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Abstract Approaches for the cultivation-independent analy-
sis of microbial communities are summarized as meta’omics,
which predominantly includes metagenomic, -transcriptomic,
-proteomic and -metabolomic studies. These have shown that
endophytic, root-associated and soil fungal communities are
strongly shaped by associated plant species. The impact of
plant identity on the composition of its litter-associated fungal
community remains to be disentangled from the impact of
litter chemistry. The composition of the plant community also
shapes the fungal community. Most strikingly, adjacent plant
species may share mycorrhizal symbionts even if the plants
usually have different types of mycorrhizal fungi associated
with them (ectomycorrhizal, ericoid and arbuscular mycorrhi-
zal fungi). Environmental parameters weakly explain fungal
community composition globally, and their effect is inconsis-
tent at local and regional scales. Decrease in similarity among
communities with increasing distance (i.e. distance decay) has
been reported from local to global scales. This pattern is only
exceptionally caused by spatial dispersal limitation of fungal
propagules, but mostly due to the inability of the fungi to
establish at the particular locality (i.e. environmental filtering
or competitive exclusion). Fungal communities usually under-
go pronounced seasonal changes and also differ between con-
secutive years. This indicates that development of the com-
munities is usually not solely cyclic. Meta’omic studies chal-
lenge the classical view of plant litter decomposition. They
show that mycorrhizal and (previously) endophytic fungi
may be involved in plant litter decomposition and only partly

support the idea of a succession from an Ascomycota to a
Basidiomycota-dominated community. Furthermore, vertical
separation of saprotrophic and mycorrhizal species in soil and
sequential degradation from easily accessible to ‘recalcitrant’
plant compounds, such as lignin, can probably not be gener-
alized. The current models of litter decomposition may there-
fore have to be eventually refined for certain ecosystems and
environmental conditions. To gain deeper insights into fungal
ecology, a meta’omic study design is outlined which focuses
on environmental processes, because fungal communities are
usually taxonomically diverse, but functionally redundant.
This approach would initially identify dynamics of chemical
shifts in the host and/or substrate by metametabolomics.
Detected shifts would be subsequently linked to microbial
activity by correlation with metatranscriptomic and/or
metaproteomic data. A holistic trait-based approach might fi-
nally identify factors shaping taxonomic composition in com-
munities against the dynamics of the environmental process(es)
they are involved in.
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Introduction

All living plants are associated with microorganisms. These
associations may be so intimate that they may help the host
plants to adapt to changing environmental conditions
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(Redman et al. 2011). The importance of these symbiont-
mediated adaptations means that plants should not be consid-
ered alone, but the ‘holobiont plant’, as the basic unit in ecol-
ogy and evolution (Hawksworth 1991). This holobiont com-
prises a host macro-organism and all of its associated micro-
organisms (Rosenberg et al. 2010; Feldhaar 2011). Plant-
associated fungi are usually categorized according to their
functional roles. Due to their importance in plant nutrition,
mycorrhizal fungi represent the best-studied group among
the mutualistic fungal symbionts, (Smith and Read 2008).
Non-mycorrhizal root-associated fungi, however, may also
facilitate plant nutrition (Kernaghan 2013) and access addi-
tional nutrient sources (Behie et al. 2012). Endophytic fungi
represent another taxonomically highly diverse group of
plant-associated microorganisms, the functional roles of
which, however, are highly diverse and hitherto remain widely
unidentified (Hyde and Soytong 2008; Porras-Alfaro and
Bayman 2011). The symbiosis between grasses and their sys-
temic endophytes is rather well understood and known to
affect their hosts in many ways (Tanaka et al. 2012). Even
though prominent taxonomic groups of leaf-endophytes of
forest trees, such as the Xylariales, are known to produce a
broad spectrum of antibiotically active metabolites (Bills et al.
2012), reports of positive effects on host plant fitness are
scarce (Saikkonen et al. 2010). An involvement in litter de-
composition has been suggested for other leaf-endophytes
(Purahong and Hyde 2011). In this key process to nutrient
cycling of plant biomass (Berg and McClaugherty 2014), also
mycorrhizal fungi may be directly involved (Ekblad et al.
2013). The decomposer community may therefore be
regarded as being plant-associated in a more general sense,
in particular since saprotrophic fungi may also prefer ecolog-
ical niches confined to higher plants (Zhou and Hyde 2001).
As a consequence, non-mycorrhizal soil fungi, involved in
root-litter decomposition (Solly et al. 2014) and nutrient mo-
bilization from minerals (Gadd 2010) should be considered in
the context of plant-associated fungal communities. Wood
decay is also an important part of nutrient cycling and strongly
dependent on fungal communities (Bradford et al. 2014;
Valentín et al. 2014; Van der Wal et al. 2014), but the wood
decay communities are different from those associated with
living plants (see Stokland et al. 2012).

Assessing the entire species richness in environmental
samples is still challenging (Tedersoo et al. 2014a), but hun-
dreds to thousands of fungal species have been detected
(Hawksworth 2012). This richness makes complete sampling
of communities by cultivation nearly unachievable. Even con-
struction and subsequent screening of reasonably exhaustive
clone-libraries from environmental DNA is rather laborious,
in particular if functionality is considered in addition to taxo-
nomic diversity (Daniel 2005). The development of massively
parallel sequencing technologies (‘Next-Generation-
Sequencing’, NGS) provides new opportunities, allowing for

simultaneous sequencing of billions of molecules in a nucleic
acid extract (Buermans and Dunnen 2014). This advancement
also boosted the field of proteomics, because assignment of
MS- and NMR-based peptide spectra depend on in silico-
generated reference data for identification, and NGS rapidly
increased the amount of reference sequences and facilitated
the parallel assessment of protein-encoding transcripts (Seifert
et al. 2013). At the same time, MS and NMR technologies
were further developed (Lankadurai et al. 2013) and now al-
lows the assessment of metabolite profiles of whole
holobionts (Hernández et al. 2009; Walker et al. 2014a) as
well as of the composition of chemical compounds in envi-
ronmental samples (Wallenstein et al. 2013; Jones et al. 2014).
These technological advances together represent a major
breakthrough for microbial ecology, because they allow for
insights into structure and function of even the most complex
microbial communities in their natural environment.

Cultivation-independent studies on plant-associated fungal
communities are reviewed herein, to elucidate the factors
shaping community composition and function. The focus is
on the role of host plant identity and community in structuring
the associated fungal communities. The impact of environ-
mental factors on the spatiotemporal structures and dynamics
is discussed and linked to the functional role of the respective
communities. Against this background, current challenges and
knowledge gaps are highlighted and topics of major interest
for future research identified. Focusing on plant holobionts
with respect to nutrient cycling, the directly plant-associated
endophytic and root-associated fungal communities are ad-
dressed, as well as those linked to plant nutrition, i.e. litter
decomposing and soil fungi. Single species associations, such
as plant pathogens, are not addressed in this context, and the
specialized wood decay communities are excluded, as well as
the flower microbiomes, which are mostly relevant to repro-
duction biology (Aleklett et al. 2014). Discussion of fungal
groups in the habitats living leaf, litter, roots and soil, is pre-
ceded by a brief circumscription of the term Bmeta’omics^ and
an overview on the current methodological challenges.

A brief history of the term Bmeta’omics^

Terminology in ‘omics’ disciplines dates back to 1920, when
Hans Winkler introduced the term genome (Winkler 1920).
Etymology of the term is disputable, but most likely Hans
Winkler combined the ‘gene’ with the suffix ‘-ome’ to de-
scribe the entirety of genes in an organism, in line with by
then already introduced terms such as ‘rhizome’, which de-
fines the entirety of roots (Lederberg and McCray 2001).
Because he could not have been aware of the non-coding
DNA elements, the current understanding of the meaning of
‘genome’ slightly differs, referring to Bthe complete genetic
makeup of an organism^ (Yadav 2007). The term ‘genomics’
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was coined in 1986, as title for a journal launched in 1987
(Kuska 1998). In the following, the suffix ‘omics’ has been
taken over by several disciplines, such as transcriptomics,
proteomics and metabolomics (e.g., Abbot 1999; Joyce and
Palsson 2006). Handelsman et al. (1998) introduced the term
‘metagenome’ of soil for the “collective genomes of soil mi-
croflora” and later defined ‘metagenomics’ as “the culture-
independent genomic analysis of microbial communities”
(Schloss and Handelsman 2003). This was again followed by
emergence of the te rms ‘meta t ransc r ip tomics ’ ,
‘metaproteomics’ and ‘metametabolomics’ (Schneider and
Riedel 2010; Zengler and Palsson 2012; Jones et al. 2014).
While each of these terms is supposed to depict culture-
independent analyses of microbial communities, in analogy
to ‘metagenomics’, some variants have been proposed: In dis-
tinction of ‘metaproteomics’, ‘community proteomics’ was
suggested to be used for the analysis of less complex commu-
nities while ‘environmental proteomics’ was suggested as an
umbrella term (VerBerkmoes et al. 2009; Schneider and Riedel
2010). Differentiation of approaches based on the complexity
of the analyzed communities is, however, vague. In particular
the rate of proteins assignable to taxa, which was suggested as
distinctive feature, heavily depends on the ever increasing vol-
ume of reference data and is therefore certainly not stable
through time. Jones et al. (2014) suggested using ‘community
metabolomics’ for the analyses of metabolites from an entire
community in a given sample. This term was presumably only
i n t r o d u c e d t o a v o i d t h e r a t h e r c l um s y t e rm
‘metametabolomics’ , which would, in analogy to
‘metagenomics’, perfectly fit their circumscription. A debat-
able exception may be approaches not primarily targeting the
organisms, but their substrates, i.e. decaying organic material.
In biological and ecological contexts, such studies usually an-
alyze the effect of decomposer community activities on shifts
in the chemical composition of the substrates (e.g., de Marco
et al. 2012). The analyzed samples include organisms insepa-
rable from the substrate, and thus their metametabolome. The
fact that chemical composition of the substrate is revealed by
the analyses in addition does not make a specific term for
delimitation of such approaches indispensable. After all,
decaying organic matter may, in the widest sense of nutrient
cycling, be regarded as kind of metabolome at the ecosystem
scale. Refining the terminology for culture-independent anal-
yses of organismic communities is therefore not necessarily
needed and I recommend to avoid confusion and preserve
interdisciplinary compatibility by using ‘metagenomics’,
‘me t a t r a n s c r i p t om i c s ’ , ‘me t ap r o t e om i c s ’ and
‘metametabolomics’ in their original, straightforward circum-
scription. As an umbrella term for these approaches, the term
‘metaomics’ (e.g., Worden and Allen 2010), also spelled as
‘meta-omics’ (e.g., Fritz et al. 2013) and ‘meta’omics’ (e.g.,
Segata et al. 2013), recently emerged. It is supposed to desig-
nate the study of organismic assemblages in the sense of

Handelsman’s ‘metagenomics’ by any ‘omics’ discipline.
Without knowledge of the historical background, ‘metaomics’
and also ‘meta-omics’ imply that multiple ‘omic’ approaches
were applied to study the organism(s) of interest. Addressing
studies of organismic assemblages by any ‘omic’ approach
collectively as ‘meta’omics’ avoids such confusion.

Methodological challenges

A common challenge for most meta’omic approaches is
extracting target molecules in high purity and quality from
environmental samples, which is discussed in the first part
of this section. Subsequently, a brief overview on the widely
differing analytical workflows is given and the section con-
cludes with addressing quantification, which is again an issue
shared among all meta’omic disciplines.

Extraction of target molecules

A prerequisite for reliable results in meta’omics is certainly
the reproducible extraction of the molecules of interest from
environmental samples. Considerable progress has been made
in the purification of nucleic acids and proteins in the past
years (Tan and Yiap 2009) and several options are available
for the analysis of fungal consortia in living hosts. Suitability
of the plenty of protocols and commercial kits available for
nucleic acid (e.g., Drábková et al. 2002; Fredricks et al. 2005;
Kennedy et al. 2014; Mertens et al. 2014) and protein (e.g.,
Wright et al. 2014; Wu et al. 2014; Zheng et al. 2007) extrac-
tion differs among sample types. Studies of decaying tissues
and soil have to cope with absorptive molecules and minerals
(e.g., Keiblinger et al. 2012; Sagova-Mareckova et al. 2008).
This is especially challenging for the extraction of nucleic
acids. The currently available commercial kits only yield re-
producible results for one or few certain soil types (Dineen
et al. 2010). The variability in composition and concentration
of humic substances among different soils and organic layers
is a major challenge for comparative studies (Peršoh et al.
2008). Considering that humic substances may irreversibly
bind to nucleic acids (Crecchio and Stotzky 1998), it is essen-
tial to remove or inactivate these prior to cell disruption.
Posterior purification also removes the bound nucleic acids,
and it is currently unknown whether or not the reaction be-
tween humic substances and nucleic acids is random. Among
the tested pretreatments, flocculation of humic substances
with Al2(SO4)3 currently yields the highest purity of extracted
nucleic acids (Peršoh et al. 2008). Another, less laborious
option is the addition of competitor DNA (Paulin et al.
2013). Because the added DNAwill at least partially remain
in the extract, this procedure is most suitable if selective
primers are used for amplification, or if DNA is subsequently
digested for RNA analyzes. A major advantage of the
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approach is that competitor DNA occupies all potential ab-
sorption sites for the targeted DNA or RNA, i.e. those of
humic substances and minerals (Paulin et al. 2013). This al-
lows for removing humic substances subsequent to cell dis-
ruption, when time is no longer critical, because all fractions
and chemicals, including RNAse inhibitors, are homoge-
neously mixed.

Compared to nucleic acids a universal protocol for the
quantitative extraction of proteins from soil samples seems
still further away (Taylor and Williams 2010). Spiking exper-
iments currently only yield satisfactory recovery rates from
relatively simple matrices, such as pure sand. About half of
the reference material is recovered from soils with higher or-
ganic and clay contents (Keiblinger et al. 2012, and references
therein). From marine biofilms, three different extraction pro-
tocols yielded largely different protein compositions (Leary
et al. 2013). Metaproteomics is therefore still in urgent need
of protocols yielding reproducible results within and especial-
ly among varying matrices (VerBerkmoes et al. 2009;
Schneider and Riedel 2010).

Sample preparation formetabolite extraction requires im-
mediate freezing and lyophilization to avoid post-sampling
modification of metabolites (Sardans et al. 2011). Individual
extraction protocols have to be developed for each sample
type and metabolite composition and different solvents are
required to obtain polar and non-polar metabolites, respective-
ly (Lankadurai et al. 2013). While detailed extraction proto-
cols are available for plant tissues (Kaiser et al. 2009; Kim and
Verpoorte 2010), metabolites from soil and litter have so far
only been extracted using a straightforward standard protocol
(Jones et al. 2014). In contrast to solution NMR, powderized
samples may be directly applied to solid state NMR (Preston
et al. 1990; Preston 2014). This approach is therefore not
prone to extraction biases.

Sample analyzes

Downstream analyses of the different extracts from environ-
mental samples differ significantly. The broadest spectrum of
biotechnological manipulations is available for the analyses of
nucleic acid extracts. Analytical workflows targeting a limited
number of genes usually commence with amplification of
DNA or reverse transcribed RNA (cDNA) by Polymerase
Chain Reactions (PCRs), i.e. with environmental PCR. The
obtained amplicons may then be analyzed as a whole (‘com-
munity fingerprint’), separated by subcloning, or directly se-
quenced in parallel. A priori anonymous metagenomic finger-
prints group all organisms which correspond in the profiling
criterion, such as sequence length in ARISA signatures (Popa
et al. 2009). Fingerprinting approaches provide limited in-
sights into the structure of the community structure, but they
may straightforwardly reveal compositional differences in mi-
crobial consortia for monitoring or prescreening purposes

(Weig et al. 2013). Subcloning of genes or amplicons allows
for their proliferation and separation (e.g., Taylor et al. 2007).
The resulting clone libraries are, after sequence analysis, still
available for additional analyses, such as expression in
transformant model organisms (e.g., Gatte-Picchi et al.
2014). In metagenomic biodiversity studies, clone libraries
are mostly constructed to separate amplicons of barcoding
genes among different organisms (e.g., Timling et al. 2014).
Fingerprint methods, such as RFLP, are then usually applied
to differentiate between genotypes, before representatives are
sequenced for taxonomic assignment (Oros-Sichler et al.
2007). Parallel sequencing of multiple sequences by Next
Generation Sequencing (NGS) technologies makes previous
separation of genotypes dispensable, because thousands to
billions of individual sequences may be obtained from single
or multiple, differentially labeled, nucleic acid extracts
(Logares et al. 2012; Kemler et al. 2013; Schmidt et al.
2013; Soon et al. 2013). The high sequencing depths achiev-
able due to the ever increasing capacity of NGS devices sig-
nificantly improves explanatory power in ecological contexts
(Smith and Peay 2014). The possibility of multiplexing hun-
dreds of different samples in a single sequencing run (Hamady
et al. 2008) even renders NGS technologies more cost-
efficient than PhyloChip microarrays (Cao et al. 2013).

A major challenge for all sequence-based meta’omic stud-
ies (including metaproteomics, see below) is linking biologi-
cal information to sequence data via their taxonomic assign-
ment. Using publicly available reference databases and soft-
ware pipelines such as CloVR-ITS (White et al. 2013), QIIME
(Caporaso et al. 2010) or SEED (Větrovský and Baldrian
2013), the obtained sequences may be assigned to taxa, thus
linking a plethora of taxon-related biological and ecological
information (Kõljalg et al. 2013). Reliability of the taxonomic
assignment and thus the related information may be judged
from scores on sequence similarities and alignment coverage
by quality criteria (Peršoh et al. 2010) or phylogenetic analy-
ses (Begerow et al. 2010). A mostly considerable proportion
of the sequences will remain unidentified or only identifiable
to higher taxonomic levels (e.g. ‘Ascomycota sp.’). Since bi-
ological and ecological traits may already differ significantly
among congeneric taxa (e.g., Crous 2009; Bensch et al. 2012),
contributions of such assignments to understanding the prin-
ciples underlying community structure are often limited
(Bálint et al. 2014). The impact of host plant identity on en-
dophytic community composition was clearly higher when
analyzed on the basis of operational taxonomic units
(OTUs), than when analyzed on the basis of taxa, to which
the OTUs were assigned (Peršoh et al. 2010). The authors
concluded that sequence-similarity-based OTUs were more
likely to represent meaningful biological (i.e. reproductive)
units, than the groups emerging from taxonomic assignment.
Statistical analyses based on exclusively sequence-similarity
based OTUs therefore minimize the risk of biases due to
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artificial groupings. Species which are artificially split to dif-
ferent OTUs due to too stringent similarity thresholds do usu-
ally not compromise the results, because they are easily rec-
ognized as very similar sequences with similar ecological
preferences and/or distribution patterns (Peršoh 2013).
Reproducibility of taxon-name-based statistics is, on the other
hand, susceptible to impairment by (i) a rapidly growing, but
still limited taxon coverage in the reference databases, (ii)
taxonomic misassignments of reference sequences (Bridge
et al. 2003; Vilgalys 2003; Nilsson et al. 2006), and (iii) lim-
itations of resolving all taxa by a single barcoding gene
(Schoch et al. 2012). The latter issue is mostly caused by an
insufficient barcoding gap (i.e., intra- vs. interspecific se-
quence variability) in certain taxa. It has also to be considered
if biological and ecological information is directly deduced
from contextual data or metadata accompanying environmen-
tal sequence data (Peršoh and Rambold 2012), because repre-
sentatives of different species with identical barcoding se-
quences, but different ecology, may conceal existing patterns.

Functional microarrays provide a valuable tool to assess
functional diversity in complex environmental samples, by
targeting specific genes or transcripts (Roh et al. 2010; He
et al. 2012; Nikolaki and Tsiamis 2013). They are particularly
suitable for monitoring projects, because the approach targets
known genes and may not provide de novo sequence infor-
mation, even though genes from unknown organisms may be
detected by targeting conserved regions (Peršoh et al. 2012).
Sequencing of genomes and transcriptomes in environmental
samples becomes more and more feasible due to consistently
decreasing costs and increasing capacities of NGS technolo-
gies (Segata et al. 2013; Buermans and Dunnen 2014).
Because such non-targeted approaches are realizable without
extensive amplification, they are also less prone to (mostly
quantitative) biases (Eisen 2007; Simon and Daniel 2011;
Lewin et al. 2013). A major challenge is the assembly of the
numerous sequence reads from complex communities
(Wooley et al. 2010). This error-prone step may be
circumvented by directly mapping the (trimmed) raw reads
of metagenomic and metatranscriptomic sequences against
reference databases (Davenport and Tümmler 2013).

Advances inmetaproteomics are largely coupled to those
in sequencing technologies and mass spectroscopy (MS,
VerBerkmoes et al. 2009), because the analysis of complex
protein extracts is not feasible by de novo assessment of ami-
no acid sequences using Edman Degradation (Edman and
Begg 1967) and MS-based de novo sequencing (Seidler
et al. 2010) has not yet reached maturity (Schneider and
Riedel 2010; Seifert et al. 2013). Instead, reference spectra
are generated by in silico transcription of gene sequences
and subsequent in silico simulation of digestion patterns of
the putative proteins (VerBerkmoes et al. 2009). Analyses of
extracts usually begin with separation of the purified proteins
according to their isoelectric points and sizes by 2-

dimensional sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (2-D SDS-PAGE), and is followed by proteolytic
degradation of the proteins. Alternatively, degradation may be
accomplished after 1D SDS-PAGE and the peptides separated
by one to multi-dimensional liquid chromatography (LC).
Finally, the peptides are ionized and analyzed by MS.
Resulting spectra are compared to the references generated
in silico (Graham et al. 2011; Becher et al. 2013). These de-
velopments enable high- throughput analyses of
metaproteomes from even complex environmental samples
(e.g., Schulze et al. 2005; Wilmes et al. 2008; Wu et al.
2011, Kolmeder et al. 2012). However, data evaluation strong-
ly depends on the availability of reference genomes/
transcriptomes and while the reference databases are rapidly
growing, huge amounts of data push the computationally de-
manding analyses to their limits. This development was sug-
gested to be encountered by compiling environment-specific
reference datasets or complementing metaproteomic assess-
ments by metagenomic sequencing (Becher et al. 2013).

Metabolomics also greatly benefitted from the improve-
ment of MS technologies, in particular with regard to the detec-
tion of novel rare metabolites (Pan and Raftery 2007; Ban et al.
2012). Mass spectroscopy usually requires time-consuming
pretreatments, such as capillary electrophoresis (CE), gas chro-
matography (GC) or LC (Robertson 2005), which are suitable
for single holobionts (Hernández et al. 2009; Walker et al.
2014a), but not particularly compatible with high-throughput
analyses of environmental samples. Nuclear magnetic reso-
nance (NMR) technologies require less laborious preparation
of samples than MS approaches (Lankadurai et al. 2013) and
are therefore preferably used in metametabolomic studies
(Jones et al. 2014). Among the various NMR systems available
for analyzing solutes, high-end devices may even compensate
for the generally lower sensitivity as compared to MS, why
affordability of such high-end instrumentation is certainly the
major issue currently limiting the number of metametabolomic
environmental studies (Lankadurai et al. 2013). Solid-state 13C
NMR reveals types of carbon bonds in dried and fine ground
samples, which provides detailed insights into the chemical
composition of environmental samples (Preston 2014). It is
particularly suitable to track chemical shifts in organic material
during biological degradation (Preston et al. 2009; Ono et al.
2011; deMarco et al. 2012;Wallenstein et al. 2013; Osono et al.
2014). The method is already well established, with the minor
shortcoming that it does not identify chemical compounds, but
carbon bonds which partly co-occur in different molecules, thus
complicating quantification of specific molecules (Berg and
McClaugherty 2014).

Quantification

Quantification of meta’omics data primarily depends on the
quantifiable and reproducible extraction of the respective
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molecules from the environmental samples, as discussed
above. The next big challenge is quantifying the molecules
in the extracts. This applies in particular for metagenome
analyses based on amplified barcoding markers, due to the
extensive manipulations applied during preparation of the
template (library) for sequencing (Lindahl et al. 2013). Only
direct, non-targeted shotgun sequencing of environmental
metagenomes circumvents at least the PCR-associated biases
(Eisen 2007; Simon and Daniel 2011; Lewin et al. 2013).
Metagenomics reveal the genetic capacity of a community,
while transcription levels and post-transcriptional modifica-
tions, are usually not predictable from the obtained sequences
(Moran 2009; Simon and Daniel 2011). If a gene is present,
the community has the potential to express this gene, but
quantities of the product may not directly dependent on gene
abundance. The presence of a certain gene therefore seems
more important than its actual abundance and quantification
is of minor relevance. Compositional comparisons of micro-
bial communities in environmental samples are, however,
usually based on taxon abundances inferred from quantities
of barcoding genes (Lindahl et al. 2013), even though it has
been shown that the detected abundances of amplicons do not
necessarily reflect biological abundances (Amend et al. 2010;
Baldrian et al. 2013). Amplification rates during PCR-
reactions are particularly prone to quantitative biases caused
by primer selectivity and binding kinetics, as well as by dif-
ferences in secondary structure, length, composition and nu-
cleotide sequence of the amplicons (Polz and Cavanaugh
1998; Bellemain et al. 2010; Engelbrektson et al. 2010; Toju
et al. 2012;Werner et al. 2012; Huang et al. 2014; U’Ren et al.
2014). Amplicon abundance, therefore, does not necessarily
reflect the corresponding genome abundance. The ratio may
be calibrated against internal standards, i.e. quantified pure
DNA from the taxa of interest, may allow inference of genome
abundances in metagenomic extracts. Inference of biological
abundance (e.g., biomass) from amplicon abundance, again,
requires laborious experiments including the corresponding
reference strains (Raidl et al. 2005; Tellenbach et al. 2010).
Despite these limitations of quantifying absolute abundances
within a single sample, comparative analyses of relative abun-
dances among metagenomic extracts are largely reliable if
similar samples, including similar taxonomic diversity and
similar concentration and composition of co-extracted con-
taminants, are compared (Amend et al. 2010; Davey et al.
2013a). This was supported by the finding that randomization
of OTU-abundances within samples had only negligible im-
pact on the results on community level when equally applied
across similar samples (Peršoh 2013).

Metatranscriptomic studies are usually interested in the
actual activity of microbial communities (Baldrian and López-
Mondéjar 2014). This makes quantitative data very important
and the short-lived nature of mRNA requires special care dur-
ing sample preparation. In addition to differences in properties

among samples, as discussed above, processing time may be a
crucial factor. Half-life times range from less than 10 to more
than 60 min for different mRNA species (Geisberg et al.
2014). The mRNA profile has therefore to be stabilized im-
mediately after sampling. Delays and inconsistencies in pro-
cessing time are likely to bias the results, but their impact on
expression profiles in environmental communities has not
been studied in detail so far. Quantitative biases introduced
during downstream analyses by enzymatic reactions are
circumvented by microarray experiments using enzyme-free
preparation of labelled templates from RNA extracts (Peršoh
et al. 2012). Accounting for technical variance by co-spotted
references (Liang et al. 2010) or multiple probe replications
(Pozhitkov et al. 2014) even allows for absolute quantification
of the signals if the probes are calibrated. This is already chal-
lenging for a limited number of known genomes (Pozhitkov
et al. 2014), why thorough probe calibration appears currently
not achievable for microarray experiments including extracts
from environmental samples with unknown composition.
Normalization based on overall signal intensities is not advis-
able for microarrays targeting a subset of the transcripts in
environmental samples. A reasonable measure to compare
data from similar samples is the ratio of signals from function-
al probes to those from universal RNA probes, as it reflects
expression of a certain gene against the whole community
present in the sample (Peršoh et al. 2012). Such an approach
is also feasible for de novo generated sequence data by NGS
(Wang et al. 2009), in particular if RNA fractions are not,
moderately, or at least reproducibly enriched during library
preparation (Urich et al. 2008; Simon and Daniel 2011). It
is, however, highly recommended to use internal standards
for quantitative metatranscriptomics (Satinsky et al. 2013).

Metaproteomics may straightforwardly quantify proteins
or peptides by analyzing spot intensities on gels (Seifert et al.
2013). For gel-free LC approaches, tagging the proteins has
been suggested to quantitatively compare samples (Thompson
et al. 2003; Ross et al. 2004), but also signal intensities or
counts of spectra may be used as measures for relative abun-
dances (Nahnsen et al. 2013; Pan and Banfield 2014). The
normalized spectral abundance factor (NSAF) is most com-
monly applied to compare label-free experiments, accounting
for protein lengths during normalization (Paoletti et al. 2006).
In a study on decomposition processes, these NSAF of cellu-
lases and xylanases, however, did not correlate to the actual
independently measured enzyme activities (Schneider et al.
2012). Complementary analyses by independent approaches
therefore appear currently advisable to infer ecological pro-
cesses from metaproteomic data. Metabolic activity of organ-
isms may also directly be assessed by quantifying the incor-
poration of stable isotopes from labelled substrates into the
respective proteins (von Bergen et al. 2013).

Quantification in non-targeted metametabolomic analyses
exclusively depends on the extraction method, because MS
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techniques are largely, and solvent NMR techniques fully
quantitative, using an internal standard (Lin et al. 2006;
Lankadurai et al. 2013). For solid state NMR, quantification
of carbon bonds in complex environmental samples is an is-
sue, which may, however, be compensated by multiple mea-
surements applying different settings (Knicker 2011; Preston
2014).

Factors shaping plant-associated fungal communities

This section discusses the insights meta’omic studies have
provided into functional diversity of plant-associated fungal
communities. Predictability of fungal community composi-
tion from host plant identity and composition of the plant
community is one of the focal points. The impact of distance
decay, i.e. increasing dissimilarity between fungal communi-
ties with spatial distance, is also addressed. The potential
drivers of community composition are discussed against the
background of the functional role of the fungi in their respec-
tive habitats and the temporal dynamics in the communities.
Following the communities associated with living leaves,
those in decaying leaves (i.e. the soil-covering organic layers)
are addressed. Subsequently, root-associated communities are
discussed and finally saprotrophic soil fungi.

Phyllosphere communities

Cultivation-based studies revealed an immense diversity of
fungi colonizing the plant phyllosphere (for reviews see e.g.,
Hawksworth 2001; Arnold 2007; Sieber 2007; Rodriguez
e t a l . 2009 ; Po r r a s -A l f a ro and Bayman 2011 ;
Suryanarayanan 2011; Unterseher 2011), but already the first
application of next-generation sequencing (NGS) indicated
that these estimates may be even too low (Jumpponen and
Jones 2009; 2010). Variability of fungal communities in the
phyllosphere of a given host actually exceeded variation
among host individuals (Cordier et al. 2012a). The high diver-
sity was confirmed by all studies focusing either on the
phyllosphere communities as a whole, or only on the endo-
phytic part (see below), while epiphyllous fungi have only
been addressed specifically in studies of sooty mould symp-
toms. Composition of those conspicuous epiphytic communi-
ties seems to differ fundamentally between temperate and
warmer climates (Chomnunti et al. 2014): culture-derived se-
quences indicate them to be composed of few taxa in
Germany (Flessa et al. 2012), while an unexpectedly high
diversity was revealed by NGS in New Zealand (Dhami
et al. 2013). Composition of sooty mould communities is gen-
erally independent of the host taxon identity. In warm cli-
mates, it obviously depends on the identity of the sap-
sucking insects excreting honeydew, the nutritional source of
the sooty moulds (Dhami et al. 2013). The counterparts from

temperate regions are obviously rather uniformly composed
(Chomnunti et al. 2014). Exceptions are those living directly
on plant exudates, such as the Capnocheirides rhododendri-
dominated community of Rhododendron ferrugineum. Flessa
and Rambold (2013) showed that growth of the epiphyte
C. rhododendri was indeed restricted to the leaf surface, but
they also found many epiphyllous fungi co-occurring within
the leaves. This is consistent with the two most common taxa
of European sooty mould communities, i.e. Aureobasidium
and Cladosporium (Flessa et al. 2012), often also dominating
endophytic fungal communities (e.g., Jumpponen and Jones
2010;Wearn et al. 2012). Because different genotypes, at least
of Cladosporium, showed different preferences for the leaf
interior and exterior (Flessa and Rambold 2013),
conspecificity of the respective genotypes would have to be
established to confirm that they are actually predominantly
epiphytic fungi invading the plant tissues only occasionally.
Linking the dynamics of epi- and endophytic communities by
concerted assessment of both communities in future studies
may actually provide a key to understanding distribution pat-
terns of the fungal community in the phyllosphere.

Factors shaping endophytic community structure were only
recently addressed by metagenomic studies. Host plant iden-
tity clearly separated the endophytic communities in mistle-
toes from those of their pine hosts (Peršoh 2013). Comparing
angiosperm and gymnosperm host trees based on ARISA-
profiling, the impact of the host was even more striking
(Weig et al. 2013): Host plant identity explained mostly more
than 80 % of the differences between host species of the two
groups at the mixed forest site. While the angiosperm species
also hosted different endophytic fungal communities, the two
analyzed pinacean species were indistinguishable in this re-
gard. The communities in Rhododendron were also similar
among host species (Raizen 2013) and eleven tropical grass
species hosted similar endophyte spectra (Higgins et al. 2014).
Endophytic communities in four moss species in southern
Norway largely overlapped in composition, but were still
clearly distinct (Davey et al. 2013b). Below species level,
different genotypes of Fagus sylvatica, Populus angustifolia
and P. balsamifera were shown to host significantly different
fungal communities (Cordier et al. 2012a; Bálint et al. 2013;
Lamit et al. 2014). The impact of phylogenetic and genotypic
affiliation of the host on composition of endophytic commu-
nities is therefore not consistent among host taxa, i.e. endo-
phytic communities may differ among genotypes of a certain
host species, but may be indistinguishable within other host
genera or even families.

Fungal spectra isolated from different above-ground organs
and tissues of the same host species usually clearly differed
(see Peršoh et al. 2010; Moricca et al. 2012; Sun et al. 2012;
Tateno et al. 2014, and references therein), but cultivation-
independent studies addressing within host distribution of en-
dophytes are scarce. A single pyrosequencing approach partly

Fungal Diversity (2015) 75:1–25 7



confirmed the cultivation-based findings, by showing that
stems and leaves of pine trees hosted different fungal commu-
nities (Peršoh 2013). Those in the corresponding organs of
mistletoes, however, were indistinguishable. The discrepancy
was hypothesized to be due to the presence of stomata on
leaves and stems of mistletoes, which allows for invasion of
both organs by the same infection pathway. The cultivatable
endophyllous fungal community has also been shown to de-
pend on leaf exposure (Unterseher et al. 2007), but
cultivation-independent evidence on exposure-effects is re-
stricted to bark-colonizing communities (Beck et al. 2014).
The authors addressed a mixture of rather complex communi-
ties, including potentially epi-, endophloedic and lichen-
associated fungi of a corticolous lichen community. They re-
vealed that the seasonal development of this assemblage dif-
fered according to exposure, but the heterogeneity of the sam-
pled community complicated a final discussion. To study the
effect of stressors on endophytic communities, however,
exposure-differences are in principal promising, because re-
striction to a single host individual standardizes the impacts of
host genotype, ecotype and microbiome.

A relocation experiment of P. balsamifera from their natu-
ral southern to their northern distribution limit revealed signif-
icantly different endophyte communities between locations
(Bálint et al. 2014). The difference was primarily explained
by the escape from pathogenic fungi (i.e. enemy release) due
to the abrupt relocation, and hypothesized to be less pro-
nounced in slow naturally shifting host populations. Fungal
phyllosphere communities were highly similar in beech trees
(Fagus sylvatica) in the Alps and the Vosges, but differed
largely from trees sampled in the Pyrenees (Coince et al.
2014). Geographical distance therefore at least not inevitably
causes differences in the phyllosphere communities of natu-
rally grown trees, but a conclusive discussion of the contra-
dictory results was hampered by the fact that a methodological
bias could not be excluded. Conspecific hosts (i.e. Pinus
sylvestris and Viscum album) from geographically distinct,
but ecologically similar sites hosted quite similar endophyte
communities (Peršoh 2013). Such a low effect of spatial dis-
tance at regional scales is pre-conditional for studies focusing
on regional and local factors varying between geographically
distinct sites (e.g., Jumpponen and Jones 2009; 2010;
Zimmerman and Vitousek 2012). The studies by Jumpponen
and Jones (2009; 2010) revealed a significant difference of
phyllosphere communities between urban and nonurban envi-
ronments. While autocorrelation of many factors due to land
use effects hampered ascertainment of the cause, the authors
suggested differences in stand size, fertilization, litter removal,
and nutrient and pollutant concentrations, as possible agents.
Environmental conditions also shaped endophytic fungal
communities across a Hawaiian landscape, with rainfall and
temperature having major impacts (Zimmerman and Vitousek
2012). The latter was caused by altitudinal differences, which

have also been shown to influence fungal endophyte and
phyllosphere communities of mosses and beech, respectively
(Davey et al. 2013a; Cordier et al. 2012b; Coince et al. 2014).
The authors concertedly argued that altitudinal differences are
not necessarily caused by differences in temperature alone, but
studies separately targeting correlated factors, such as radia-
tion, diurnal temperature variations and functional plant traits,
have not been published so far (see Abbate and Antonovics
2014).

Community composition of phyllosphere fungi changed
significantly throughout the years course in Quercus
macrocarpa (Jumpponen and Jones 2010), Quercus ilex
(Peñuelas et al. 2012) and Fagus crenata (Tateno et al.
2014), as well as in two out of three analyzed moss species
(Davey et al. 2013b). Temporal shifts became already appar-
ent within timeframes of one month and two weeks, respec-
tively (Cordier et al. 2012b; Peršoh 2013). Turnover of fungal
taxa and not their accumulation caused the seasonal changes
in bryophyte associated fungal communities (Davey et al.
2012). The instability of the endophytic community structure
demonstrated by these studies implies that the influence of a
certain factor on endophytic fungal communities may only be
conclusively discussed against the background of seasonal
dynamics. Jumpponen and Jones (2010) recovered most of
the fungal taxa from the previous year by regular sampling
throughout the two growing seasons, while differences be-
tween subsequent years were rather pronounced in the beech
phyllosphere (Cordier et al. 2012b). Significant interannual
variation of cultivatable fungi was also reported in tropical
grasses (Higgins et al. 2014), providing additional evidence
that endophytic fungal communities may not follow solely
cyclic developmental courses across years.

The vertically transmitted Clavicipitaceae endophytes of
grasses complete their whole life cycle within host plants
(see Tanaka et al. 2012). The vast majority of the horizontally
transmitted endophytes are known from other substrates, in-
dicating that the phyllosphere is only one habitat in their life
cycle (Peršoh 2013). Growing evidence suggests that some
endophytic fungi become saprotrophic decomposers after leaf
fall, and inhabit living leaves as dormant saprobes (see
Suryanarayanan 2013 and references therein). Others may be
beneficial for the host plant due to their antibiotic (Kumar and
Kaushik 2012) or antioxidant activity (Hamilton et al. 2012)
or by increasing stress tolerance or host fitness in general
(White et al. 2014). Some endophytes other than
Clavicipitaceae may also be transmitted vertically (Hodgson
et al. 2014; Tello et al. 2014) and therefore presumably inti-
mately interact with their hosts, but the nature of these inter-
actions remains speculative. Functional meta’omics ap-
proaches have so far not been applied to the phyllosphere
microbiome, with the exception of epiphyllous bacteria
(Delmotte et al. 2009). A major methodological challenge is
certainly the dominance of plant material in leaf extracts,
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which complicates non-targeted environmental sequencing
approaches. Functional microarrays target specific genes and
may thus may provide an alternative to gain deeper insights
into the ecological roles of phyllosphere fungi in the future.

Litter decomposers

Organic layers of decaying plant material cover the actual
mineral soil in almost all ecosystems. The fungal community
in decaying beech leaf litter was shown to be similar to that in
living leaves when assessed by RFLP-analysis (Peršoh et al.
2013), indicating that the composition of the initial fungal
decomposer community may, as the endophytic community,
depend on the plant community. Next Generation Sequencing
data revealed a rapid turnover in the dominant taxa after the
abscission of oak leaves, but half of the dominant
phyllosphere taxa persisted in the litterbags for considerable
time (Voříšková and Baldrian 2013). Basidiomyceteous
yeasts, which were also present in the different compositional
stages of the beech litter, were still abundant in the oak litter
after eight months of incubation. Cultivation-based studies
indicate that phyllosphere yeasts show low host preference
(Fonseca and Inácio 2006). Their co-occurrence in living
and decaying leaves is therefore unlikely to cause major dif-
ferences between litter types. Distribution patterns of these
yeasts should, however, be interpreted with caution, because
species identification is rather challenging in these groups and
the most ‘ubiquitous species’ have indeed been shown to be
phylogenetically rather heterogeneous (Fonseca and Inácio
2006). To conclusively discuss the role of previously endo-
phytic fungi in the formation of potential host plant- or
community-specific decomposer communities, their full life
cycle has to be considered, by analyzing phyllosphere and
pedosphere communities of different hosts concertedly
(Peršoh 2013).

Significantly different fungal communities were found in
decomposing leaves of different host species, when litterbags
were incubated beneath pure stands of the respective host tree
(Kubartová et al. 2009). Because the litter was previously
sterilized (Kubartová, pers. comm.), the finding supports the
idea that the soil-borne decomposer communities are adapted
to degrading the litter they mostly encounter, i.e. to that from
the tree species above (Strickland et al. 2009). Due to this
‘home field advantage’ (Gholz et al. 2000; Prescott and
Grayston 2013), litter is decomposed on average 8 % faster
by native than by exotic decomposer communities (Ayres
et al. 2009). Distinct decomposer communities developed in
bags with litter of Populus tremuloides and Picea mariana,
respectively, at a mixed forest stand (Treseder et al. 2014). The
communities in the two litter types only differed from the
second year on, which indicates that the differences may be
ascribed to an early, but not to the initial community of soil-
inhabiting decomposers. Consistent with leaf chemistry,

lignocellulolytic fungi preferred spruce, while those capable
of using tannin-protein complexes were preferably found in
the aspen litter. Feinstein and Blackwood (2013) found the
fungal communities in litter collected from mixed deciduous
forests to differ only at four out of six sites between American
Beech (Fagus grandifolia) and Sugar Maple (Acer
saccharum), and only marginally. The saprotrophic basidio-
mycete community was not structured by the vegetation type
in the litter of three different forest ecosystems in North
America (Edwards and Zak 2010). Host species identity,
again, significantly shaped the fungal community in forest
litter in the Czech Republic (Urbanová et al. 2015). More than
one third of the fungi in the organic layers significantly pre-
ferred litter of one of the of seven analyzed tree species, which
could not be explained by litter chemistry. Bray et al. (2012)
used common garden experiments to exclude the impact of an
adapted local microbial community. Their study found a
higher impact of the chemical composition of the litter (i.e.
litter quality) than of host identity on the decomposer commu-
nity. The efficiency of non-adapted artificial communities in
litter decomposition thereby seems to depend more on their
phylogenetic distinctiveness than on species richness (Kivlin
and Treseder 2014). Nutrient content and C:N:P ratios of the
litter shaped the colonizing fungal community in European
Beech along a natural gradients (Schneider et al. 2012) and
across forest management practices (Purahong et al. 2015).
Fertilization experiments in tropical forests also revealed that
nutrient availability significantly affects community structure
of litter decomposers (Kerekes et al. 2013). These studies
show that litter chemistry strongly shapes fungal decomposer
communities, at least in the litter of the same plant species.
Composition of the vegetation cover has a major impact as
well, but it may not be conclusively discussed to what degree
plant identity directly influences the decomposer community,
and which part is ascribable to differences in litter quality
between plant species. The decomposer communities appear
to be structured at small spatial scales, in addition, the under-
lying mechanisms of which remain unclear (Feinstein and
Blackwood 2013). Forestry significantly affected composition
and succession of fungal communities in litter, but causal con-
nections could not be detailed due to the multitude of usually
concertedly applied measures (Purahong et al. 2015).
Disentangling the effects of the various factors shaping natural
decomposer communities appears particularly important, be-
cause the same litter is degraded differently by different com-
munities (Wallenstein et al. 2013). Composition of the decom-
poser community may therefore affect the chemical composi-
tion of organic matter entering the soil, which again is of
outermost importance for ecosystem functioning (Wickings
et al. 2012).

Assessing temporal shifts in litter decomposer communi-
ties is challenging, because seasonal and successional shifts
both occur along the time scale. Successional shifts in
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decaying pine needles were recently confirmed by coinciding
results from cultivation-based and cultivation-independent ap-
proaches (Haňáčková et al. 2015). Enzyme assays and mea-
surements of leaf chemistry in litterbags in an oak forest were
mostly in accordance with the widely accepted three-stage
model of litter decomposition (see below), but composition
of the communities changed not only between, but also during
the three stages (Voříšková and Baldrian 2013). This indicates
that that the sequential change in substrate quality was not the
only factor shaping the community. The authors reported sea-
sonal patterns of several enzyme activities earlier, some of
which were strikingly similar between different communities
in different litter decomposition stages, i.e. in the litter and
organic layers (Voříšková et al. 2013). This is in accordance
with Andreetta et al. (2012) reporting seasonal differences in
urease and phosphatase activity in the organic layer of a
Mediterranean oak forest. Fungal community composition
differed more between autumn and spring within the Oh
layer, than between the Oh layer and the underlying
mineralic E horizon in autumn. Seasonality may therefore
overlay succession in litter decomposing fungal community
dynamics.

Taxonomic diversity patterns in the temperate oak litter
revealed by cellobiohydrolase genes (chbI) were neither
accordable to the patterns arising from the ITS barcoding
gene, nor to the cellobiohydrolase activities measured using
enzyme assays (Voříšková and Baldrian 2013). The authors
considered the inconsistencies between the whole and the
chbI-possessing fungal community as indication for a propor-
tional shift of cellulolytic fungi during decomposition.
Differences in relative chbI abundance and enzyme activities
were supposed to result from specific fungi having specific
requirements to become active. However, discrepancies be-
tween targeted (gene amplification) and non-targeted (enzyme
assays) approach may also result from the activity of organ-
isms which were not targeted, such as bacteria (see Štursová
et al. 2012), and therefore only detected by one approach. In a
(non-targeted) metaproteomic study on litter decomposition,
Schneider et al. (2012) found all decomposition-related pro-
teins to derive from fungi, and none from bacteria. Enzyme
abundance and fungal community composition remained rel-
atively constant between February and May at the four sam-
pling sites, but the cellulases were produced by clearly differ-
ent taxa at the two sampling events. This indicates that while
being present throughout the study period, the prerequisites
for activity of most taxa were only fulfilled in one of the two
months. Differences between DNA and RNA barcoding gene
profiles indicated that only part of the present fungal commu-
nity was active in a Scottish moorland, which supports the
hypothesis of unequal activity of the present taxa (Curlevski
et al. 2011). Present (DNA-derived) and active (RNA-derived)
communities in a spruce mountain forest were even more
striking, with abundance of 18 % of the active fungal OTUs

falling below the detection limit in the DNA pool (Baldrian
et al. 2012). Of the chbI genes, 15 and 27 % were only detect-
ed as RNA and DNA, respectively. These data clearly dem-
onstrate that only a part of the present fungal community is
actively involved in decomposition at a given time, while even
taxa representing a negligible proportion of the present com-
munity may significantly contribute to the decomposition
process.

Metagenomic approaches consistently confirmed an in-
crease in the relative abundance of Basidiomycota at the ex-
pense of Ascomycota with progressing decomposition. This
succession is already detectable at time scales of weeks to
months (Kuramae et al. 2013a; Schneider et al. 2012;
Voříšková and Baldrian 2013), but still observable after years
along vertical soil profiles (Lindahl et al. 2007). The taxonom-
ic succession is usually accompanied by a functional shift
from saprobic to mycorrhizal taxa. This amplifies the trend
in habitats dominated by ectomycorrhizal symbioses (pre-
dominantly formed by Basidiomycota), but lessens it in envi-
ronments of ericoid mycorrhizal symbioses, formed by
Ascomycota (Clemmensen et al. 2013). Succession within
the saprobic community is thought to be coupled to changes
in the chemical composition of the plant litter, with the respec-
tive most easily degradable substances available being
decomposed in three sequential stages: the loss of extractables
is followed by degradation of hemicelluloses and cellulose,
and finally the most ‘recalcitrant’ compounds, such as lignin
are attacked (Berg and Staaf 1980, Moorhead and Sinsabaugh
2006; Šnajdr et al. 2011). Since the Basidiomycota are gener-
ally better equipped for degradation of lignin (e.g., Baldrian
2008; Lundell et al. 2010), succession within the saprobic
community is directed from Ascomycota to Basidiomycota.
However, major concern has been expressed against the cate-
gorization of certain litter compounds as ‘recalcitrant’ (Kleber
2010) and the concept of successive decomposition of organic
matter compounds is challenged by analyses on residence
times of organic matter compounds in soil (Schmidt et al.
2011; Gougoulias et al. 2014). These were shorter for com-
pounds such as lignin than, e.g., for proteins and saccharides,
which were so far supposed to be rapidly degraded.
Application of NMR techniques in litter decomposition stud-
ies may also eventually change the concept of ‘recalcitrant’
lignin (Berg 2014). While the three-phase model of decompo-
sition seems still appropriate in the light of the new data (de
Marco et al. 2012), it was suggested to be refined and less
focused on lignin (Preston et al. 2009). Actually, activities of
all measured organic matter degrading enzymes decreased
from the organic layer to the topsoil across North American
soils, except for an increase in peroxidase by 9 % (Talbot et al.
2014). Activities of ligninolytic enzymes were even highest in
the uppermost litter layer and decreased with proceeding com-
position (Voříšková et al. 2013). Successive degradation of the
most easily degradable compounds, however, was found

10 Fungal Diversity (2015) 75:1–25



using litterbag experiments at the same location, with
lignolytic activity becoming characteristic of the decomposi-
tion process only in the second year (Šnajdr et al. 2011;
Voříšková and Baldrian 2013). It remains to be clarified if this
discrepancy may be ascribed to interannual variability or a
methodological bias associated with either the experimental
or the descriptive approach. Transcripts related to lignin deg-
radation were not detected during early decomposition of
maize leaves (Kuramae et al. 2013a), but the experimental
study was conducted under laboratory conditions and a com-
parison to natural conditions would be desirable to draw final
conclusions, in particular because cellulolytic activity was al-
so not detected. With the meta’omic studies partly supporting
an early degradation of lignin and partly not, it seems essential
to exclude methodological biases (e.g., Hatfield and
Fukushima 2005) to ascertain if leaf litter decomposition gen-
erally follows the same course, or if fundamental differences
exist.

The idea of an early attack of lignin seems not to fit to the
well-established view of a succession from Ascomycota to
Basidiomycota (see Frankland 1998), which is seems, at first
view, to be also supported by the meta’omic studies discussed
above. The reported successional shifts in community compo-
sition are, however, based on relative abundances.
Considering fungal biomass per soil dry weight, density of
Basidiomycota in oak forest soil was highest in the litter layer,
i.e. in the uppermost organic layer (Voříšková et al. 2013).
Abso l u t e abundance o f bo t h Ascomyco t a and
Basidiomycota decreased with progressing decomposition.
The observed high density of potentially ligninolytic
saprotrophic Basidiomycota in the uppermost layer is well
accordable with the corresponding enzyme activities and an
early attack of lignin. Biomass of ectomycorrhizal fungi also
decreased with depth at the same site (Voříšková et al. 2013).
A significant decline of ectomycorrhizal mycelium with
depth, i.e. progressing decomposition, is already apparent
from small-scale distribution patterns (Anderson et al. 2014).
These findings indicate that a considerable fraction of the
nutrients EcM fungi provide to the host plant may come from
only recently fallen and not yet highly decomposed or even
mineralized leaves of the host. While conclusive evidence for
EcM fungi utilizing carbon from litter as energy source is still
missing, their contribution to decomposition by releasing exo-
enzymes to exploit nitrogen sources is now undisputed (Ekblad
et al. 2013). Genomic analyses revealed that EcM
Bsidiomycota are reasonably well equipped to degrade struc-
tural plant compounds and lignin in particular (Kohler et al.
2015). Host plants provide energy to EcM fungi and lignin
degradation generates little energy, at most (Schimel and
Weintraub 2003). Occurrence of EcM fungi in freshly fallen
leaves is therefore well accordable to an early attack of lignin.
Peroxidase activity, which contributes to lignin degradation,
was indeed significantly higher in litterbags enriched in EcM

fungi by sand barriers as compared to communities of mostly
saprotrophic fungi (Phillips et al. 2014). Significant correlations
of proteases and peroxidases with abundance of EcM fungi in
Californian pine forests further supports an involvement of
EcM fungi in lignin degradation (Talbot et al. 2013) and per-
oxidase activity was also positively correlated to the ratio of
EcM to saprotrophic fungi in pine forests across North
America (Talbot et al. 2014). By linking cause (gene expres-
sion) and effect (chemical changes), meta’omic studies have the
potential to elucidate the complex decomposition processes in
detail. Enzyme efficiencies under environmental conditions,
however, will have to be accounted for in future, because out-
side the cells, the released exoenzymes interact with the com-
plex soil/litter matrix (Trumbore 2009; Wang et al. 2012).
Assessing the impact of the exact chemical structure of hetero-
geneous macromolecules, such as lignin, on decomposition dy-
namics will be another challenge for future studies (Talbot et al.
2012).

Root-associated communities

Meta’omic studies and anonymous fingerprinting approaches
usually assess the whole fungal community in root samples,
including arbuscular mycorrhizal (AM) ectomycorrhizal
(EcM), ericoid mycorrhizal (ErM), pathogenic and ‘endophyt-
ic’ fungi, as well as not further classifiable associated fungi.
Following sequence-based taxonomic identification, the
groups may be separated a posteriori. Specific primers only
allow for selective amplification of AM fungi, which all be-
long to the phylogenetically distinct Glomeromycota (Krüger
et al. 2009, Öpik et al. 2009). The patterns discussed in the
following therefore apply for the heterogeneous assemblage
of all root-associated fungi in general, if not specified
otherwise.

Similarity among EcM communities was well explained,
when phylogenetic relationships of the hosts were considered
(Tedersoo et al. 2013). The phylogenetic relationships among
herbaceous Asteraceae host plants in grasslands were also
reflected by the root-colonizing fungal community (Wehner
et al. 2014) and AM communities clearly differed between the
distantly related hosts Lolium perenne and Trifolium repens
across Ireland (Hazard et al. 2013). Root-associated fungi,
including ErM fungi, differed between Ericacean host species
in boreal forests (Bougoure et al. 2007; Ishida and Nordin
2010) and between Ericacean and grass hosts planted into
the same soil in single-species mesocosm experiments
(Kreyling et al. 2012). Host plant identity also had a strong
effect on the fungal community associated with
ectomycorrhizal roots in wet sclerophyll forests (Tedersoo
et al. 2009). All these studies reveal a strong impact of host
identity and/or phylogenetic affiliation on the root-associated
fungal community structure, independent of the fungal com-
munity consisting of AM, EcM, or ErM fungi, or if all root-
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associated fungi were considered. Only three species of arctic
Ericaceae shared highly similar fungal communities (Walker
et al. 2011). This exception may be due to the specific circum-
stances, i.e. due to the plant community in the Arctic tundra
being rather old and uniform, consisting of phylogenetically
and spatially closely connected plants and being adapted to
the extreme environment, as discussed in more detail below.
The majority of root-associated fungi in temperate and sub-
tropical forests have recently been shown to be shared among
different host taxa in the same habitat (Toju et al. 2013a,
2014). Distance decay patterns, i.e. the decrease in similarity
between communities with spatial distance, indicated that
plant species share more fungi the closer they grow together
(Toju et al. 2014). Fungal community composition in the roots
of Calluna vulgaris changed along a vegetation gradient, with
the Ericacean shrubs sharing the EcM symbionts of the trees at
forest sites (Bougoure et al. 2007). In Ericaceae-dominated
environments, again, ErM fungi regularly associate with
non-Ericacean hosts (Chambers et al. 2008). These findings
indicate that less abundant plant species predominantly asso-
ciate with compatible fungi among the preferred associates of
the dominant host plants, as suggested by the data of Toju
et al. (2013b, 2014). Correlations with plant community have
already been shown for EcM and AM communities (Edwards
and Zak 2010; Kivlin et al. 2011; Wu et al. 2013). The root-
associated fungal community in a certain plant seems to be
partly structured by the host plant identity and partly by the
whole plant community according to these results.

Öpik et al. (2009) showed that the AM community associ-
ated with generalist plants (occurring in various ecosystems)
represented a subset of that associated with forest-specialized
understory plants in the studied spruce forest. Non-native
plants were supposed to recruit their EcM symbionts among
compatible associates of native plants in an urban environ-
ment (Lothamer et al. 2014). These findings suggest that dis-
tinctiveness of the root-associated fungal community may de-
pend on the adaption of the host to the local habitat; however,
the underlying mechanisms may differ. Native fungal associ-
ates may not be available for introduced exotic plants due to
dispersal limitation, i.e. the plant was transplanted outside the
distribution areas of the usually associated fungi. The
abovementioned understory plants of both specialization cat-
egories are native to the local forest habitat and therefore not
spatially separated from their associated fungi. That generalist
plants are more flexible in recruiting root-associated fungi
than habitat-adapted specialists would be a hypothesis in line
with the observation. Dispersal limitation has predominantly a
significant impact on root-associated fungal communities dur-
ing early succession (Dickie et al. 2013), i.e. at disturbed sites
(Walker and Jones 2013) and recently established (Lekberg
et al. 2007) or currently establishing plant communities
(Williams et al. 2013). Ecosystems which are rich in plant
species represent a fragmented habitat for host-selective

root-associated fungi due to low host density. This causes a
positive correlation of distance decay with host diversity, i.e.
the spatial decrease in similarity between root-associated fun-
gal communities correlates with plant diversity (Bahram et al.
2013). It is unlikely that dispersal limitation causes distance
decay patterns in species-rich ecosystems. Abiotic factors (i.e.
environmental filtering) and biotic factors (i.e. competitive
exclusion) most likely prevent universal establishment of
most fungi in these ecosystems (see Kraft et al. 2014), but
the underlying mechanism will have to be studied in more
detail. When distance decay is caused by dispersal limitation,
the established communities reflect the different dispersal
strategies of the fungi (Walker and Jones 2013). Distance de-
cay may affect AM communities for a prolonged period of
time during succession, due to their lack of efficient mecha-
nisms for long-distance dispersal (Dickie et al. 2013). This
may explain why geographical distance had still a major effect
on AM community composition in agricultural fields, con-
verted from native vegetation 10–15 years ago (Lekberg
et al. 2007), while AM communities were not spatially struc-
tured in native plants across Ireland (Hazard et al. 2013).

Cultivation-independent analyses of presumably mostly
EcM fungi in soil of a northern hardwood forest confirmed
rather short turnover times for the fungal communities (Burke
et al. 2011). These were already indicated by EcM-
morphotype-based analyses to occur in the range of one
month (Courty et al. 2008). The fungal community also
changed clearly throughout the growing season of 2007 In
roots of the EcM host genus Quercus (Jumpponen et al.
2010). A sampling campaign extended to additional sites in
2011, saw a less pronounced seasonality (Lothamer et al.
2014). These successional studies therefore indicate differ-
ences in community dynamics across years. In studies with a
sufficient sampling period to address interannual changes,
EcM community composition consistently differed signifi-
cantly between years (Parrent and Vilgalys 2007; Courty
et al. 2008). The AM community in a northern hardwood
forest underwent no seasonal shifts throughout the growing
season (Burke et al. 2011) and it was stable through time in a
mixed forest in southeastern Estonia (Davison et al. 2012).
The AM community in grasslands changed only negligibly
in the warmer months, but was clearly distinct between sum-
mer and winter communities (Dumbrell et al. 2011).
Metagenomic studies therefore indicate different dynamics
for different types of mycorrhizal communities, the underly-
ing mechanisms for which remain to be clarified.

The root-associated fungal community has been found to
respond to soil acidity in almost all cultivation-independent
studies so far. Soil texture (Wubet et al. 2012), soil type
(Hazard et al. 2013), electric conductivity (Gryndler et al.
2010), content of humified organic matter (Gryndler et al.
2010), organic carbon (Corg) content (Wubet et al. 2012), ni-
trogen (N) content (Walker et al. 2014b, but see also
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Jumpponen et al. 2010), and C:N ratio (Wubet et al. 2012) also
had an effect. All measured soil parameters mostly had a cer-
tain impact on the root-associated fungal communities, indi-
cating that their composition is strongly shaped by abiotic
factors. Notably, the EcM communities in Chinese subtropical
forest neither responded to C:N ratio, pH, nor Corg (Wu et al.
2013). Temperatures (annual mean and range) were correlated
with EcM and AM community composition across Chinese
forests, while C:N ratios and mean annual precipitation only
affected the EcM, but not the AM communities (Shi et al.
2014). Composition of the root-associated community corre-
lated with mean annual temperature and pH along elevation
gradients in France, but both factors were correlated with ad-
ditional soil parameters, why a direct effect could not be
ascertained (Coince et al. 2014). The AM community associ-
ated with potato roots in the Andes was quite conserved along
elevational and environmental gradients (Senés-Guerrero and
Schüßler 2015). Soil moisture and temperature were correlat-
ed to AM community composition on the global scale, but
explained their composition only to a small degree (Kivlin
et al. 2011). Relevance of the abiotic factors changed with
season in a beech-maple forest (Burke et al. 2009): while soil
pH and moisture were most important in June, phosphorous
content had the major impact in September. The impact of
abiotic factors is therefore best analyzed against seasonal com-
munity dynamics. Selections of soil parameters have been
assessed concertedly with root-associated fungal community
structure, and only as co-variables in descriptive studies.
Experimental studies on the community scale as well as de-
scriptive studies focusing on abiotic factors along consistent
plant communities and hosts in comparable habitats would be
beneficial to ascertain their actual impact. The new
meta’omics approaches strongly facilitate assessments of mi-
crobial communities, which might be a chance to place more
emphasis on assessing or controlling the numerous environ-
mental parameters in future studies.

Soil communities

The mineral soil horizons are usually easily distinguishable
from the covering organic layers in the field. Separating bulk
soil from the rhizosphere in soil samples is much more chal-
lenging, because even if roots are separated, hyphae emerging
from root-associated fungi remain in the sample. Coince et al.
(2013) showed that the community in soil samples freed of
roots still reflects the mycorrhizal community. Taxonomic as-
signment via barcoding sequences may allow to identify cer-
tain Operational Taxonomic Units (OTUs) as mycorrhizal
fungi. However, a considerable proportion of sequences are
not identifiable to a taxonomic level required for ecological
categorization. Many root-associated but non-mycorrhizal
fungi remain unidentified as such due to their immense diver-
sity. Studies focusing on soil fungi therefore usually detect the

entire soil fungal community and assign a subset as known
mycorrhizal taxa. The proportion of OTUs categorized as my-
corrhizal fungi in mineral soil often ranges from 40–50 %
(e.g., Wubet et al. 2012; Coince et al. 2013; Wu et al. 2013;
Shi et al. 2014), but lower (e.g., Lindahl et al. 2007) and
higher (e.g., Voříšková et al. 2013) proportions have been
reported. Mycorrhizal fungi therefore comprise a significant
part of the fungi in soil samples , which may not be separated
from saprotrophic soil fungi in anonymous fingerprinting ap-
proaches. An unknown proportion of non-mycorrhizal root-
associated fungi may be also expected in soil samples, which
demands caution in discussing results against the assumption
that soil samples exclusively include saprotrophic fungi.

Distinct fungal communities developed in bulk soil of mi-
crocosms planted with different grass species (Mouhamadou
et al. 2013). Fungi in agricultural soils also differed between
crop types (Rice and Gowda 2011). Replacing native
Australian eucalypt forests with pine plantations entailed sig-
nificant shifts in the forest soil fungal community (Bastias
et al. 2007) and the communities differed among plots planted
with six different tree species at a site in France (Buée et al.
2009). These experimental setups provide strong evidence for
dependency of the soil fungal community on the dominant
plant species. Analyses in natural single and mixed tree com-
munities revealed that plant identity is more important than
plant species richness for the structure of microbial soil com-
munities (Scheibe et al. 2015). Plant and soil fungal commu-
nity structure were also correlated in tropical (Peay et al.
2013), subtropical (Wu et al. 2013) and temperate forests
(Weig et al. 2013), Mediterranean ecosystems (Orgiazzi
et al. 2013) and alpine tundra (Lentendu et al. 2011). Soil
beneath populations of a single plant species was colonized
by different fungi than soil in adjacent areas (Hovatter et al.
2011; Roy et al. 2013). The non-mycorrhizal community be-
neath Pinus muricata was structured by distance from the
plant (Branco et al. 2013). Distribution patterns of primarily
saprobic ascomycetous yeasts (Saccharomycetales) did not
depend on plant community composition in Amazonian
rainforests, in contrast to those of predominantly biotrophic
lineages (Peay et al. 2013). Similar analyses of specific soil
fungal taxa with relatively uniform biology might help to as-
certain the impact of plant cover on their distribution.
Disentangling direct and indirect effects of factors affecting
plant and fungal communities is certainly another major chal-
lenge for future studies (Coince et al. 2013; Scheibe et al.
2015).

Green et al. (2004) conducted a comprehensive study in
Australia revealing that similarity between soil fungal com-
munities decreases with spatial distance (i.e., distance decay).
While the community remained anonymous due to their ap-
plied fingerprinting approach, a pronounced distance-decay
pattern was reported along a transect in China for soil fungi
in general and non-mycorrhizal fungi in particular (Shi et al.
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2014). Differences between Mediterranean soil fungal com-
munities were also only conclusively explained when
distance-decay was considered (Orgiazzi et al. 2013).
Compositional differences between soil fungal communities
in the proximity of Lobelia siphilitica plants were not ex-
plained by geographical distance along a 508 km transect in
eastern North America, while similarity between bacterial
communities decreased with distance (Hovatter et al. 2011).
Across the whole continent of North America, however, spa-
tial distance explained much (R2=0.34) of the fungal commu-
nity structure in pine forest soils (Talbot et al. 2014). The
mechanisms underlying distance decay patterns in soil fungal
communities have recently been addressed in two studies. In
the first, fungal inoculumwas transferred between experimen-
tal sites to exclude dispersal limitation (Glinka and Hawkes
2014). This had no effect on the communities. The second
study compared the fungal communities in soil and air across
an area of 40,000 km2 in California and also revealed no
evidence for dispersal limitation causing distance decay pat-
terns (Kivlin et al. 2014). Distance decay patterns in both
studies were therefore caused by abiotic (i.e. environmental
filtering) or biotic (i.e. competitive exclusion) factors
preventing establishment of the fungi. However, Kivlin et al.
(2014) showed that abundance of hypogeous fungi differed
locally. Dispersal limitation may play a role for these fungi,
due to selective below-ground distribution of fungal spores by
the soil fauna (Werner et al. 2012). Distance decay patterns at
small scales, as found along a 270 m transect in a meadow in
Germany (Schmidt et al. 2013), could therefore be caused by
dispersal limitation.

Seasonal variation of fungal communities was less pro-
nounced in mineral soil than in the organic layers (Andreetta
et al. 2012; Voříšková et al. 2013). Soil communities were,
however, more efficient in degrading complex plant com-
pounds in winter, while glucose was more efficiently metab-
olized in summer (Koranda et al. 2013). These results indicate
a seasonal variation in functional properties, while the soil
fungal community composition remains comparatively stable.
Shifts in the active part of the fungal communitymight explain
such effects, but evidence for the expectable differences in
RNA and DNA derived profiles is currently only availabble
from experimental setups (Kuramae et al. 2013b) and organic
soils (Curlevski et al. 2011). Long-term studies under natural
conditions are required to establish if soil fungal communities
are stable in composition through time, but respond to season-
al changes with changes in activity of specific taxa. The mi-
crobial soil community is also structured by acyclic distur-
bances of the ecosystem, such as wildfire or tree dieback,
but studies on their impact on composition and function of
the soil fungal community are rare (Štursová et al. 2014,
Buscardo et al. 2015).

In beech forests, the entire soil fungal community was
affected by the same soil parameters (i.e. Corg, pH, C:N ratio)

as the root-associated community (Wubet et al. 2012). In sub-
tropical forest soil, however, it was shown that of Corg, pH and
C:N ratio, only Corg had an impact, and only on the whole
community (Wu et al. 2013). The soil fungal community was
dependent on the sand fraction in both studies. The communi-
ties correlated with none of the measured soil parameters (pH,
C content, exchangeable calcium) along a transect from tem-
perate to tropical forests across China, but responded to mean
annual temperature, temperature range and precipitation (Shi
et al. 2014). Coince et al. (2013) showed that the soil fungi in
a French beech forest varied with P content, in contrast to EcM
fungi, while both groups were sensitive to C:N ratios, but not to
acidity. Similarly, a much stronger effect of C:N ratios, than
acidity on the community in agricultural soils was reported
from Japan (Bao et al. 2012). In contrast, the fungi in a pasture
soil in New Zealand did not respond to C:N ratios (or nitrate
content), but to acidity (Stevenson et al. 2014). In other studies,
the C:N ratios and acidity both shaped the soil fungal commu-
nity (Dennis et al. 2012; Wubet et al. 2012), or had no effect
(Hovatter et al. 2011; Wu et al. 2013; Shi et al. 2014). In arable
soils in an experimental field plot in Rothamstead, England,
with a pH gradient from 4.0–8.3, but otherwise relatively con-
stant soil parameters, the soil fungal community responded
only weakly to pH (Rousk et al. 2010). At a continental scale,
environmental variables including soil chemistry accounted on-
ly for a small variation in fungal communities (Talbot et al.
2014). Fungal community composition and soil pH were cor-
related at global scale, but acidity explained only 2.1 % of the
saprobic and 1.5 % of the total community structure (Tedersoo
et al. 2014b). The best predictor of community composition
was the potential evapotranspiration, explaining 3.8 % of the
saprobic and 2.4 % of the total community variation. Because
of the overall low explanatory values of the environmental
parameters, it was concluded that they only have a minor in-
fluence on soil fungal community composition at the global
scale. This is in agreement with the regional studies discussed
above, which indicate that impact of environmental factors on
fungal communities differs between regions.

In contrast to taxonomic composition, the major ecosystem
functions fulfilled by the fungal communities were not spa-
tially structured in pine forests across North America, but well
explained (R2=0.48) by soil chemistry (Talbot et al. 2014).
Activity of hydrolases, which degrade a multitude of mole-
cules, such as cellulose and proteins, was best explained by
substrate chemistry. Phenol oxidases and peroxidases, which
are involved in lignin degradation, correlated with climate,
soil moisture, and pH. These correlations were consistent
throughout the organic layers and mineral soil horizons.
While gene expression profiles of the microbial communities
were quite similar in the organic layer and the mineral soil in a
French spruce forest, the relative abundance of certain func-
tional groups differed significantly (Uroz et al. 2013). It was
concluded that the community in the organic layer is better
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adapted to degrade easily accessible carbon substrates, while
those in the underlying (top) soil can better utilize leaching by-
products from organic matter decomposition, such as amino
acid derivatives and proteins. Most of the microbial transcripts
in the top soil were related to protein and amino acid metab-
olism after snowmelt in Germany, followed by those involved
in carbohydrate metabolism (Urich et al. 2008). Lipid metab-
olism dominated over carbohydrate and amino acid metabo-
lism in sandy pine forest soil on the French coast (Bailly et al.
2007). In a forest soil in Japan most fungal transcript were
related to carbohydrate metabolism, followed by amino acid
and lipid metabolism in October (Takasaki et al. 2013). These
isolated studies reveal no conclusive picture on the functional
role of the saprotrophic soil community. They were conducted
in different regions and soils and the varying environmental
factors have certainly a major impact on functionality of the
soil communities. Seasonal shifts in functionality (Koranda
et al. 2013) will have to be accounted for in future studies.
To establish causal connections between environmental
variables and fungal response, it may be helpful to analyze
proteins involved in the internal cellular metabolism
separately from secreted proteins mobilizing compounds
from the environment. Approaches assessing treatment
effects on functionality of the soil fungal community are
rare. Damon et al. (2012) compared the eukaryotic
metatranscriptomes between spruce and beech forest soils in
summer in central France. They found a significant higher
abundance of membrane transporters, lignin-oxidative en-
zymes and carbohydrate-active enzymes in the spruce forest
soil, while no group was significantly enriched in the beech
forest soil. Protein spectra in the soil organic matter also dif-
fered between coniferous and broad-leaf forest soils (Schulze
et al. 2005). Unfortunately, the corresponding proteins were
not further specified; probably due to the poorly populated
reference databases of the time.

Meta’omic studies have begun to identify differences in the
functionality of soil microbial communities between ecosys-
tems. Further details on the dependency of soil microbial func-
tional diversity or redundancy on ecosystem structure and
functioning are, however, required. A key element in linking
functionality of the soil microbial community to ecosystem
functioning are certainly plant roots (Silver and Miya 2001;
Bardgett et al. 2014; Solly et al. 2014). The amount of root
litter is similar to leaf litter, but formed within the soil (Berg
and McClaugherty 2014). Root litter therefore represents a
major energy and nutrient source for soil microbes, which
has been widely neglected in meta’omic studies so far.

Conclusion

Meta’omic studies showed that identity of plants strongly
shapes the fungal communities in their phyllosphere,

rhizosphere, and, possibly to a lesser extent, in the surround-
ing pedosphere. This justifies the holobiont concept for eco-
logical studies, but delimitation of holobiont systems in natu-
ral ecosystems is challenging, because composition of the mi-
crobial communities associated with each host depends on the
entire plant community structure. Structure and function of
microbial communities change with time. A holobiont con-
cept in the wider ecological sense has therefore to be dynamic,
not static. Despite these challenges, the close host-fungus in-
terdependencies suggest that taking the holobiont plant as
fundamental unit in ecological studies would certainly facili-
tate our understanding of ecosystem functioning.

The vast majority of meta’omic studies focused on spatial
patterns so far, revealing a plethora of environmental param-
eters to correlate with taxonomic community composition.
Explanatory power of these parameters, however, remained
mostly poor. DNA-based assessments probably complicate
the discovery of existing correlations, because they detect all
present taxa. A considerable proportion of taxa was shown to
be at least temporarily inactive and resting stages may persist
in the environment for years (Nguyen et al. 2012). Presence of
these taxa is not necessarily explained by parameters mea-
sured within a restricted study period and they may blur actu-
ally existing correlations. Assessments of the active fungal
communities based on RNA reflect responses to influencing
factors more directly. Temporal shifts in community struc-
tures, and also in the shaping factors, indicate that such corre-
lations may only emerge within a reasonable study period.
The pronounced seasonal dynamics in almost all plant-
associated communities did not result in recurring community
structures in subsequent years. This indicates that the devel-
opment in taxonomic composition may not be cyclic, which
complicates achieving reproducible results even at the local
scale. Predictability of microbial community composition is
therefore still limited, but may improve by focusing on active
taxa and by accounting for temporal variability.

To improve predictability in microbial ecology, a shift in
focus from taxonomic diversity to functional traits has recent-
ly been suggested (Crowther et al. 2014). Trait-based ap-
proaches also facilitate testing causal connections predicted
by modelling approaches or hypothesized on the basis of cor-
relations (Powell et al. 2013). A comprehensive database in-
cluding fungal traits is currently available for lichenized fungi
and Erysiphales pathogens (i.e. LIAS; see Rambold et al.
2001 onwards, 2014), and traits of ectomycorrhizal fungi have
been compiled in DEEMY (Agerer and Rambold 2004–2015;
Rambold and Agerer 1997). Crucial traits to be included in a
future database were recently suggested for root-infecting fun-
gi (Aguilar-Trigueros et al. 2014). The patchy coverage of
traits of plant-associated fungi in reference databases makes a
trait-based approach currently laborious, and only feasible for
assessing the impact of one to few specific factors on fungal
communities (Crowther et al. 2014). The factors controlling
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community composition are, however, mostly unknown in eco-
logical studies, may be manifold and vary with time.

A meta’omics approach complementing a trait-based ap-
proach by a process-focused study design is outlined below to
cope with such complexity. Due to the functional redundancy
of fungal communities (Talbot et al. 2014), focussing on en-
vironmental processes reduces complexity, at least in the ini-
tial phase. The outlined approach seeks to explain temporal
shifts in chemical composition or properties in the habitat by
the activity of the microbial communities. Climatic and local
environmental parameters and finally the evolutionary back-
ground would be considered as controlling factors. Integrating
hypothesis-driven and data-driven research approaches to a
systems biological perspective (Castell and Ernst 2012;
O’Malley and Soyer 2012) may contribute to a detailed un-
derstanding of the functional role of fungal communities.
Covering the plethora of possibly affective environmental pa-
rameters in such a context is a major challenge for isolated
research projects, why embedment in international research
initiatives (e.g., futureearth.org; igfagcr.org) might be consid-
ered for mutual benefits. Local networking or connection to
data repositories (e.g., datadryad.org, dataone.org,
pangaea.de) may also maximize the availability of parameters
for later analyses.

A meta’omic study on the functional structure of a plant-
associated fungal community could commence with identify-
ing chemical variation and transformation in the environment
by metametabolomic analyses of host and/or substrate (soil,
litter). Correlation with metatranscriptomic and/or
metaproteomic assessments could identify the processes prob-
ably causing the observed chemical shifts. Time series would
allow differentiating continuous, seasonally varying and occa-
sionally occurring processes. Modelling the former two
against the environmental parameters would predict factors
controlling the fundamental processes. Predictions could be
tested in reduced experimental setups using model organisms
possessing the respective functional traits (Powell et al. 2013).
Processes may also be affected by seemingly unrelated trait
complexes such as those involved in fungus-plant-interactions
affecting litter degradation processes by root-associated or
previously endophytic fungi. Explanatory value of the data
from such a study would therefore greatly benefit from paral-
lel analyses of fungal habitats (phyllosphere, pedosphere) and
substrates (litter, soil); i.e. from focusing on holobiont func-
tioning in the ecosystem. Only identification of the corre-
sponding taxa will, however, eventually yield a comprehen-
sive picture on ecosystem functioning; in particular if evolu-
tionary scenarios determine functional traits (e.g., Wolfe et al.
2012, Delaye et al. 2013). Linking traits via species identifi-
cation may even be indispensable to explain ecosystem func-
tioning in cases where cause (e.g., selectivity of host plant for
endophytic fungi) and effect (e.g., decomposition activity of
previously endophytic fungi) are disconnected in time.

Taxonomic identification of key players may be achieved
via correlation of functional gene expression with abundance
of rRNA-derived barcoding markers. Direct links to tran-
scripts may be achieved by whole genome sequencing of iso-
lated strains, which may be preselected by screening strains
for the genes of interest. Shifts in taxonomic composition of
communities responsible for a certain process may then be ex-
plained by taxon-specific trait complexes, e.g., responsible for
competitiveness and stress tolerance (Crowther et al. 2014).
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