based on the work of Beals, Gaveau and Greiner. Using such an integral form
we study the heat trace of the sub-Laplacian on nilmanifolds L\G where L is a lattice. As
an application a common property of the spectral zeta function for the sub-Laplacian on L\G is
observed. In particular, we introduce a special class of nilpotent Lie groups, called pseudoH-type
groups which are generalizations of groups previously considered by Kaplan. As is known such
groups always admit lattices. Here we aim to explicitly calculate the heat trace and the spectrum
of the (sub)-Laplacian on various low dimensional compact nilmanifolds including several pseudo
H-type nilmanifolds L\G, i.e. where G is a pseudo H-type group. In an appendix we discuss a
zeta function which typically appears as the Mellin transform for these heat traces.
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1. INTRODUCTION

During the last century there has been an increasing interest in studying the global theory of ellip-
tic operators, in particular, in relation with manifold theory, theoretical physics and analysis. Even
nowadays the research is far from being complete and branches out to various directions.

The notion of a Riemannian manifold forms the underlying concept for developing elliptic op-
erator theory. In various contexts spectral invariants are studied and from the view point of spectral
analysis they form an interesting subject themselves.

The main topic of the present note forms the study of spectral zeta functions induced by an
intrinsic type of operators acting on a class of nilmanifolds. In general, the underlying geometric
structure is of non-holonomic type (or sub-Riemannian) and instead of the Laplacian which is elliptic
and appears in the framework of Riemannian manifolds we deal with a sub-Laplacian.

The latter one is not elliptic, but is a “sub-elliptic operator”. It satisfies an “a priori estimate”
with a loss of derivatives, a weaker version of the standard “a priori estimate”. In several aspects this
estimate enables us to treat sub-elliptic operator similarly to elliptic operators. For example, a proof of
sub-elliptic estimates implies the hypo-ellipticity of the sub-Laplacian analogous to the elliptic case
and it implies that the resolvent of the sub-Laplacian is compact if the manifold is compact. Recall
that for elliptic operators the existence of an “a priori estimate” is equivalent to the non-vanishing
of the principal symbol at any point of the punctured cotangent bundle T ∗

0 (M) = T ∗(M)\{0}.
However, there is no such characterization of “sub-ellipticity” solely in terms of the principal symbol.
This difference causes an obstruction in developing a cohomology theory (like K-theory for elliptic
operators) in the framework of sub-elliptic operators directly. Moreover, whereas every manifold
can be equipped with a Riemannian metric, there is no unified method to determine whether a given
manifold carries a sub-Riemannian structure.

Many examples of sub-Riemannian manifolds are known. Among them we mention contact man-
ifolds (for example, all odd dimensional spheres), CR-manifolds or Lie groups (even though it is not
clear whether compact symmetric spaces have such a structure in general). In [6] we have classified
the trivializable sub-Riemannian structures on n-dimensional Euclidean spheres S

n ⊂ R
n+1 that are

induced by a Clifford module structure on R
n+1, (cf. [4]). As a result we could prove that (up to

equivalence) only a few cases of bracket generating trivial sub-bundles of TS
n exist that determine

such a structure. Moreover, it is known that there are sub-Riemannian structures induced by bracket
generating distributions of co-dimenison 3 on each 4k + 3-dimensional sphere which in general (and
similar to the contact structure) are not trivializable (cf. [18]). However, there are no bracket generat-
ing sub-bundles on even dimensional spheres.
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The sub-Riemannian manifoldsM we are going to treat here are the so-called nilmanifolds. More
precisely, M is a compact quotient of a simply connected 2-step nilpotent Lie group by a lattice (=
uniform discrete subgroup). Many of the properties we state in Section 2 are also valid for higher step
cases. Based on arguments from Fourier analysis our approach relies on a heat kernel expression of
the sub-Laplacian which is only known explicitly in the 2-step case (see [10, 11] and the references
cited in these papers).

In some cases, sub-Laplacians can be thought as a countable sum of elliptic operators on a lower
dimensional manifold. More precisely, let the sub-Laplacian Δsub act on the total space P of a
principal bundle with structure group being a torus T. Then, by decomposing the function space
C∞(P ) into Fourier series, Δsub can be decomposed into a countable number of elliptic operators
on the base space. All sub-Laplacians discussed here are of this type and we are using this structure
together with an explicit expression of the heat kernel to calculate spectral zeta functions. As it
turns out these spectral zeta functions are related to classical zeta functions such as the Riemann zeta
function, the Hurwitz zeta function or the Epstein zeta function.

In our earlier papers [3, 8] and [7] we determined the spectral zeta function of the (sub)-Laplacian
for low dimensional nilmanifolds. Here we deal with a class of nilmanifolds L\G associated to
pseudo H-type algebras which will be defined in Section 6. We aim to explicitly calculate the heat
trace and the spectrum of the (sub)-Laplacian on various of such type of low dimensional pseudo
H-type nilmanifolds L\G. In a forthcoming paper we plan to discuss a general pseudo H-type
nilmanifold under these aspects and to decide whether there are isospectral but non-diffeomorphic
cases. The structure of the paper is as follows:

In Section 2 we first introduce a geometric structure on manifolds called sub-Riemannian struc-
ture. In particular, all nilpotent Lie groupsG can be equipped with such a structure and we define the
corresponding sub-Laplacian as a ”sum-of-squares operator”. The heat kernel of the sub-Laplacian
on G is described based on the work of Beals et al., (cf. [10, 11]).

We consider nilpotent Lie groups with lattices in Section 3 and calculate the heat kernel of the
sub-Laplacian on the quotient space by a lattice. Such a quotient is called a (compact) nilmanifold.

In Section 4 the principal bundle structure of nilmanifolds is discussed. This structure induces
a decomposition of the sub-Laplacian into a countable number of elliptic operators acting on line
bundles defined on the base space (which always is a torus).

In order to have more concrete examples we provide heat traces and spectral zeta functions in an
explicit form for low dimensional (dim ≤ 6) nilmanifolds in Section 5 following [3, 7, 8].
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In Section 6 we introduce a class of two step nilpotent Lie groups, called “pseudo H-type Lie
groups” by describing their Lie algebras [13, 14, 16]. For this purpose we begin with the general
construction of Clifford algebras and exhibit their table in low dimensions. Then we present explicit
formulas for the heat kernel of the sub-Laplacian of nilmanifolds corresponding to low dimensional
pseudoH-type groups and with respect to a standard class of lattices.

In Section 7 we continue the determination of heat trace formulas for pseudo H-type nilmani-
folds. As a result we can give an example of two nilmanifolds that are isospectral with respect to
the sub-Laplacian (and the Laplacian). It would be an interesting problem to decide whether these
nilmanifolds in fact are diffeomorphic.

Generalizing these examples we mention a family of isospectral pseudo H-type nilmanifolds
(with respect to the sub-Laplacian) in Section 8.

We have added an appendix to the paper where we discuss a general formula for a kind of zeta
function which (in the cases treated here) appears as a typical Mellin transform of the heat trace of
the sub-Laplacian on nilmanifolds.

2. SUB-RIEMANNIAN STRUCTURE ON NILPOTENT LIE GROUPS AND HEAT KERNEL

We introduce a sub-Riemannian structure on nilpotent Lie groups and describe the heat kernel for the
sub-Laplacian following the paper [10] (see [15, 17] for a geometric aspect of this kernel construc-
tion).

2.1 Sub-Riemannian structure on nilpotent Lie groups

Let M be a manifold (smooth without boundary) and H a subbundle in the tangent bundle T (M).
We denote by Γ(H) the space of vector fields taking values inH.

Definition 2.1 — We callM with the subbundle H a sub-Riemannian manifold, if it satisfies the
condition that evaluations of vector fields in a finite sum

Γ(H) + [Γ(H),Γ(H)] +
[
Γ(H), [Γ(H),Γ(H)]

]
+
[
Γ(H),

[
Γ(H), [Γ(H),Γ(H)]

]]
+ · · ·

span the tangent space Tx(M) at any point x ∈ M . In this case we call the sub-bundle H bracket
generating.

In most of the concrete cases we have a natural pointwise inner product inH. A basic theorem on
sub-Riemannian manifolds states the following:
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Theorem 2.2 — (Chow-Rashevskii Theorem, [12, 29]). Every two points on a connected sub-
Riemannian manifold M can be connected by horizontal curves (in general they are only piecewise
smooth).

If we regard a manifold with such a sub-bundle as a configuration space of a physical system,
then this result means that every two states can be transformed into each other.

Nilpotent Lie groups can be equipped with a sub-Riemannian structure in a natural way and such
groups and their quotient spaces by discrete subgroups are our subject in this paper.

In the following we only deal with two step Lie algebras g (and corresponding Lie groups G),
that is

[g, [g, g]] = 0

and we assume that

[g, g] = center of the Lie algebra = z.

We fix bases {Zk}d
k=1 and {Xi}N

i=1 of the center z and its complement, respectively, and we
assume they are “orthonormal”. One obtains the orthogonal decomposition g = z⊥ ⊕⊥ z. Note that
by the above assumption we have installed a left invariant sub-Riemannian metric on G.

Proposition 2.3 ([2, 27]) — The so called “Popp measure” with respect to this sub-Riemannian
metric coincides with the Haar measure (modulo a constant factor).

Throughout the paper the corresponding structure constants of the Lie algebra will be denoted by
ck
i j , i.e.

[Xi, Xj ] =
∑

k

ck
i jZk.

By making use of the Campbell-Hausdorff formula and the diffeomorphism, exp : g
∼−→ G, the

group law “ ∗ ” is expressed as

G × G ∼= g × g 
 (X,Y ) �−→ X ∗ Y = X + Y +
1
2
[X, Y ] ∈ g ∼= G.

In the following, we work through the coordinates

G ∼= R
N × R

d 
 g = (x, z) = (x1 . . . , xN , z1, . . . , zd) ←→
∑

xiXi +
∑

zkZk ∈ g.

We denote by X̃j the left invariant vector field on the group G. Then the vector fields{
X̃j , [X̃i, X̃j ] : i, j = 1, · · ·N

}
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span the tangent space at each point, so that the sub-bundle spanned by {X̃i} is bracket generating and
defines a sub-Riemannian structure on the group G. We write ΔG

sub for the second order differential
operator

ΔG
sub := −1

2

N∑
i=1

X̃2
i ,

which is called a “sub-Laplacian”. It is also defined as a composition of three operators, namely,
the exterior derivative, the projection to the annihilator of the sub-bundle spanned by {Z̃k} in T ∗(G)

(which is a subbundle in T ∗(G)) and the adjoint of the exterior derivative with respect to the Rie-
mannian metric introduced above. So this operator depends on the projection operator and does not
depend on the particularly chosen orthonormal elements {Xj}.

We mention that the sub-Laplacian is also defined through the universal enveloping algebra Ug,
which can be regarded as the algebra of all left invariant differential operators. In fact, by the metric
installed above the space Hom(g, g) ∼= g∗ ⊗ g is identified with g⊗ g. Through this identification the
identity map in Hom(g, g) is mapped to the element

∑
Xi ⊗ Xi +

∑
Zk ⊗ Zk in Ug and it defines

a left invariant differential operator, which is the Laplacian. Similarly the operator corresponding to
−1

2

∑
Xi ⊗ Xi is the sub-Laplacian.

From an analytic point of view a fundamental property of a sub-Riemannian structure (which
also corresponds to its geometric feature described by the Chow-Rashevskii theorem) is given by
Hörmander’s theorem.

Theorem 2.4— ([Hörmander, [19]). The operator ΔG
sub is hypo-elliptic or, more strongly, sub-

elliptic, i.e., it satisfies a sub-elliptic estimate: for any bounded domain D in G (i.e. the closure D

of D is compact), there exists a constant C = CD > 0 and a number 0 < δ < 2 such that for any
u ∈ C∞

0 (D)

||u||s−δ ≤ CD

(||ΔG
sub(u)||s + ||u||0

)
,

where ||u||s is a Sobolev norm of order s.

We fix a Haar measure onG (which coincides with the Euclidean measure) dx1 · · · dxNdz1 · · · dzd

and consider the spaceL2(G). The sub-LaplacianΔG
sub is positive and essentially selfadjoint inL2(G)

when we consider it on the domain C∞
0 (G) (see [5] for an elementary proof of these facts including

the case of higher step Grushin type operators descended from sub-Laplacians to a homogeneous
space). Moreover, λ = 0 is an eigenvalue with eigenspace formed by the constant functions.
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2.2 Heat kernel for the sub-Laplacian

We can consider the heat kernel for the sub-Laplacian and start from the spectral decomposition

ΔG
sub =

∫ ∞

0
λ dEλ.

Here
{

Eλ

}
λ≥0

is the spectral measure of the unique selfadjoint extension of the sub-Laplacian
ΔG
sub in L2(G). The kernel function (distribution)K(t, g, h) of the operators

e−tΔG
sub =

∫ ∞

0
e−tλdEλ,

is called the heat kernel for the sub-Laplacian and it defines an element inC∞(R+×G×G). Since the
operator ΔG

sub is left invariant, K is of the form K(t, g, h) = kG(t, g−1 ∗ h) with a smooth function
kG ∈ C∞(R+ × G).

2.3 BGG formula

In the paper [10] (see also [11]), an integral expression of the kernel function kG (BGG formula) is
given explicitly and will play a basic role in this paper.

Let σ(ΔG
sub) ∈ C∞(T ∗(G)) be the principal symbol of the sub-Laplacian. We can express it

through the coordinates

(x, z; ξ, τ) ∈ T ∗(G) ∼= G × R
N+d = R

N × R
d × R

N × R
d

as

σ
(
ΔG
sub
)
(x, z; ξ, τ) =

1
2

N∑
j=1

(
ξj +

1
2

∑
i, k

ck
i jxiτk

)2
.

Then the space ch(ΔG
sub) = { (x, z; ξ, τ) | σ(ΔG

sub)(x, z; ξ, τ) = 0 } in T ∗(G) ∼= G × R
N+d is

called the “characteristic variety” and can be seen as a sub-bundle in T ∗(G). Since σ(ΔG
sub)(x, z; ξ, τ) =

0 is equivalent to the conditions ξj + 1
2

∑
i, k

ck
i jxiτk = 0 (for j = 1, . . . , N ) one may parametrize the

characteristic variety through the variables (x, z, τ):

ch(ΔG
sub) =

{
(x, z;−1

2

∑
i, k

ck
i 1xiτk, . . . ,−1

2

∑
i, k

ck
i Nxiτk, τ)

}
,

that is

G × R
d −→ T ∗(G), (g, τ) = (x, z, τ) �→

(
x, z,−1

2

∑
i, k

ck
i 1xiτk, . . . ,−1

2

∑
i, k

ck
i Nxiτk, τ

)
.
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Putting ωi j(τ) :=
∑
k

ck
i jτk with τ ∈ R

d we define a matrix function Ω(τ) by

R
d 
 τ �−→ Ω(τ) =

(
ωi j(τ)

)
i,j

∈ R
N×N . (2.1)

The kernel functionK(t, g, h) ∈ C∞(R+ ×G×G) can be interpreted as a (fiber) integral on the
characteristic variety of the sub-Laplacian.

Theorem 2.5— (Beals et al., [10])

K(t, g, h) = kG(t, g−1 ∗ h) =
1

(2πt)N/2+d

∫
Rd

e−
f(τ, g−1∗h)

t · W (τ)dτ,

where the functions f = f(τ, g) ∈ C∞(Rd × G) and W (τ) are given as follows: put g = (x, z) ∈
R

N × R
d, then

f(τ, g) = f(τ, x, z) =
√−1 < τ, z >{d, 0} +

1
2

< Ω(
√−1τ) coth

(
Ω(

√−1τ)
) · x, x >{N, 0}

W (τ) =
{

det
Ω(

√−1τ)
sinhΩ(

√−1τ)

}1/2

,

where < z, z′ >{d, 0}=
d∑

k=1

zkz
′
k is positive definite. Until Section 8 we shortly denote this inner

product by < •, • >. However, in the last part of this paper we need to distinguish the signature of
the quadratic form and therefore write < •, • >{r,s} (see the definition below).

We call the function f = f(τ, x, z) the “complex action function” and the function W (τ) the
“volume function”. The measureW (τ)dτ is referred to as the “volume form”.

Recall that the function f is constructed by the complex Hamilton-Jacobi method, and the volume
function is also called van Vleck determinant. It is the Jacobian of the correspondence between
the space of initial conditions and the space of boundary conditions when we solve the Hamilton
equation which solution is the bicharacteristic flow. The volume function satisfies an equation called
transportation equation.

3. NILMANIFOLDS

Based on the heat kernel expression of the sub-Laplacian explained in the last section we describe the
heat kernel of the descended operator defined on the quotient space L\G (left coset space) by a lattice
L. Such a space is called a nilmanifold.



SPECTRAL ZETA FUNCTION ON PSEUDOH-TYPE NILMANIFOLDS 547

3.1 Uniform discrete subgroup

In the following we assume that there exists a uniform discrete subgroup (lattice) L in G. In this
connection we mentionMalćev’s Theorem:

Theorem 3.1— (Malćev, [24, 28]). A nilpotent Lie group has a lattice L (i.e., L\G is compact),
if and only if, there exists a basis {Xi} in the Lie algebra g such that the structure constants {ck

i j}
defined by

[Xi, Xj ] =
∑

ck
i jXk

are all rational numbers. In this case we call {Xi} a “rational basis”.

Remark 3.2 : Even if {Xi} is a rational basis the range exp({∑niXi | ni ∈ Z}) needs not
to be a lattice in G, but it generates a lattice. Conversely, if L is a lattice in the group G, then
log(L) := exp−1(L) contains such a basis.

3.2 Heat kernel on nilmanifolds

Let L be a lattice in a simply connected two step nilpotent Lie group G ∼= R
N × R

d. Then the
quotient space L\G can be equipped with a sub-Riemannian structure naturally inherited from that
of the group G and its sub-Laplacian, which we denote byΔL\G

sub , is the operator descended from the
sub-Laplacian on G.

Given an element g ∈ G we will denote by [g] ∈ L\G the corresponding class in the quotient
space. Then, the heat kernel

KL\G(t, [g], [h]) ∈ C∞
(

R+ × L\G × L\G
)

for the sub-Laplacian on the nilmanifold L\G is given by

KL\G(t, [g], [h]) = KL\G(t, g, h)

=
∑
γ∈L

K(t, γ ∗ g, h) =
∑
γ∈L

kG(t, g−1 ∗ γ ∗ h).

This is guaranteed by the facts that

• K(t, k ∗ g, k ∗ h) = K(t, g, h) for any k ∈ G and the estimate

• W (τ) = O(‖τ‖−j), j > 0 is arbitrary,

• the bilinear form <
(√−1Ω(τ) coth

(√−1Ω(τ)
)) · x, x >

is (strictly) positive definite and ∃c > 0,
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inf
{

<
(√−1Ω(τ) coth

(√−1Ω(τ)
)) · x, x >

∣∣∣ τ ∈ R
d
}
≥ c‖x‖2

<
(√−1Ω(τ) coth

(√−1Ω(τ)
)) · x, x >= O

( ‖τ‖‖x‖2
)
.

We recall some crucial estimates:

Proposition 3.3 — (Small time asymptotic, [7]) Let g = (x, z) ∈ G and δ > 0.

(i) There are constants C, c > 0 such that:

|kG(t, x, z)| ≤ Ct−
N
2
−de−

c‖x‖2
t .

(ii) Let g = (x, z) with ‖z‖ ≥ δ. Then for any 
 ∈ N we can choose C� > 0 and c > 0 such that

∣∣kG(t, x, z)
∣∣ ≤ C�

(1 + ‖x‖)2�

‖z‖2�
t2�−N

2
−de−

c
t
‖x‖2

.

With these properties we have:

Proposition 3.4 ([7]) —

tr
(
e−tΔ

L\G
sub

)
=
∑
γ∈L

∫
FL

kG
(
t, (x, z)−1 ∗ γ ∗ (x, z)

)
dxdz

= Vol(L\G) · kG(t, (0, 0)) +
∑

γ∈L\{0}

∫
FL

K
(
t, (x, z)−1 ∗ γ ∗ (x, z)

)
dxdz

= (2πt)−N/2−d

∫
Rd

W (τ)dτ + O(t∞),

where FL is a fundamental domain for the lattice L.

Let ζL\G(s) be the spectral zeta function of the sub-Laplacian ΔL\G
sub defined as the Mellin trans-

form of the heat trace:

ζL\G(s) =
1

Γ(s)

∫ ∞

0

{
tr
(
e−tΔ

L\G
sub

)
− 1
}

ts−1dt =
∑

0<λ : eigenvalues

of Δ
L\G
sub

1
λs

. (3.1)

Then as a corollary, we have:

Corollary 3.5 — The spectral zeta function (3.1) admits a meromorphic extension from Re(s) >

sp to the complex plane with only one simple pole at

sp := N/2 + d =
1
2

dim
(
g/[g, g]

)
+ dim [g, g].
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The residue of ζL\G(s) in sp is given by

Res
(
ζL\G(s)

)∣∣s=sp
=

Vol(L\G)
(2π)N/2+dΓ(N/2 + d)

∫
Rd

W (τ)dτ.

We mention some further properties of the spectral zeta function ζL\G(s):

Proposition 3.6 — (i) ζL\G(s) vanishes at the points {−1,−2,−3, . . .}.
(ii) Independently of G and L, it holds ζL\G(0) = −1.

4. NILPOTENT LIE GROUPS WITH LATTICES

Assuming the existence of a lattice in the nilpotent Lie group G, we decompose the sub-Laplacian
into differential operators acting on invariant subspaces according to a torus bundle structure. Then
we provide the heat kernel expression for each component elliptic operator.

4.1 Torus bundle and a family of elliptic operators

Let A ∼= R
d (with an orthonormal basis {Zk}) be the center of the simply connected two step

nilpotent Lie group G and assume the existence of a lattice L in G. Then we have a principal bundle

L\G −→ (L/L ∩ A)\(G/A) ∼= (L ∗ A)\G

with the structure groupA/(A∩L) ∼= T
dimA = T

d. The base space (L/L∩A)\(G/A) ∼= (L∗A)\G
is also a torus of dimension dimG − dimA = N + d − d = N . Since A is abelian, the subgroup
L ∗ A coincides with L + A (the sum in the Lie algebra).

Let n be an element in the “dual lattice” (L ∩ A)∗ of L ∩ A, that is n is a linear function on A

with the property that
n(γ) ∈ Z for all γ ∈ L ∩ A.

We may express n in the form n =
d∑

k=1

nkZk with integer coefficients {nk | nk ∈ Z} such that
∑

nk < Zk, γ >∈ Z for all γ ∈ L ∩ A.

Each f ∈ C∞(L\G) is decomposed via a Fourier series expansion as

f(g) =
∑

n∈(L∩A)∗

∫
Td

f(g ∗ λ)χn(λ)dλ,

where χn : T
d → U(1) with χn(λ) = e2π

√−1n(λ) is a unitary character corresponding to a dual
element n ∈ (L ∩ A)∗. This induces a decomposition of the space of smooth functions on L\G:

C∞(L\G) =
∑

n∈(L∩A)∗
F (n),
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where

F (n) =

{∫
Td

f(g ∗ λ)χn(λ)dλ

∣∣∣∣∣ f ∈ C∞(L\G)

}
.

The subspace F (n) can be seen as a space of smooth sections of a line bundle E(n) on the base
space (L + A)\G = (L/L ∩ A)\(G/A) associated to the character χn. The sub-Laplacian leaves
invariant each subspace F (n) and so can be seen as a differential operatorD(n) acting on the line bun-
dle E(n). Since the sub-bundle spanned by the (left) invariant vector fields {X̃i} defines a connection
(i.e., its linear span is equivariant and transversal to the structure group action byA/(A ∩ L)), each
operator D(n) is elliptic. So the sub-Laplacian

ΔL\G
sub = −1

2

∑
X̃2

i

can be seen as an infinite sum of elliptic operators. Hence

tr
(
e−Δ

L\G
sub

)
=

∑
n∈(L∩A)∗

tr
(
e−tD(n)

)

and the spectral zeta function ofΔL\G
sub is expressed as

ζL\G(s) = sum of the spectral zeta function ofD(n) over n

=
1

Γ(s)

∫ ∞

0

{
tr
(
e−tD(0)

)
− 1
}

ts−1dt +
1

Γ(s)

∑
n
=0

∫ ∞

0
tr
(
e−tD(n)

)
ts−1dt.

4.2 Heat trace of the component operators I

We give an expression of the heat trace of each operator D(n).

By the invarianceK(t, g′ ∗ g, g′ ∗ h) = K(t, g, h) we know that

KL\G(t, [g], [h]) =
∑
γ∈L

K(t, γ ∗ g, h) ∈ C∞(R+ × L\G × L\G).

Let FL∩A be a fundamental domain for the lattice L ∩ A in the Euclidean space A. Then the
integral

kD(n)(t, [g], [h]) =
∫
FL∩A

KL\G(t, [g], [h] ∗ λ
)
χn(λ) dλ

is the kernel function for the heat operator e−tD(n) , that is it satisfies

kD(n)(t, [g] ∗ θ, [h]) = kD(n)(t, [g ∗ θ], [h]) = χn(θ)kD(n)(t, [g], [h]),

kD(n)(t, [g], [h] ∗ θ) = kD(n)(t, [g], [h ∗ θ]) = χn(θ)kD(n)(t, [g], [h]),

where θ ∈ A.
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LetM = {μi} be a set of complete representatives of the coset space L/(L ∩ A), then the trace
of the heat operator e−tD(n)

is given as follows:

Proposition 4.1 —

Vol
(
A/(L ∩ A)

) · tr(e−tD(n)
)

=
∫
FL

⎛
⎝∑

γ∈L

∫
FL∩A

K(t, g, γ ∗ g ∗ λ)χn(λ)dλ

⎞
⎠ dg

=
∫
FL

⎛
⎝∑

μi∈M

∑
ν∈L∩A

∫
FL∩A

kG(t, g−1 ∗ μi ∗ g ∗ ν ∗ λ)χn(λ)dλ

⎞
⎠ dg

=
∫
FL

⎛
⎝∑

μi∈M

∫
Rd

kG(t, g−1 ∗ μi ∗ g ∗ λ)χn(λ)dλ

⎞
⎠ dg

=
∑

μi∈M

∫
FL

∫
Rd

kG(t, g−1 ∗ μi ∗ g ∗ λ)χn(λ)dλ dg.

4.3 Heat trace of the component operators II

Based on the integral formula for the heat kernel stated in Theorem 2.5, we give a concrete expression
of the formula in Proposition 4.1 for several concrete nilmanifolds. For this purpose we choose the
structure constants ck

i j to be rational and for the sake of simplicity we assume that they are of the
form

ck
i j =

2qk
i j

p0

with a common positive integer p0 ≥ 1 and integers qk
i j . Then we fix the lattice

L =
{ ∑

1≤i≤N

miXi +
∑

1≤k≤d


k

p0
Zk

∣∣∣mi, 
k ∈ Z

}
,

and we choose the set

M =
{

μ =
∑

1≤i≤N

miXi | mi ∈ Z
}

of complete representatives of the quotient group (L ∩ A)\L = L/(L ∩ A). Then, for each fixed

n = p0

d∑
k=1

nkZk ∈ (L ∩ A)∗ (nk ∈ Z) we have

Vol
(
A/(L ∩ A)

) · tr(e−tD(n)
)

=

=
1

(2πt)N/2+d

∫
FL

∑
μ∈M

∫
A

∫
Rd

e−
√−1

<[μ,x]+λ,τ>
t ·e−<Ω(

√−1τ) coth Ω(
√−1τ)·μ, μ>

2t W (τ)dτχn(λ) dλ dx dz,
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which we express in the form

1
(2πt)N/2+d

∫
FL

∑
μ∈M

∫
A

∫
Rd

e−
√−1

<[μ,x]+λ,τ>
t · ϕt(τ, μ)dτ χn(λ) dλ dx dz = (∗).

Here we write ϕ̂t(τ, μ) for the Fourier transform of ϕt with respect to the τ -variable. Then

(∗) =
1

tN/2+d · (2π)(N+d)/2

∫
FL

∑
μ∈M

∫
A

ϕ̂t

(
[μ, x] + λ

t
, μ

)
· e−2π

√−1<n,λ> dλ dx dz

=
1

tN/2+d · (2π)(N+d)/2

∫
FL

∑
μ∈M

∫
A

ϕ̂t (u, μ) · e−2π
√−1<n, tu+[x, μ]>td du dx dz

=
1

(2πt)N/2
· p0

d ·
∑
μ∈M

ϕt(−2πtn, μ) ·
∫
[0, 1] × · · · × [0, 1]︸ ︷︷ ︸

N

e−2π
√−1<n, [x, μ]> dx

=
1

(2πt)N/2
· p0

d ·
∑
μ∈M

ϕt(−2πtn, μ) ·
∫
[0, 1] × · · · × [0, 1]︸ ︷︷ ︸

N

e−2π
√−1<x, Ω(n)(μ)> dx.

In the last line we have used the identification n ←→ (n1, · · · , nd) ∈ Z
d ⊂ R

d to define the
matrix Ω(n) as in (2.1). With a basis a1(n), . . . , ab(n)(n) in L the solution space M(n) = {μ ∈
M | Ω(n)(μ) = 0 } can be written as

M(n) =
{

μ =
b(n)∑
i=1

mi ai(n),
∣∣∣mi ∈ Z

}
,

where b(n) ≤ d and b(n) = d if and only if n = 0. Hence

Theorem 4.2— The heat trace of the operator D(n) is given by:

tr
(
e−tD(n)

)
=

1
(2πt)N/2

∑
μ∈M(n)

e−
<Ω(2πt

√−1n) coth Ω(2π
√−1tn)μ, μ>

2t

√
det

Ω(2π
√−1tn)

sinh Ω(2π
√−1tn)

=
1

(2πt)N/2

∑
μ∈M(n)

e−
<μ,μ>

2t

√
det

Ω(2π
√−1tn)

sinh Ω(2π
√−1tn)

,

where, by Ω(n)(μ) = 0

< Ω(2πt
√−1n) cothΩ(2π

√−1tn)(μ), μ >=< μ, μ >=
∑

mimj < ai(n), aj(n) > .



SPECTRAL ZETA FUNCTION ON PSEUDOH-TYPE NILMANIFOLDS 553

5. HEAT TRACE EXPRESSION: CONCRETE CASES

To express the volume function W (τ) in Theorem 2.5 more explicitly we restrict ourselves to more
specific classes of nilpotent Lie groups and lattices.

In this section we treat typical examples which were previously studied in [3, 7, 8]. In order to
cover all low dimensional cases (dim ≤ 6) we list them here again.

5.1 Three dimensional Heisenberg groupH3

Recall that the three dimensional Heisenberg algebra is determined by the non-trivial bracket relation
[X, Y ] = 2Z. We denote the elements of the corresponding Lie groupH3

∼= R
3 by g = g(x, y, z) =

xX + yY + zZ. The multiplication ∗ inH3 is given by

g(x, y, z) ∗ g(x′, y′, z′) = (x + x′)X + (y + y′)Y + (z + z′ + xy′ − yx′)Z.

We fix the lattice L = { A(k, 
, m) = kX + 
Y + mZ | k, 
,m ∈ Z } in H3. Let X̃ and Ỹ

denote the left invariant vector fields:

X̃ =
∂

∂x
− y

∂

∂z
, and Ỹ =

∂

∂y
+ x

∂

∂z
.

According to the calculation in Section 7 of [3] the heat trace for the sub-Laplacian

ΔL\H3

sub = −1
2
(
X̃2 + Ỹ 2

)
on the Heisenberg manifold L\H3 is given by

tr
(
e−tΔ

L\H3
sub

)
= 4

∞∑
k=1

∞∑
j=0

k · e−2πtk(2j+1) +
∑

(m,n)∈Z2

e−2π2t(m2+n2). (5.1)

Proposition 5.1 — The spectral zeta function ζL\H3
(s) of the sub-Laplacian on the three dimen-

sional Heisenberg manifold L\H3 has the form:

ζL\H3
(s) =

4
(2π)s

∞∑
k=1

∞∑
j=0

1
ks−1

1
(2j + 1)s

+
1

(2π2)s

∑
n,m∈Z

m2+n2 
=0

1
(m2 + n2)s

=
4

(2π)s
ζ( s − 1 )

(
1 − 1

2s

)
ζ( s ) +

1
(2π2)s

Ep(2)( s ),

where the last term denotes the spectral zeta function of the two dimensional torus
T

2 := R
2/{(m,n) | m,n ∈ Z } which is called Epstein zeta function (of two variables).
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PROOF : Proposition 7.1 in [3]. �

As a consequence of Corollary 3.5 the function ζL\H3
(s) has only one simple pole at s = 2.

Hence the residue at s = 1 of the first term of ζL\H3
(s) given by

4
(2π)s

ζ( s − 1 )
(

1 − 1
2s

)
ζ( s )

and the residue of the Epstein zeta function, the second term of ζL\H3
(s) cancel. That is, we recover

the following well known fact:

Corollary 5.2 — The residue A−1 of the Epstein zeta function

Ep(2)( s ) =
A−1

s − 1
+ A0 + · · · ,

at s = 1 is equal to π.

PROOF : This is calculated by using the values ζ(0) = −1/2 and the residue of the Riemann zeta
function ζ(s) =

1
s − 1

+ γ + · · ·. �

Via the functional equations of the Riemann zeta function and the Epstein zeta function

π−s/2Γ(s/2)ζ(s) = π−(1−s)/2Γ((1 − s)/2)ζ(1 − s),

π−sΓ(s)Ep(2)(s) = πs−1Γ(1 − s)Ep(2)(1 − s)

we can express the zeta function ζL\H3
(s) in the form

ζL\H3
(s) =

4πs−2

2s

Γ((2 − s)/2)Γ((1 − s)/2)
Γ(s/2)Γ((s − 1)/2)

ζ(1 − s)ζ(2 − s)(1 − 2−s)+

+
1

2sπ

Γ(1 − s)
Γ(s)

Ep(2)(1 − s). (5.2)

Using the well-known relations Γ(s)Γ(1 − s) =
π

sin πs
= −sΓ(s)Γ(−s), and the multiplication

formula
√

2π Γ(s) = 2s−1/2Γ(s/2)Γ(s/2 + 1/2), the function (5.2) can be rewritten as

ζL\H3
(s) =

Γ(1 − s)2 sinπs

π

{
πs−22s(s − 1)ζ(2 − s)ζ(1 − s)(1 − 2−s) +

1
2sπ

Ep(2)(1 − s)
}

.

Hence we recover the result of Proposition 3.6 in case of the Heisenberg manifold L\H3:

Corollary 5.3 — At negative integers s = −n, the zeta function ζL\H3
(s) takes the value zero.
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5.2 Six-dimensional free nilmanifold

Let F(3+3) be the free nilpotent Lie group of step 2 generated by 3 elements X1, X2, X3. More
precisely, F(3+3)

∼= R
6 is a six dimensional Lie group with center spanned by Z1, Z2, Z3 and one has

the bracket relations

[X1, X2] = 2Z1, [X1, X3] = 2Z2, and [X2, X3] = 2Z3.

Further details on the discussion below can be found in Section 6 of [7] or Sections 13 and 14 of
[8]. We consider a sub-Riemannian structureH on F(3+3) generated by the three left invariant vector
fields {X̃i}3

i=1. The sub-LaplacianΔ
F(3+3)

sub is given by:

Δ
F(3+3)

sub = −1
2

3∑
i=1

X̃ 2
i .

According to the general formula in Theorem 2.5, the heat kernel

K
F(3+3)

sub
(
t, (x, z), (x̃, z̃)

) ∈ C∞(
R+ × F(3+3) × F(3+3)

)
ofΔF(3+3)

sub has the integral form

K
F(3+3)

sub
(
t, (x, z), (x̃, z̃)

)
=

1
(2πt)9/2

∫
R3

exp

{
−A
(
(x̃, z̃)−1 ∗ (x, z), τ

)
t

}
W (τ)dτ,

where (x, z) =
∑

xiXi +
∑

zkZk ∈ F(3+3). Here the function A = A(x, z, τ) can be expressed by
the formula:

A(x, z, τ) =
√−1

3∑
i=1

τizi +
1
2

< Ω(
√−1τ) coth Ω(

√−1τ) · x, x > .

Recall that Ω(τ) denotes a general 3 × 3 anti-symmetric matrix:

Ω(τ) =

⎛
⎜⎜⎝

0 τ1 τ2

−τ1 0 τ3

−τ2 −τ3 0

⎞
⎟⎟⎠ .

So, the volume functionW (τ) is given by

W (τ) =

√
det

√−1Ω(τ)
sinh

√−1Ω(τ)
=

‖τ‖
sinh ‖τ‖ .

The function A = A(x, z, τ) can be written more explicitly in the form

< Ω(
√−1τ) coth Ω(

√−1τ) · x, x >=
〈(
Id+

‖τ‖ coth ‖τ‖ − 1
‖τ‖2

Ω2(τ)
) · x, x

〉
.
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Let L =
{

(m1,m2, m3, k1, k2, k3) | mi, ki ∈ Z
}
be a typical lattice in F(3+3). Then the heat

kernel of the sub-LaplacianΔ
L\F(3+3)

sub on the nilmanifold L\F(3+3) has the form:∑
γ∈L

K
F(3+3)

sub
(
t, γ ∗ (x, z), (x̃, z̃)

)
and its trace is obtained as the integral∑

γ∈L

∫
FL

K
F(3+3)

sub
(
t, γ ∗ (x, z), (x, z)

)
dxdz,

where FL = [0, 1] × . . . × [0, 1] = [0, 1]6 is a fundamental domain of the lattice L.

The lattice L ∩ [{Zk}] is selfdual and for n =
∑

nkZk, with nk ∈ Z the heat kernel of the
operator D(n) is expressed in an integral form

kernel function of e−tD(n)
=
∫

[0,1]3
K

L\F (3+3)

sub (t, g, g̃ ∗ λ)χ−1
(n)(λ) dλ1dλ2dλ3,

where g = (x, z), g̃ = (x̃, z̃) ∈ F(3+3). Its trace is given by

tr
(
e−tD(n)

)
=

1
(2πt)3/2

∑
k∈Z3

∫
[0,1]3

e
− 1

2t

〈
Id+ 2πt|n| coth 2πt|n|−1

(2πt|n|)2 Ω(2πt
√−1n)2 ·k,k

〉
×

× 2πt|n|
sinh
(
2πt|n|) exp

{
4π

√−1 〈x, Ω(n) · k〉} dx,

and equals to

tr
(
e−tD(n)

)
=

1
(2πt)3/2

∑
k∈Z3

Ω(n)·k=0

e−
k2
1+k2

2+k2
3

2t
|n|

sinh
(
2πt|n|) ,

according to the choice of n = (n1, n2, n3) ∈ Z
3.

The spectral zeta function ζD(n)(s) of the elliptic operator D(n) acting on the line bundle E(n) is
meromorphic with only simple poles, the largest one is located at s = 3/2. The spectral zeta function
of the sub-LaplacianΔ

L\F(3+3)

sub is given by

ζ
L\F(3+3)

sub (s) = ζD(0,0,0)(s) +
∑

n∈Z3\{0}
ζD(n)(s).

Let (|n1|, |n2|) and (|n1|, |n2|, |n3|) denote the greatest common divisor of its entries where n =

(n1, n2, n3) ∈ Z
3.

In order to explicitly express the operator traces above we distinguish the cases n = (0, 0, 0) = 0

and n �= 0 with the convention that (|n1|, |n2|, 0) = (|n1|, |n2|), if n3 = 0 and (|n1|, 0, 0) = |n1| if
n2 = n3 = 0, and so on.
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(1) Let n = 0, then

tr
(
e−tD(0)

)
=

1
(2πt)3/2

∑
k∈Z3

e−
k2
1+k2

2+k2
3

2t =
∑
k∈Z3

e−2π2t(k2
1+k2

2+k2
3).

(2) Let n �= 0, then

tr
(
e−tD(n)

)
=
∑
�∈Z

e
−2π2t

(|n1|,|n2|,|n3|)2
n2
1+n2

2+n3
3

�2 (|n1|, |n2|, |n3|)
sinh
(
2πt
√

n2
1 + n2

2 + n2
3

) .

Theorem 5.4— The heat kernel trace ofΔL\F(3+3)

sub on L\F(3+3) is given by:

∑
γ∈L

∫
FL

K
F(3+3)

sub
(
t, γ ∗ (x, z), (x, z)

)
dxdz

=
∑

�1,�2,�3∈Z
e−2π2 t

(
�21+�22+�23

)
+ 3 ·

∑
�∈Z

∞∑
k=1

e−2π2�2t 2k

sinh
(
2πtk

)
+ 3 ·

∑
m1,m2∈Z, m1·m2 �=0

(|m1|,|m2|)=1

∞∑
k=1

∑
�∈Z

e
−2π2t �2

m2
1+m2

2
k

sinh
(
2πt k

√
m2

1 + m2
2

)

+
∑

m1,m2,m3∈Z, m1·m2·m3 �=0

(|m1|,|m2|,|m3|)=1

∞∑
k=1

∑
�∈Z

e
−2π2 t �2

m2
1+m2

2+m2
3

k

sinh
(
2πtk

√
m2

1 + m2
2 + m2

3

) .

PROOF : See Theorem 13.1 in [8]. �

5.3 A 5-dimensional nilmanifold

In dimension 5, there are only two nilpotent Lie groups of step 2 that do not decompose into lower
dimensional groups. Let G5 be the quotient group F(3+3)/{zZ3}. Alternatively, G5 is defined as the
Lie group with Lie algebra generated by 5 elementsX1, X2, X3 and Z1, Z2 and bracket relations

[X1, X2] = 2Z1, [X1, X3] = 2Z2, [X2, X3] = 0.

The second group among the indecomposable 5 dimensional nilpotent Lie groups of step two is
the five dimensional Heisenberg group.

As in the case of F(3+3), we consider a sub-Laplacian

ΔG5
sub = −1

2

3∑
i=1

X̃i
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on G5 and fix a typical lattice L = {k1X1 + k2X2 + k3X3 + 
1Z1 + 
2Z2 | ki, 
j ∈ Z}. The heat
trace tr

(
e−tΔ

L\G5
sub
)
on the nilmanifold L\G5 is calculated in the next proposition.

Proposition 5.5 —

tr
(
e−tΔ

L\G5
sub

)
=

∑
�1,�2,�3∈Z

e−2π2t(�21+�22+�23) + 2
∑
�∈Z

∞∑
k=1

e−2π2t�2 · 2k

sinh
(
2πkt

)
+

∑
�1,�2∈Z

�1·�2 
=0,(|�1|,|�2|)=1

∞∑
k=1

∑
�∈Z

e
−2π2 t �2

�21+�22 · k

sinh
(
2πt k

√

2
1 + 
2

2

) . (5.3)

PROOF : The precise derivation of this identity is given in [8], Theorem 12.1. �

The right hand side can be also expressed in the form:

Proposition 5.6 —

tr
(
e−tΔ

L\G5
sub

)
=

∑
�1,�2,�3∈Z

e−2π2 t(�21+�22+�23) +
∑
�∈Z

∞∑
k=1

∞∑
j=0

8ke−t(2π2�2+2π k (2j+1))

+ 2
∑

m1,m2∈Z
m1·m2 
=0

∑
�∈Z

∞∑
j=0

(|m1|, |m2|) · e
−t

(
2π2�2·(|m1|,|m2|)2

m2
1+m2

2
+2π

√
m2

1+m2
2(2j+1)

)
.

PROOF : See Corollary 12.2 in [8]. �

As an immediate consequence, the spectral zeta function ζL\G5
(s) is given as follows:

Proposition 5.7 —

ζL\G5
(s) =

1
(2π2)s

∑
�i∈Z, |�1|+|�2|+|�3|
=0

1(

1

2 + 
2
2 + 
3

2
)s

+
∑
�∈Z

∞∑
k=1

∞∑
j=0

8k

(2π2
2 + 2πk(2j + 1))s

+
∑

m1·m2 
=0, mi∈N

∑
�∈Z

∞∑
j=0

8(m1,m2)(
2π2�2·(m1,m2)2

m2
1+m2

2
+ 2π

√
m2

1 + m2
2 (2j + 1)

)s .

From this expression we cannot observe directly that the spectral zeta function ζL\G5
(s) takes the

value zero at each negative integer.
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6. SPECTRAL ZETA FUNCTION ON NILMANIFOLDS OF PSEUDO H -TYPE GROUPS

According to the classification of low dimensional nilpotent Lie algebras g (as for the cases dim g ≤ 7

see [25, 26]) and apart from F(3+3), there are two more such algebras of dimension six. Both are re-
alized in a class of “pseudoH-type algebras” constructed from the minimal dimensional “admissible
module” of the Clifford algebras C
2,0, C
1,1 and C
0,2. We denote them by N2,0, N1,1 and N0,2,
respectively. By G2,0, G1,1 and G0,2 we mean the corresponding connected and simply connected
nilpotent Lie groups. The algebrasN2,0 andN0,2 are isomorphic andN1,1 is not isomorphic toN2,0.
Hence we deal with N2,0 and N1,1. Both algebras contain a lattice which will be described below.

We start this section by introducing a class of 2-step nilpotent Lie algebras called pseudo H-type
algebras (cf. [13, 16]).

6.1 PseudoH-type algebras

Let R
r,s ∼= R

r+s be the (r + s)-dimensional Euclidean space with the non-degenerate symmetric
bi-linear form

< x, y >{r, s}=:
r∑

k=1

xkyk −
s∑

j=1

xr+jyr+j , x = (x1, . . . , xr+s), y = (y1, . . . , yr+s) ∈ R
r,s,

with signature (r, s). By C
r,s we denote the Clifford algebra generated by R
r,s (as for the definition

of the Clifford algebra see [1, 23]). Table 1 shows some algebras of low dimension.

In this table, for example,H(2) denotes the 2×2matrix algebra over the quaternion numbers and
so on. By “Bott periodicity” the higher dimensional cases are obtained by taking tensor products with
the matrix algebra C
8,0

∼= R(16) ∼= C
0,8, i.e. one has C
r,s ⊗C
8,0
∼= C
r+8, s or C
r,s ⊗C
0,8

∼=
C
r,s+8.

Table 1: Table of Clifford algebras C
r,s

8 R(16) C(16) H(16) H(16)⊕H(16) H(32) C(64) R(128) R(128)⊕R(128) R(256)
7 C(8) H(8) H(8)⊕H(8) H(16) C(32) R(64) R(64)⊕R(64) R(128) C(128)
6 H(4) H(4)⊕ H(4) H(8) C(16) R(32) R(32)⊕R(32) R(64) C(64) H(64)
5 H(2)⊕H(2) H(4) C(8) R(16) R(16)⊕R(16) R(32) C(32) H(32) H(32)⊕H(32)
4 H(2) C(4) R(8) R(8)⊕ R(8) R(16) C(16) H(16) H(16)⊕H(16) H(32)
3 C(2) R(4) R(4)⊕R(4) R(8) C(8) H(8) H(8)⊕H(8) H(16) C(32)
2 R(2) R(2)⊕ R(2) R(4) C(4) H(4) H(4)⊕H(4) H(8) C(16) R(32)
1 R⊕R R(2) C(2) H(2) H(2)⊕H(2) H(4) C(8) R(16) R(16)⊕R(16)
s=0 R C H H⊕H H(2) C(4) R(8) R(8)⊕R(8) R(16)

s/r r=0 1 2 3 4 5 6 7 8
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Let V be a Clifford module, i.e. V is a real vector space with a module action denoted by
J : C
r,s ×V → V . Moreover, we write Jz : V → V for each z ∈ R

r,s. Then V is called admissible
if it is equipped with a non-degenerate symmetric bi-linear form < •, • >V having the properties

< Jz(X), Jz(Y ) >V =< z, z >{r, s} · < X, Y >V , (6.1)

< Jz(X), Y >V + < X, Jz(Y ) >V = 0. (6.2)

In fact, the conditions (6.1) and (6.2) are equivalent to each other under the condition that Jz
2

= − < z, z >{r,s} ·Id. Irreducible modules need not to be admissible. If they are not admissible,
then their double is admissible (a proof of this fact is found in [13]). We call such an admissible
module minimal.

In this situation the non-degenerate symmetric bi-linear form must have positive definite and neg-
ative definite subspaces of the same dimension, if s > 0. Any admissible module can be decomposed
into an orthogonal sum of minimal dimensional admissible modules.

Definition 6.1 — Let V be an admissible Clifford module of C
r,s with the non-degenerate sym-
metric bi-linear form < •, • >V satisfying the conditions (6.1) and (6.2). By defining an antisym-
metric bi-linear map

[•, •] : V 
 X, Y �−→ [X, Y ] ∈ R
r+s

through the relation

< Jz(X), Y >V =< z, [X, Y ] >{r, s}, z ∈ R
r+s, X, Y ∈ V,

the direct sum V ⊕⊥ R
r,s has a Lie algebra structure of step two with the indefinite scalar product

< •, • >V ⊕⊥ < •, • >{r, s} .

If we start this construction from an admissible module V then we call the resulting nilpotent Lie
algebra a pseudoH-type algebra. In the following it will be denoted byNr,s and we writeGr,s for the
corresponding Lie group. Note that Nr,s and Gr,s depend on the chosen module V , which in general
is not unique. However, to keep the notation short we will not indicate this dependence.

Remark 6.2 : As a typical example we mention that the (2k + 1)-dimensional Heisenberg algebra
is of the form R

2k,0 ⊕⊥ R
1,0.

The bi-linear map V × V 
 (X, Y ) �→[X, Y ] ∈ R
r,s is always surjective by the admissibility

condition, so that the center z of the algebra Nr,s coincides with R
r,s = [Nr,s,Nr,s] = [V, V ].
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Remark 6.3 : For the first time this type of algebra was defined in [21] (also see [22]) where the bi-
linear form of the underlying Clifford algebra is positive definite. Therein it was called “generalized
Heisenberg algebra (and group)”. We will call such an algebra also a “classical H-type algebra”. In
these cases, irreducible C
r,0-modules are always admissible with a positive definite bi-linear form.

Remark 6.4 : Even if there are two non-equivalent irreducible modules like in the cases of C
3,0,

C
7,0, C
0,1, C
0,5 (and the tensor product algebras of these with
k⊗ C
1,1 for any k and also with

C
8,0 or C
0,8), the Lie algebra defined above with minimal admissible module is unique up to
isomorphisms, see [16].

In [16] it was proved that the algebrasNr,s = V ⊕⊥ R
r,s always admit lattices, or more strongly:

Theorem 6.5 — For each orthonormal basis {Zk} in the center z ∼= R
r,s, there exists an or-

thonormal basis {Xi} in V with respect to which not only the structure constants are ±1 or 0, but
also for each pair (Xi, Xj) of the basis the bracket [Xi, Xj ] is zero or, if not, there exists a unique
element Zk, k = k(i, j) such that

[Xi, Xj ] = Zk(i, j), or [Xi, Xj ] = −Zk(i, j).

PROOF : See Theorem 1.2 and Theorem 1.3 of [16]. �

So the vectors {Xi, Zk} form a basis in the Lie algebra Nr,s and the range exp({Xi, Zk})
(= {Xi, Zk}, since our exponential map is the identity map) generates a lattice

L =
{∑

miXi +
1
2

∑
nkZk

∣∣∣mi, nk ∈ Z

}

of the group Gr,s. We call such a basis an integral basis and the corresponding lattice an integral
lattice. This is a generalization of a result on classicalH-type algebras proved in [14].

Recall that the algebraNr,s is equipped with a non-degenerate symmetric bi-linear form which is
not positive definite in the case s > 0. We can as well install an inner product on Nr,s by assuming
that the integral basis is orthonormal. Then we have two identifications

Hom(Nr,s, Nr,s) ∼= Nr,s
∗ ⊗Nr,s

∼= Nr,s ⊗Nr,s ⊂ UNr,s

into the universal enveloping algebra UNr,s . Hence we have two operators corresponding to the iden-
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tity map Id ∈ Hom(Nr,s,Nr,s), namely

N∑
i=1

X̃2
i +

r+s∑
k=1

Z̃2
k = −2Δsub +

r+s∑
k=1

Z̃2
k , and

N/2∑
i=1

X̃2
i −

N/2∑
j=1

X̃ 2
N/2+j +

r∑
k=1

Z̃2
k −

s∑
k=1

Z̃ 2
r+k.

The second operator is called an ultra-hyperbolic operator.

In the sequel we determine the spectral zeta function for the sub-Laplacian on some low dimen-
sional nilmanifolds (dimNr,s ≤ 12) with underlying Lie group of the above type and by fixing an
integral lattice. The study of the ultra hyperbolic operators will be postponed to a forthcoming paper
(see [20, 30] for the analysis of special cases of such operators).

6.2 Algebra by C
2,0-module

Let Z1 and Z2 be the orthonormal generators of C
2,0
∼= H (= the quaternion number field), i.e.

Zi ∈ R
2,0 with

Zi
2 = −1, Z1Z2 + Z2Z1 = 0.

Take an element v ∈ R
4,0 such that < v, v >{4,0}= 1. Then the vectors

X1 = v, X2 = JZ1JZ2(v), X3 = JZ1(v), X4 = JZ2(v)

form a basis of R
4,0. We have the following non-trivial commutation relations (all other brackets

vanish):
[X1, X3] = Z1, [X1, X4] = Z2, [X2, X4] = −Z1, [X2, X3] = Z2.

The Lie algebra N2,0 is given as the orthogonal sum R
4,0 ⊕⊥ R

2,0 with the integral basis
{X1, X2, X3, X4, Z1, Z2}. Here {Z1, Z2} forms a basis of the center z = [N2,0,N2,0] = R

2,0.
We take a lattice of the form

L =
{∑

miXi +
1
2

∑
kj Zj

∣∣∣mi, kj ∈ Z

}
,

which we call a standard integral lattice.

LetA ∼= R
2,0 denote the center of the group G2,0. The lattice dual to L ∩ A is{

n = 2
∑

nkZk | nk ∈ Z

} ∼= (L ∩ A)∗,

and a setM of complete representatives of the quotient group L/(L ∩ A) can be chosen as

M =
{ ∑

miXi | mi ∈ Z

}
.
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The matrix Ω2,0(τ) = Ω(τ), τ = (τ1, τ2) which appears in the integral expression of the heat
kernel (cf. Theorem 2.5) is given by

Ω2,0(τ) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 τ1 τ2

0 0 τ2 −τ1

−τ1 −τ2 0 0

−τ2 τ1 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Let n be an element in the dual lattice (L∩A)∗. Then for n �= 0 the matrix Ω(n) is non-singular.
Hence in Theorem 4.2, it is enough to determine the quantity

W (2π
√−1t n) =

√
det

Ω(2π
√−1 tn)

sinh Ω(2π
√−1 tn)

for each n = 2n1Z1 + 2n2Z2 �= 0. A direct calculation shows that

W (2π
√−1t n) =

(4πt)2 · (n1
2 + n2

2)
sinh2(4πt

√
n1

2 + n2
2)

.

In conclusion, the heat trace of D(n) for n �= 0 is given by:

Proposition 6.6 —

tr
(
e−tD(n)

)
= 4· n1

2 + n2
2

sinh2(4πt
√

n1
2 + n2

2)
.

From the last proposition we conclude that the spectral zeta function ζ
(n)
{2, 0}(s) of D(n) for n �= 0

can be expressed in the form:

ζ
(n)
{2, 0}(s) = 4·n1

2 + n2
2

Γ(s)

∫ ∞

0

1
sinh2

(
4πt

√
n1

2 + n2
2
) ts−1dt

=
1

23s−4 · πs · (n1
2 + n2

2)(s−2)/2
· ζ(s − 1),

where ζ(s) denotes the Riemann zeta function.

6.3 Algebra by C
r,0-module

Extending the result of the previous subsection we now treat the case s = 0 in general. Let J :

C
r,0 × V −→ V be an admissible module for the Clifford algebra generated by the vector space
R

r,0 with positive definite inner product. Then the module space V can be equipped with a second
positive definite inner product < •, • >V (cf. [21]). Hence in this case, by definition of the Lie
bracket through the relation

< Jz(X), Y >V =< z, [X, Y ] >{r, 0},
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we know that the matrix Ω(τ) coincides with the matrix representation of the operation Jτ for
τ =
∑

τkZk and we have

Ω(τ)2 = −
r∑

k=1

τk
2·Id. (6.3)

Hence the action function f(τ, x, z) and the volume element W (
√−1τ) in the formula of the

heat kernel in Theorem 2.5 are given as

f(τ, x, z) =
√−1 < τ, z >{r,0} +

< Ω(
√−1τ) cothΩ(

√−1τ) · x, x >V

2

=
√−1 < τ, z >{r,0} +

‖τ‖ coth ‖τ‖· < x, x >V

2
, (6.4)

W (
√−1τ) =

√
det

Ω(
√−1τ)

sinh Ω(
√−1τ)

=
{ ‖τ‖

sinh ‖τ‖
}N/2

, (6.5)

where N always is an even number. Now the heat kernel can be expressed in a more explicit form
compared to the one in Theorem 2.5:

Proposition 6.7 — The heat kernel of the sub-Laplacian on Gr,0 is given by:

K(t, g, h) = K(t, x, z, x′, z′) (6.6)

=
1

(4π t)N/2+r

∫
Rr

e
−
{√−1<τ,z− 1

2 [x,x′]>{r, 0}
t

+
‖τ‖ coth ‖τ‖·‖x−x′‖2

2t

}{ ‖τ‖
sinh ‖τ‖

}N/2

dτ.

PROOF : Formula (6.6) is obtained from Theorem 2.5 together with the identities (6.4), (6.5). �

We choose the integral basis {Xi} for the given orthonormal basis {Zk} following the construc-
tion given in [16] and fix the lattice as above. From the previous expression of the heat kernel for the
sub-Laplacian on the groups Gr,0 we obtain the heat trace of each component operator D(n):

Proposition 6.8 — For n �= 0 in the dual lattice,

tr
(
e−tD(n)

)
= 2

N
2 · (n1

2 + · · · + nr
2)N/4

sinhN/2(4πt
√

n1
2 + · · · + nr

2)
.

Especially, for r = 3, 4, 5, 6, 7, and 8 we know that N = 4, 8, 8, 8, 8, and 16, respectively.

PROOF : According to (6.3) the matrix Ω(n) is invertible whenever n �= 0 and the assertion
follows from Theorem 4.2. �

6.4 Algebra N1,1

The Clifford algebra C
1,1 is generated by R
1,1 with the basis {Z1, Z2} satisfying the conditions

< Z1, Z1 >{1,1}= 1, < Z2, Z2 >{1,1}= −1, < Z1, Z2 >{1,1}= 0.
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Note that C
1,1 is isomorphic to R(2), the algebra of real matrices of size 2. In this case the
minimal admissible module V is of dimension 4 with the following integral basis: choose v ∈ V with
< v, v >V = 1, and put

X1 = v, X2 = JZ1JZ2(v), X3 = JZ1(v), X4 = JZ2(v).

We have the following commutation relation table

Table 2: Commutation relation table ofN1,1

[row,column] X1 X2 X3 X4

X1 0 0 Z1 Z2

X2 0 0 Z2 Z1

X3 −Z1 −Z2 0 0

X4 −Z2 −Z1 0 0

The standard lattice L is given as

L =
{ ∑

miXi +
1
2

∑
kjZj

∣∣mi, kj ∈ Z
}
.

Elements n in the dual lattice (L ∩ A)∗ are expressed as n = 2n1Z1 + 2n2Z2 with ni ∈ Z. In
the case |n1| �= |n2|, the matrix function in Theorem 4.2 is calculated as

{
det
(

Ω(2π
√−1 tn)

sinhΩ(2π
√−1 tn)

)}1/2

=
(4πt)2(n1

2 − n2
2)

sinh 4πt(n1 + n2) · sinh 4πt(n1 − n2)
. (6.7)

So the heat trace of the operator D(n) is obtained as follows:

Proposition 6.9 — (i) If |n1| �= |n2|,

tr
(
e−tD(n)

)
=

4(n1
2 − n2

2)
sinh 4πt(n1 + n2) · sinh 4πt(n1 − n2)

.

(ii) If n1 = n2 �= 0, then the solution space M(n) in the set M = { ∑miXi | mi ∈ Z } of
complete representatives of the quotient group L/(A ∩ L) is

M(n) = {(m1,−m1, m2,−m2) | mi ∈ Z}.

In case of n1 = −n2 we haveM(n) = {(m1,m1,m2,m2) | mi ∈ Z}.
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(iii) According to (ii) the heat trace of the operator D(n) in case of |n1| = |n2| �= 0 is given by

tr
(
e−tD(n)

)
=

2
πt

∑
m1, m2 ∈Z

e−(m1
2+m2

2)/t 2n1

sinh 8π t n1
.

PROOF : Follows from (6.7) and Theorem 4.2. �

6.5 Algebras Nr,s with r + s = 3

In the case where r + s = 3 it is known that none of the groups G3,0, G2,1, G1,2 and G0,3 are
isomorphic.

The minimal admissible module V of C
2,2 is realized by V = R
4,4. Moreover, the restriction of

C
2,1 ⊂ C
2,2 to V gives the minimal admissible module ofC
2,1. Similarly, we obtain an admissible
module of the Clifford algebra C
1,2 by a restriction of the action of C
2,2 on its minimal admissible
module R

4,4. As before we denote the resulting pseudoH-type algebras byN2,1
∼= R

4,4⊕⊥ R
2,1 and

N1,2
∼= R

4,4 ⊕⊥ R
1,2, respectively.

Proposition 6.10 — The algebras N2,1 and N1,2 are isomorphic.

PROOF : The Clifford algebraC
2,2 is generated byR
2,2 with the orthogonal basis {Z1, Z2, Z3, Z4}

and the inner products< Z1, Z1 >{2, 2}=< Z2, Z2 >{2, 2}= 1,< Z3, Z3 >{2, 2}=< Z4, Z4 >{2, 2}=

−1 and < Zi, Zj >{2, 2}= 0 (for i �= j). It is isomorphic to R(4), the 4 by 4 real matrix algebra.
The minimal admissible module of C
2,2 is eight dimensional and realized in the space R

4,4. We can
choose a vector v ∈ R

4,4 satisfying

JZ1JZ2JZ3JZ4(v) = v and < v, v >{4, 4}= 1.

Put

X1 = v,X2 = JZ1JZ2(v), X3 = JZ1JZ3(v), X4 = JZ1JZ4(v),

X5 = JZ1(v), X6 = JZ2(v), X7 = JZ3(v), X8 = JZ4(v),

then the commutation relations with respect to this basis are given in the table below.
The inclusion R

2,1 ⊂ R
2,2 induces the admissible module action of the Clifford algebra C
2,1 by

restricting the action of C
2,2 to the same module R
4,4 and it is also minimal. Thus we obtain the

commutation relation table for the algebraN2,1 by putting Z4 = 0.

Similarly, the commutation relation table for the algebra N1,2 is obtained by putting Z2 = 0.
More precisely, we have:
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Table 3: Commutation relation table ofN2,2

[row, column] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 0 0 Z1 Z2 Z3 Z4

X2 0 0 0 0 Z2 −Z1 Z4 −Z3

X3 0 0 0 0 Z3 −Z4 Z1 −Z2

X4 0 0 0 0 Z4 Z3 Z2 Z1

X5 −Z1 −Z2 −Z3 −Z4 0 0 0 0

X6 −Z2 Z1 Z4 −Z3 0 0 0 0

X7 −Z3 −Z4 −Z1 −Z2 0 0 0 0

X8 −Z4 Z3 Z2 −Z1 0 0 0 0

By comparing these tables, the transformation

X1 �→ X1, X2 �→ X2, X3 �→ X3, X4 �→ X4,

X5 �→ X7, X6 �→ X8, X7 �→ X5, X8 �→ X6

Z1 �→ Z3, Z2 �→ Z4, Z3 �→ Z1,

gives a Lie algebra isomorphism betweenN2,1 and N1,2. �

6.6 N2,1 case

As was mentioned before we can consider the Clifford algebra C
2,1 as a subalgebra of C
2,2. If
the module action of C
2,1 is defined as the restriction of the C
2,2-action then both corresponding
minimal admissible modules coincide as vector spaces.

We can fix the integral basis {Xi}8
i=1 ∪{Z1, Z2, Z3} as in the proof of Proposition 6.10. Accord-

ing to this basis we define the lattice

L2,1 :=
{∑

miXi +
1
2

∑
kjZj

}
.

Proposition 6.11 —

det
(
Ω(τ) − λ

)
=
(
(λ2 + τ1

2 + τ2
2 + τ3

2)2 − 4τ3
2(τ1

2 + τ2
2)
)2

=
(
λ4 + 2λ2(τ1

2 + τ2
2 + τ3

2) + (τ1
2 + τ2

2 − τ3
2)2
)2

,

W (
√−1 τ) =

(
τ1

2 + τ2
2 − τ3

2

sinh(
√

τ1
2 + τ2

2 + τ3 ) · sinh(
√

τ1
2 + τ2

2 − τ3)

)2

.



568 WOLFRAM BAUER et al.

Table 4: Commutation relation table ofN2,1

[row, column] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 0 0 Z1 Z2 Z3 0

X2 0 0 0 0 Z2 −Z1 0 −Z3

X3 0 0 0 0 Z3 0 Z1 −Z2

X4 0 0 0 0 0 Z3 Z2 Z1

X5 −Z1 −Z2 −Z3 0 0 0 0 0

X6 −Z2 Z1 0 −Z3 0 0 0 0

X7 −Z3 0 −Z1 −Z2 0 0 0 0

X8 0 Z3 Z2 −Z1 0 0 0 0

PROOF : As was mentioned earlier Ω(τ) coincides with the matrix representation of Jτ and is
obtained via Table 4. The identities in Proposition 6.11 then follow by a direct calculation. �

The heat trace of the operators D(n) is given in the next proposition:

Proposition 6.12 — (1) If the dual element n = 2
∑

nkZk satisfies n1
2 + n2

2 �= n3
2, then

tr
(
e−tD(n)

)
= 16·

(
n1

2 + n2
2 − n3

2

sinh 4πt(
√

n1
2 + n2

2 + n3 ) · sinh 4πt (
√

n1
2 + n2

2 − n3)

)2

.

(2) If n1
2 + n2

2 = n3
2, then

tr
(
e−tD(n)

)
=

1
(πt)2

∑
μ∈M(n)

e−
<μ,μ>

2t ·
(

2n3

sinh 8π t n3

)2

.

Moreover, for μ ∈ M(n) we have

< μ, μ >=
2n3

2

d0
2 (α2 + β2 + k2 + 
2).

The set M(n) is given as follows: Let d0 > 0 be the greatest common divisor of n1, n2, n3.
Defining ni := d0n

′
i we can express the solution spaceM(n) as:

M(n) =
{

μ = (αn′
1 + βn′

2, αn′
2 − βn′

1,−αn′
3,−βn′

3,

k n′
1 + 
 n′

2, k n′
2 − 
 n′

1,−k n′
3, 
 n′

3)
∣∣ α, β, k, 
 ∈ Z

}
.
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Table 5: Commutation relation table ofN1,2

[row, column] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 0 0 0 Z1 0 Z3 Z4

X2 0 0 0 0 0 −Z1 Z4 −Z3

X3 0 0 0 0 Z3 −Z4 Z1 0

X4 0 0 0 0 Z4 Z3 0 Z1

X5 −Z1 0 −Z3 −Z4 0 0 0 0

X6 0 Z1 Z4 −Z3 0 0 0 0

X7 −Z3 −Z4 −Z1 0 0 0 0 0

X8 −Z4 Z3 0 −Z1 0 0 0 0

PROOF (1) : If n2
1 + n2

2 �= n2
3, then it follows from Proposition 6.11 that Ω(n) is invertible and

thereforeM(n) = {0}. The sum in Theorem 4.2 reduces to the single term on the right of the above
equation. (2): Follows by a direct calculation again using Theorem 4.2. �

6.7 Nmin
1,2 case

The Clifford algebra C
1,2 is identified with R(2) ⊕ R(2) and the minimal admissible module is
realized in R

2,2. The pseudo H-type algebra constructed by this module will be denoted by Nmin
1,2 .

We choose a vector v in R
2,2 such that

JZ1JZ2JZ3(v) = v, and < v, v >{2,2}= 1.

If we put
X1 = v,X2 = JZ1(v), X3 = JZ2(v), X4 = JZ3(v),

then {X1, X2, X3, X4, Z1, Z2, Z3} forms an integral basis of the Lie algebraNmin
1,2 . The commutation

relations are given in the following table:
We fix a standard lattice L = L1,2 = {∑miXi + 1

2

∑
kjZj}. Then the function

W (
√−1τ) =

√
det
(

Ω(
√−1τ)

sinh Ω(
√−1τ)

)
,

is calculated as

W (
√−1τ) =

τ1
2 − τ2

2 − τ3
2

sinh
(
τ1 +

√
τ2

2 + τ3
2
) · sinh

(
τ1 −

√
τ2

2 + τ3
2
) . (6.8)
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Table 6: Commutation relation ofNmin
1,2

[row, column] X1 X2 X3 X4

X1 0 Z1 Z2 Z3

X2 −Z1 0 Z3 −Z2

X3 −Z2 −Z3 0 −Z1

X4 −Z3 Z2 Z1 0

The heat trace of the operator D(n) for each n in the dual of the lattice
{

1
2

∑
kjZj

}
is given in

the next proposition:

Proposition 6.13 — (1) For n = 0,

tr
(
e−tD(0)

)
=

1
(2πt)2

∑
�i∈Z

e−
�1

2+�2
2+�3

2+�4
2

2t .

(2) Let n = 2n1Z1 +2n2Z2 +2n3Z3 with n2
1 �= n2

2 +n3
2 such that Ω(

√−1n) is invertible. Then

tr
(
e−tD(n)

)
=

4 · (n1
2 − n2

2 − n3
2)

sinh 4π t
(
n1 +

√
n2

2 + n3
2
) · sinh 4π t

(
n1 −

√
n2

2 + n3
2
) .

(3) Let n �= 0 with n1
2 = n2

2 + n3
2. Then the solution spaceM(n) is given by

M(n) =
{

μ =
4∑

i=1


iXi ∈ M
∣∣ n1
3 = n3
1 − n2
2, n1
4 = −n2
1 − n3
2

}
.

Put ni = d0n
′
i, where d0 is the greatest common divisor of {ni}3

i=1. Then M(n) is character-
ized as the set

M(n) =
{−
n′

1X1 − kn′
1X2 + (kn′

2 − 
n′
3)X3 + (kn′

3 + 
n′
2)X4 | k, 
 ∈ Z

}
.

Hence,

tr
(
e−tD(n)

)
=

1
πt

∑
k,�∈Z

e
−n1

2(k2+�2)

d0
2 t

2n1

sinh 8π t n1
.

PROOF : Apply Theorem 4.2 and (6.8). �

Remark 6.14 : We observe that for all n the heat trace of the operator D(n) in Proposition 6.12
coincides with the square of the heat trace of the corresponding operator in Proposition 6.13. As a
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consequence, if V ∼= R
4,4 is any admissible module of C
1,2 (there are four different types of module

structure) and we fix a suitable lattice L in the pseudo H-type group V ⊕⊥ R
1,2 ∼= G1,2, then the

nilmanifold L\G1,2 will be isospectral (with respect to the sub-Laplacian) with L2,1\N2,1.

7. THE ALGEBRAS Nr,s WITH r + s = 4

7.1 N4,0
∼= N0,4

∼= H(2) case : See Section 6.3.

7.2 N2,2
∼= R(4) case : According to [16] we can choose a vector v ∈ R

4,4 satisfying

JZ1JZ2JZ3JZ4(v) = v and < v, v >{4, 4}= 1.

Fix an integral basis

X1 = v, X2 = JZ1JZ2(v), X3 = JZ1JZ3(v), X4 = JZ1JZ4(v),

X5 = JZ1(v), X6 = JZ2(v), X7 = JZ3(v), X8 = JZ4(v)

together with {Zk}4
k=1. The commutation relations of the Lie algebra N2,2 were given in Table 3.

above. In order to calculate the volume function

W (
√−1τ) =

√
det
(

Ω(
√−1τ)

sinh Ω(
√−1τ)

)
(7.1)

we need to distinguish the cases τ1
2 + τ2

2 − τ3
2 − τ4

2 �= 0 and τ1
2 + τ2

2 − τ3
2 − τ4

2 = 0.

Proposition 7.1 — (1) If τ1
2 + τ2

2 − τ3
2 − τ4

2 �= 0, then

W (
√−1τ) =

(
τ1

2 + τ2
2 − τ3

2 − τ4
2

sinh
(√

τ1
2 + τ2

2 +
√

τ3
2 + τ4

2
)
sinh
(√

τ1
2 + τ2

2 −√
τ3

2 + τ4
2
)
)2

.

(2) If τ1
2 + τ2

2 − τ3
2 − τ4

2 = 0, then we have

W (
√−1τ) =

4(τ1
2 + τ2

2)(
sinh 2

√
τ1

2 + τ2
2
)2 .

PROOF : The matrix representation of Ω(τ) is obtained through Table 3. A direct calculation
gives the eigenvalues of Ω(τ) and via (7.1) leads to the identities in either (1) or (2) depending on
whether there are zero eigenvalues or Ω(τ) is invertible. �

Let n = 2
4∑

i=1
nkZk be in the dual ofA ∩ L.

Proposition 7.2 — (1) If n1
2 + n2

2 − n3
2 − n4

2 �= 0, then

tr
(
e−tD(n)

)
=

16 · (n1
2 + n2

2 − n3
2 − n4

2)2

sinh2 4πt
(√

n1
2 + n2

2 +
√

n3
2 + n4

2
) · sinh2 4πt

(√
n1

2 + n2
2 −√

n3
2 + n4

2
) .
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(2) Assume that n1
2 + n2

2 − n3
2 − n4

2 = 0 and put ni = d0n
′
i, where d0 is the greatest common

divisor of {ni}4
i=1. Then the solution spaceM(n) is given as

M(n) =
{

(−αn′
1 − βn′

2,−αn′
2 + βn′

1, αn′
3 − βn′

4, αn′
4 + βn′

3,

kn′
1 + 
n′

2, kn′
2 − 
n′

1,−kn′
3 − 
n′

4,−kn′
4 + 
n′

3)
∣∣ α, β, k, 
 ∈ Z

}
and the heat trace of D(n) takes the form

tr
(
e−tD(n)

)
=

1
(πt)2

∑
α,β,k,l∈Z

e
− (α2+β2+k2+�2)(n1

2+n2
2)

d0
2 t

4(n1
2 + n2

2)
sinh2 8πt

√
n1

2 + n2
2
.

PROOF (1) : In this case the matrix Ω(n) where n = (n1, · · · , n4) is invertible and on the right
hand side of the trace formula in Theorem 4.2 we haveM(n) = {0}. (2): The statements follow by
a straightforward calculation from Theorem 4.2. �

7.3 N3,1 case

Let {Zk} be a basis of R
3,1 with the properties

< Zi, Zi >{3, 1}= 1 (i = 1, 2, 3), < Z4, Z4 >{3, 1}= −1, and < Zi, Zj >{3, 1}= 0 (i �= j).

We choose a vector v ∈ R
4,4 with the properties

JZ1JZ2JZ3(v) = v, < v, v >{4, 4}= 1

and fix an integral basis

X1 = v, X2 = JZ1(v), X3 = JZ2(v), X4 = JZ3(v),

X5 = JZ4(v), X6 = JZ4JZ1(v), X7 = JZ4JZ2(v), X8 = JZ4JZ3(v)

together with {Zk}4
k=1 of the Lie algebra N3,1. The commutation relations are given in the Table 7:

According to this table we consider the 8 × 8-matrix function

Ω3,1(τ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 τ1 τ2 τ3 τ4 0 0 0

−τ1 0 −τ3 τ2 0 τ4 0 0

−τ2 τ3 0 −τ1 0 0 τ4 0

−τ3 −τ2 τ1 0 0 0 0 τ4

−τ4 0 0 0 0 τ1 τ2 τ3

0 −τ4 0 0 −τ1 0 −τ3 τ2

0 0 −τ4 0 −τ2 τ3 0 −τ1

0 0 0 −τ4 −τ3 −τ2 τ1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, where τ = (τ1, . . . , τ4) ∈ R
4.



SPECTRAL ZETA FUNCTION ON PSEUDOH-TYPE NILMANIFOLDS 573

Table 7: Commutation relation ofN3,1

[row, column] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 Z1 Z2 Z3 Z4 0 0 0

X2 −Z1 0 −Z3 Z2 0 Z4 0 0

X3 −Z2 Z3 0 −Z1 0 0 Z4 0

X4 −Z3 −Z2 Z1 0 0 0 0 Z4

X5 −Z4 0 0 0 0 Z1 Z2 Z3

X6 0 −Z4 0 0 −Z1 0 −Z3 Z2

X7 0 0 −Z4 0 −Z2 Z3 0 −Z1

X8 0 0 0 −Z4 −Z3 −Z2 Z1 0

We write Ω3,1(τ) =

(
A B

−B A

)
with A,B ∈ R(4). Note that A2 = −(τ1

2 + τ2
2 + τ3

2)Id4×4

and(
A + λ Id4×4 B

−B A + λ Id4×4

)
·
(
Id4×4 −B

0 A + λ Id4×4

)
=

(
A + λ Id4×4 0

−B B2 + (A + λ Id4×4)2

)
.

Using these relations we have

det
(
Ω3,1(τ) − λ

)
= det

(
Ω3,1(τ) + λ

)
=
((

λ2− < τ, τ >{3,1}
)2 + 4λ2

(
τ1

2 + τ2
2 + τ3

2
))2

.

We conclude that the eigenvalues of the matrix Ω(
√−1τ) are given by

±(‖τ ′‖ ± τ4)

and these eigenvalues are of multiplicity two. Here we write ‖τ ′‖ =
√

τ1
2 + τ2

2 + τ3
2. Hence we

have:

Proposition 7.3 —

W (
√−1τ) =

(‖τ ′‖2 − τ2
4

)2
sinh2

(‖τ ′‖ + τ4

)
sinh2

(‖τ ′‖ − τ4

) .
PROOF : This directly follows from the spectral data of Ω(

√−1τ) given above. �

As before we fix a lattice

L = L3,1 =
{

γ =
∑

miXi +
1
2

∑
kiZi | mi, ki ∈ Z

}
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and take an element n = 2
4∑

i=1
niZi in the dual of L ∩ A, whereA = {1

2

∑
kiZi | ki ∈ Z}.

Proposition 7.4 — (1) If n = 0, then

tr
(
e−tD(n)

)
=

1
(2πt)4

∑
mi∈Z

e−
m1

2+m2
2+m3

2+m4
2

2t .

(2) Let n1
2 + n2

2 + n3
2 −n4

2 �= 0, then the matrix Ω(2π
√−1n) is invertible. Hence, the trace of

the operator e−tD(n) is given by

tr
(
e−tD(n)

)
=

16· (n1
2 + n2

2 + n3
2 − n2

4

)2
sinh2 4πt(

√
n1

2 + n2
2 + n3

2 + n4) · sinh2 4πt(
√

n1
2 + n2

2 + n3
2 − n4)

.

(3) Assume that n �= 0 and n1
2 +n2

2 +n3
2−n4

2 = 0. Let d0 > 0 be the greatest common divisor
of the four integers {n1, n2, n3, n4} and define n′

i through the relation ni = d0n
′
i.

Then the solution spaceM(n) is given by

M(n) =
{∑


iXi = (
1, 
2, 
3, 
4, 
5, 
6, 
7, 
8)
∣∣ 
i ∈ Z

}
,

where each 
i is is characterized as


1 = −n′
4k1, 
2 = −n′

4k2, 
3 = −n′
4k3, 
4 = −n′

4k4,


5 = n′
1k2 + n′

2k3 + n′
3k4,


6 = −n′
1k1 − n′

3k3 + n′
2k4,


7 = −n′
2k1 + n′

3k2 − n′
1k4,


8 = −n′
3k1 − n′

2k2 + n′
1k3.

Note that in this case the rank of the matrix Ω(n) is 4 and the relation AB = BA gives the
above characterization of the solution spaceM(n).

In particular, we have

tr
(
e−tD(n)

)
=

1
(πt)2

∑
�i∈Z

e
−

n4
2·

4∑

i=1
�i

2

d0
2 t · 4n4

2

sinh2 8πt n4

.

PROOF : Direct calculation using Theorem 4.2 and the spectral data above. �
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7.4 N1,3 case

Let {Zk}4
k=1 be a basis of R

1,3 with the properties

< Z1, Z1 >{1, 3}= 1, < Zi, Zi >{1, 3}= −1 (i = 2, 3, 4) and < Zi, Zj >{1, 3}= 0 (i �= j).

According to [16] we choose a vector v ∈ R
4,4 such that

JZ1JZ2JZ3(v) = v, and < v, v >{4, 4}= 1.

Fix an integral basis

X1 = v, X2 = JZ1(v), X3 = JZ4JZ2(v), X4 = JZ4JZ3(v),

X5 = JZ2(v), X6 = JZ3(v), X7 = JZ4(v), X8 = JZ4JZ1(v)

together with {Zk}4
k=1 of the Lie algebra N1,3. The commutation relations are given as follows:

Table 8: Commutation relation ofN1,3

[row, column] X1 X2 X3 X4 X5 X6 X7 X8

X1 0 Z1 0 0 Z2 Z3 Z4 0

X2 −Z1 0 0 0 Z3 −Z2 0 Z4

X3 0 0 0 −Z1 Z4 0 −Z2 −Z3

X4 0 0 Z1 0 0 Z4 −Z3 Z2

X5 −Z2 −Z3 −Z4 0 0 −Z1 0 0

X6 −Z3 Z2 0 −Z4 Z1 0 0 0

X7 −Z4 0 Z2 Z3 0 0 0 Z1

X8 0 −Z4 Z3 −Z2 0 0 −Z1 0

With τ = (τ1, . . . , τ4) ∈ R
4 we define the 8 × 8 matrix

Ω(τ)1,3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 τ1 0 0 τ2 τ3 τ4 0

−τ1 0 0 0 τ3 −τ2 0 τ4

0 0 0 −τ1 τ4 0 −τ2 −τ3

0 0 τ1 0 0 τ4 −τ3 τ2

−τ2 −τ3 −τ4 0 0 −τ1 0 0

−τ3 τ2 0 −τ4 τ1 0 0 0

−τ4 0 τ2 τ3 0 0 0 τ1

0 −τ4 τ3 −τ2 0 0 −τ1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

(
A B

−B −A

)
,
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where

A =

⎛
⎜⎜⎜⎜⎜⎝

0 τ1 0 0

−τ1 0 0 0

0 0 0 −τ1

0 0 τ1 0

⎞
⎟⎟⎟⎟⎟⎠ and B =

⎛
⎜⎜⎜⎜⎜⎝

τ2 τ3 τ4 0

τ3 −τ2 0 τ4

τ4 0 −τ2 −τ3

0 τ4 −τ3 τ2

⎞
⎟⎟⎟⎟⎟⎠ .

In this case it holds AB + BA = 0 and we observe the identity(
A + λ Id4×4 B

−B −A + λ Id4×4

)
·
(
Id4,4 −(A + λ Id4×4)−1B

0 Id4×4

)
=

=

(
A + λ Id4×4 0

−B B(A + λ Id4×4)−1B−A + λ Id4×4

)
.

Then together with the relations B2 = (τ2
2 + τ3

2 + τ4
2) · Id4×4, A2 = −τ2

1 · Id4×4 and

(A + λ Id4×4)−1B = B(λ Id4×4 − A)−1

we have

det
(
Ω1,3(τ) − λ Id8×8

)
= det

(
Ω1,3(τ) + λ Id8×8

)
=
((

λ2− < τ, τ >{1,3}
)2 + 4λ2 · τ1

2
)2

.

Hence the eigenvalues of the matrix Ω1,3(
√−1τ) are given as

±(‖τ ′‖ ± τ1)

and each of them has multiplicity 2. Here we write ‖τ ′‖ =
√

τ2
2 + τ3

2 + τ4
2. The volume function

W (
√−1τ) is calculated as follows:

Proposition 7.5 —

W (
√−1τ) =

(‖τ ′‖2 − τ1
2
)2

sinh2
(‖τ ′‖ + τ1

) · sinh2
(‖τ ′‖ − τ1

) .
PROOF : This follows from the spectral data of Ω(τ) derived above. �

As before we fix a lattice

L = L1,3 =
{ ∑

miXi +
1
2

∑
kiZi | mi, ki ∈ Z

}
.

Let n = 2
∑

niZi with ni ∈ Z be an element in the lattice dual to {1
2

∑
kiZi}.

Proposition 7.6 — (1) If n = 0, then

tr
(
e−tD(n)

)
=

1
(2πt)4

∑
mi∈Z

e−
m1

2+m2
2+m3

2+m4
2

2t .
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(2) Let n1
2 − n2

2 − n3
2 − n4

2 �= 0, then the matrix Ω(2π
√−1n) is invertible. Hence the trace of

the operator e−tD(n) is given by

tr
(
e−tD(n)

)
=

16·(n1
2 − n2

2 − n3
2 − n2

4

)2
sinh2 4πt

(
n1 +

√
n2

2 + n3
2 + n4

2
) · sinh2 4πt

(
n1 −

√
n2

2 + n3
2 + n4

2
) .

(3) Assume that n �= 0 and n1
2−n2

2−n3
2−n4

2 = 0. Let d0 > 0 be the greatest common divisor
of the four integers {n1, n2, n3, n4} and define n′

i by ni = d0n
′
i.

Then the solution spaceM(n) is given as

M(n) =
{∑


iXi = (
1, 
2, 
3, 
4, 
5, 
6, 
7, 
8)
∣∣ 
i ∈ Z

}
,

where each 
i is characterized as


1 = n′
2k1 + n′

3k2 + n′
4k3,


2 = n′
3k1 − n′

2k2 + n′
4k4,


3 = n′
4k1 − n′

2k3 − n′
3k4,


4 = n′
4k2 − n′

3k3 + n′
2k4,


5 = n′
1k2, 
6 = −n′

1k1, 
7 = −n′
1k4, 
8 = n′

1k3.

This can be obtained by the relation

(
A B

)
·
(

B

A

)
= 0.

Now we have

tr
(
e−tD(n)

)
=

1
(πt)2

∑
�i∈Z

e
−

n1
2·

4∑

i=1
�i

2

d0
2 t · 4n1

2

sinh2 8πt n1

.

PROOF : Direct calculation using Theorem 4.2 and the spectral data above. �

As a corollary to Proposition 7.4 and Proposition 7.6 we mention:

Corollary 7.7 — The above nilmanifolds are isospectral with respect to the sub-Laplacians.

8. FINAL REMARKS

In Proposition 6.10 we remarked that the algebrasN2,1 andN1,2 are isomorphic. Both are constructed
as pseudo H-type algebras by restricting the module structure from the minimal admissible module
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R
4,4 of the Clifford algebra C
2,2. The algebras in Subsections 6.3 and 6.4 are constructed in the
same way from the minimal admissible module of the Clifford algebra C
3,3. In both cases the cor-
responding nilmanifolds are isospectral with respect to the sub-Laplacians. The lattices are obtained
from the module structure for the Clifford algebras C
2,2 or C
3,3.

Let V be the minimal dimensional admissible module for a Clifford algebra C
N,N and fix
an integral lattice L in the pseudo H-type algebra NN,N . Then by restricting the module struc-
ture to both subalgebras C
N−s,N and C
N,N−s we can construct two pseudo H-type algebras
NN−s,N

∼= V ⊕⊥ R
N−s,N and NN,N−s

∼= V ⊕⊥ R
N,N−s. Moreover, we have integral lattices

LN−s,N and LN,N−s in each group GN−s,N and GN,N−s, respectively, and corresponding sub-
Laplacians. As a generalization of Corollary 7.7 we state here as a conjecture that the two nilmani-
folds LN−s,N\NN−s,N and LN,N−s\NN,N−s are isospectral with respect to the sub-Laplacian.

This problem will be treated in a forthcoming paper [9] from the point of view of isospectrality.

9. APPENDIX : A GENERAL FORMULA

We did not provide expressions for the Mellin transform of the heat trace of the sub-Laplacian on the
pseudoH-type nilmanifolds discussed in the last sections. As can be seen from the general formula in
Theorem 4.2 and more concretely from earlier results in [3, 8] and Section 5 the spectral zeta functions
of these sub-Laplacians have a common term. In this appendix we study its analytic behavior in the
simplest case.

LetA > 0 andB > 0 be positive constants and consider the Mellin transformZ(s,A, B) (divided
by the Gamma function) of the function

F (t, A,B) =
∑
�∈Z

∞∑
k=1

e−At�2 k

sinh Btk
.

More precisely, Z(s,A, B) is given as the integral transform

Z(s,A,B) =
1

Γ(s)

∫ ∞

0
F (t, A, B)ts−1dt

=
1

Γ(s)

∫ ∞

0

(∑
�∈Z

∞∑
k=1

e−At�2 k

sinh Btk

)
ts−1 dt

=
∑
�∈Z

∞∑
k=1

∞∑
n=0

2k(
A
2 + Bk(2n + 1)

)s .
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By the Poisson summation formula we have

F (t, A,B) =
∑
�∈Z

∞∑
k=1

e−At�2 k

sinh Btk
=
∑
�∈Z

∞∑
k=1

( π

tA

) 1
2
e−

π2 �2

tA
k

sinh Btk
,

and so

Z(s,A, B) =
1

Γ(s)

∫ ∞

0

∑
�∈Z

∞∑
k=1

( π

tA

) 1
2
e−

π2 �2

tA
k

sinh Btk
ts−1 dt

=
1

Γ(s)

∫ ∞

0

∑
0 
=�∈Z

∞∑
k=1

( π

tA

) 1
2
e−

π2 �2

tA
k

sinh Btk
ts−1 dt

+
1

Γ(s)

∫ ∞

0

( π

tA

) 1
2

∞∑
k=1

k

sinh Btk
ts−1 dt

= entire function+
1

Γ(s)

( π

A

) 1
2

∫ ∞

0

∞∑
k=1

k

sinh Btk
ts−3/2 dt

= H(s,A, B)

+ 2
√

π

A

Γ(s − 1/2)
Γ(s)

1
Bs−1/2

(
1 − 1

2s−1/2

)
ζ(s − 3/2)ζ(s − 1/2)

= H(s,A, B) + K(s,A, B).

Remark 9.1 : The product ζ(s − 3/2)ζ(s − 1/2) is known to have the series expansion

∞∑
n=1

σ(n)
ns−1/2

,

where σ(n) =
∑
d |n

d means the sum of all divisors of n.

The second term

K(s, A,B) =
1

Γ(s)

∫ ∞

0

( π

tA

) 1
2

∞∑
k=1

k

sinh Btk
ts−1 dt

= 2
√

π

A

Γ(s − 1/2)
Γ(s)

1
Bs−1/2

(
1 − 1

2s−1/2

)
ζ(s − 3/2)ζ(s − 1/2)
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can also be expressed in the form

K(s, A,B) =
1

Γ(s)

√
π

A

1
2B

∫ ∞

0

{
π2

2Bt

∑
k∈Z

1
cosh2 π2 k

Bt

− 1

}
ts−5/2 dt

=
1

Γ(s)

√
π

A

1
2B

∫ 1

0

⎧⎨
⎩ π2

2Bt

∑
0
=k∈Z

1
cosh2 π2 k

Bt

+
π2

2Bt
− 1

⎫⎬
⎭ ts−5/2 dt

+
1

Γ(s)

√
π

A

1
2B

∫ ∞

1

{
π2

2Bt

∑
k∈Z

1
cosh2 π2 k

Bt

− 1

}
ts−5/2 dt

=
1

Γ(s)

√
π

A

π2

4B2

1
s − 5/2

− 1
Γ(s)

√
π

A

1
2B

1
s − 3/2

+
1

Γ(s)

√
π

A

π2

4B2

∫ 1

0

∑
0
=k∈Z

1
cosh2 π2 k

Bt

ts−7/2 dt

+
1

Γ(s)

√
π

A

1
2B

∫ ∞

1

{
π2

2Bt

∑
k∈Z

1
cosh2 π2 k

Bt

− 1

}
ts−5/2 dt

=
1

Γ(s)

√
π

A

π2

4B2

1
s − 5/2

− 1
Γ(s)

√
π

A

1
2B

1
s − 3/2

+ H1(s, A, B) + H∞(s,A, B),

where the two functionsH1(s,A, B) andH∞(s,A, B) are entire.

Remark 9.2 : The Fourier transform of the function
x

sinh x
is given as

1√
2π

∫ +∞

−∞
x

sinh x
e−

√−1x ξ dx =
(π

2

)3/2 1

cosh2 π ξ
2

and the Poisson summation formula states that∑
k∈Z

f(2πk) =
1√
2π

∑
n∈Z

F(f)(n).

The following identity can be seen as a generalization of the Jacobi identity for the heat trace of
the Laplacian on the torus, whose Mellin transform is the Epstein zeta function:

F (t, A,B) =
∑
�∈Z

∞∑
k=1

e−At�2 k

sinh Btk

=
π

8t2B2

√
π

tA

∑
0 
=�∈Z

∑
0 
=k∈Z

e−
π2�2

tA
1

cosh2
(

π k
2tB

)
+
(

π

8t2B2
− 1

2tB

)√
π

tA

∑
�∈Z

e−
π2�2

tA +
π

8t2B2

√
π

tA

∑
0 
=k∈Z

1
cosh2

(
π k
2tB

) .
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