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Abstract Marine fungi have been widely studied over the
past millennium and considerable progress has been made
in documenting their phylogeny, biodiversity, ultrastructure,
ecology, physiology and their ability to cause decay of
lignocellulosic compounds. These studies have generated a
wealth of publications and this review will focus primarily
on research undertaken since 1995. During this period new
topics have attracted marine mycologists especially: algic-
olous and manglicolous fungi, deep sea fungi, planktonic
fungi, endophytes of marine plants, and the screening of
taxa for new chemical structures and bioactive compounds.
This review will also highlight areas that warrant further
investigation, including surveys for marine fungi in Africa,
artic waters and south America, more detailed studies of
their physiology and biochemistry, and to determine the
marine origin of so called “marine derived” fungi.
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Introduction

It is just over 50 years ago that I started working on marine
fungi under the supervision of Dr. Irene Wilson, one of the
pioner researchers of this group of fascinating organisms.
Although various mycologists had reported on the occur-
rence of marine fungi (Desmaziéres 1849; Durieu de
Maisonneuve and Montagne 1869; Crouan and Crouan

1867; Cesati 1880; Hennings 1908) there were no compre-
hensive studies of the group until those of Cotton (1909),
Sutherland (1915, 1916a, b) and Sparrow (1934, 1936)
concerning fungi found growing on seaweeds. However, it
was a paper by Barghoorn and Linder (1944) on marine
fungi on woody substrata that attracted further pioneer
work on the group. These pioneers included Wilson (1951,
1954, 1956), Höhnk (1952, 1954a, b, 1955a, b), Meyers
(1953, 1954), Johnson (1956a, b, c) and Kohlmeyer (1956).
I was privelleged to have known all of these, all who helped
me as a struggling postgraduate student. Between them they
described some 100 marine fungi, predominantly from
lignocellulosic substrata and currently some 530 species are
documented (Jones et al. 2009a).

In 1995, the late Sam Meyers, in a keynote talk to the
6th International Marine Mycology Symposium held in
Portsmouth, reviewed the first five decades of marine
mycology (Meyers 1996), starting with the work of
Barghoorn and Linder (1944). Therefore, this article will
concentrate on developments in marine mycology since
1995, although reference will be made to earlier studies
where appropriate. Research has focused on five major
topics: 1. biodiversity, 2. taxonomical studies supported by
molecular data, 3. ultrastructure of marine fungi with
particular reference to spore appendage structure and fungal
adhesion, 4. screening for bioactive compounds, and 5.
their ability to cause decay of lignocellulose. These studies
were initially centered on Europe and the USA, but over the
past decade this has shifted to Asia, while other geograph-
ical locations are still little studied. These include Africa,
South America and Artic regions. Approximately every
4 years, research progress has been the topic of at meetings
of the International Marine Mycology Symposium (later the
International Marine and Freshwater Mycology Sympo-
sium), often resulting in published volumes: Germany

E. B. G. Jones (*)
Institute of Ocean and Earth Sciences (IOES), C308,
Institute of Postgraduate Studies Building, University of Malaya,
50603, Kuala Lumpur, Malaysia
e-mail: remispora@gmail.com

Fungal Diversity (2011) 50:73–112
DOI 10.1007/s13225-011-0119-8



(Höhnk 1963; Gerlach and Höhnk 1966; Gaertner 1968),
USA (Botanica Marina 1980), Portsmouth (Moss 1986) and
Taiwan (Jones and Pang 2010). Because of the extensive
published literature on marine fungi, it will be impossible to
cover all the topics in detail, so I have been selective in those
cited. Nevertheless, the references cited will give the reader a
broad view of the research undertaken over the past 50 years.

Numbers of marine fungi

Various estimates of the number of marine fungi have been
proposed: Jones and Mitchell (1996) estimated there were
1,500 species, but this was considered an under estimate by
Liberra and Lindequist (1995) and Clement et al. (1999).
Jones et al. (2009a) reported on 530 marine fungi in 321
genera which included 424 Ascomycota (251 genera), 94
mitosporic fungi (61 genera) and 12 Basidiomycota (9
genera). Most species were described between 1980 and
1999 and only 54 species between 2000 and 2011.
Currently this figure is 549 with 16 new genera and 19
new species described since 2009 (Table 8), while others
are in the process of being described. These figures are
based on a very narrow interpretation of what can be
considered to be marine, while yeasts and chytrids are
rarely included. For example, it is estimated there may be
some 1,500 yeasts and many new species are currently
being described (Fell et al. 2010).

Jones (2011) has highlighted a wide range of fungi that
should be considered as marine, and estimates the figure
may be over 10,000 taxa. This is figure is based on
ecological groups that have previously been labelled
faculatative or marine derived. For example: fungi isolated
from soils, sand, and water; planktonic fungi; deep sea
fungi; unculturable fungi (environmental sequences); and
cryptic species or taxa with similar morphology. Many
fungi are incorrectly identified and therefore these are not
considered in the estimates made. In many biodiversity
studies species are only referred to genus or nonsporulating
taxa, and again are not counted. In recent years studies of
marine endophytes have been undertaken and more
parasitic species discovered (Ananda and Sridhar 2002;
Duc et al. 2009). Currently some 100 species are known
from marine algae (Zuccaro and Mitchell 2005), but this
figure is an underestimate as relatively few seaweeds have
been examined. Considering the diversity of marine algae
(estimated number of species 9,500 to 12,500), many more
can be expected, especially as marine endophytes. Cryptic
species are another source of marine fungi, those hidden
within already described taxa, or species that are distinct
but cannot be distinguished based on their morphology.
This indicates that they were too broadly described, either
morphologically, physiologically or ecologically. Applica-

tion of molecular and incompatibility methods can also
highlight the occurrence of cryptic species. Surveys of
marine fungi are based on those sporulating on a substraum
or isolated from them, while unculturable species go
unaccounted. Molecular techniques are enabling many of
these taxa to be documented, characterized and included in
diversity estimates. Many sequences of unculturable fungi
are already deposited in GenBank and it is important that
this continues, because it will be the key to the identifica-
tion of fungi yet to be discovered. It will also be necessary
as barcoding of fungi is implemented (Seifert 2009;
Begerow et al. 2010). Hibbett et al. (2009), in an analysis
of data from three published studies, indicated there were
1120 potentially novel taxa from environmental samples,
not assinable to any described species, thus highlighting the
importance of molecular sequencing in ecological inves-
tigations. It is vital that we take the identification and
characterization of “marine-derived fungi” seriously and
not refer them merely to genera. They need to be fully
documented and descriptions supported by molecular data
so that their relationship to known terrestrial species can be
determined. Further studies are warranted to determine if so
“called terrestrial” fungi found in the marine milieu, are
truly marine and adapted to life in the sea.

Biodiversity

Lignicolous marine fungi

Fungal biodiversity is the topic that has attracted the
greatest research interest over the past 50 years. Initialy
this was focused on temperate water fungi, especially
wood-inhabiting taxa (Jones 1968; Schaumann 1968,
1969, 1975; Grasso et al. 1985, 1990; Cuomo et al. 1985,
1988; Shearer and Burgos 1987) with fewer studies in more
recent years (Petersen and Koch 1997; Panebianco et al.
2002; Abdel-Wahab 2011a, b). The most intensive collec-
tions were made by Koch and Petersen (1996), Lintott and
Lintott (2002), Jones et al. (1998), Jones (2010) and Abdel-
Wahab et al. 2008 who reported 75 (Denmark), 38 (New
Zealand), 92 (Friday Harbour, USA) and 41 (Italy) fungi,
respectively. The most common temperate water species are
listed in Table 1. Few of these studies offer any quantitative
data, with the fungi collected from variable timber species
and sample dimensions. However, Petersen and Koch
(1997) attempted to quantify the species collected by
removing 1440 standarised samples from Quercus and
Larix mooring posts in Svanemollen Harbour, Denmark.
They used a hollow punch to remove circular wood discs
(3.5 diam., 1.5 thick, cm and 9.6 cm²) from the mooring
posts. Substrate specificity was noted for the two tree
species: on oak: Marinospora longissima, Halosphaeria
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appendiculata, Lulworthia fucicola, M. calyptrata and
Monodictys pelagica; and on larch: Remispora maritima
and Dictyosporium pelagicum. Observations on vertical
fungal zonation were also made with samples taken from
three zones: 1. Submerged zone, rarely exposed and 40–
60 cm below daily sea level; 2. Interidal zone with wood
exposed to rough sea, wind and greater variation in
temperature and salinity and 3. Emersed zone 40 cm above
daily sea level and exposed to periodic drying out, higher
temperatures and salinity. Table 2 lists the species com-
monly found in the different zones on oak samples, with the
greater diversity in the intertidal zone.

The common fungi recorded on lignocellulosic substrata
vary with collecting/exposure methods employed e.g. drift
material and entrapped wood (Cuomo et al. 1988; Koch and
Petersen 1996; Jones et al. 1998; Lintott and Lintott 2002),
sampling of fixed structures (Koch and Petersen 1996) or
wood panels submerged in the sea (Miller et al. 1985;
Panebianco et al. 2002). Ceriosporopsis halima, Cirrenalia

macrocephala, Corollospora maritima, Halosphaeria appen-
diculata, Halosphaeriopsis mediosetigera, Lulworthia spp.,
Marinospora calyptrata, Monodictys pelagica, Remispora
maritima, R. stellata, Torpedospora radiata, and Zalerion
maritima can all be regarded as common lignicolous species
in temperate waters (Hughes 1969; Byrne and Jones 1974;
Grasso et al. 1985; Jones 1985; Cuomo et al. 1988; Petersen
and Koch 1997). Most are members of the Halosphaeriales
while very few bitunicate ascomycetes are to be found on
submerged wood (Jones 1985).

Numerous studies of tropical marine fungi have been
undertaken over the past 25 years largely those occurring
on mangrove substrata. Kohlmeyer and Kohlmeyer (1979)
listed 42 mangrove fungi, while Schmit and Shearer (2003)
listed 625 taxa, but this figure inlcuded those growing on
terrestrial parts of mangrove trees. Currently some 287
species can be regarded as growing on submerged
mangrove substrata (Alias et al. 2010). Illustrated mono-
graphs of mangrove fungi have been published for India

Table 1 Ten most common temperate marine fungi from various studies

Jones 1968 Byrne and Jones 1974 Cuomo et al. 1988 Grasso et al. 1985 Koch & Petersen 1996

Total fungi collected (total samples) 14 (16) 18 (14) 34 (766) 16 (120) (number of poles
sampled)

Cirrenalia macrocephala 4 5 20

Dendryphiella salina 4

Dictyosporium pelagica 2

Trichocladium alopallonella 5

Monodictys pelagica 97 (24)

Zalerion maritima 15 7 6 73 (22)

Digitatispora marina 2

Aniptodera sp. 52 (25)

Arenariomyces trifurcatus 50 13

Ceriosporopsis halima 10 6 44 19

Corollospora maritima 240 67

Halosphaeria appendiculata 2 8 10 163 (40)

Halosphaeriospis mediosetigera 153 11 49 (19)

Lignincola leavis 2 43

Lulworthia fucicola 136 (36)

Lulworthia sp.

L. purpurea 13 14 66 58 70 (32)

L. floridana 10

Marinospora calyptrata 117 (34)

Marinospora longissima 201(38)

Phaeosphaeria oraemaris 95 (30)

Remispora hamataa 2 5 43

Remispora maritima 4 36 29

Remispora quadriremis 44 5

Torpedospora radiata 53

a Doubtfull species
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(80 species: Raveendran and Manimohan 2007), Malaysia
(140: Alias and Jones 2009) and Taiwan (69: Pang et al.
2010a). Hyde and Jones (1988) recognized that mangrove
fungi constituted the second largest ecological group of
marine fungi which are widely distributed in Old and New
world mangroves (Atlantic, Pacific and Indian Oceans).
Atlantic Ocean: Bahamas (Jones and Abdel-Wahab 2005),
Belize (Kohlmeyer and Volkmann-Kohlmeyer 1987a),
Florida (Jones and Pugsili 2006); Indian Ocean: India
(Maria and Sridhar 2002, 2004; Raveendran and Manimohan
2007; Vittal and Sarma 2006, Sarma and Hyde 2000),
Mauritius (Poonyth et al. 1999), Seychelles (Hyde and Jones
1986, 1989a); Pacific Ocean: Brunei (Hyde 1988a, c; Hyde
and Jones 1989b; Hyde and Sarma 2006), Hong Kong SAR
(Jones and Vrijmoed 2003), Malaysia (Alias and Jones
2009), Thailand (Sakayaroj et al. 2004). Schmit and Shearer
(2004) analysed the geographical distribution data published
on mangrove fungi and found that different oceans supported
varying numbers: Atlantic Ocean: 12–46 per site (14 sites:
mean 25.6); Indian Ocean: 12–64 (14: 42.9) and the Pacific
Ocean: 17–87 (16: 44). This would appear to indicate that
more are to be found in the Pacific Ocean but this is more
likely to reflect the intensity and frequency of sampling
(Jones and Pugsili 2006; Alias and Jones 2009).

The Ascomycota are the most numerous and common
taxonomic group in mangroves with the Basidiomycota the
least frequenly collected (Alias and Jones 2009; Pang et al.
2010a). Biodiversity studies have shown a wide variation in
the frequency and abundance of mangrove fungi; 154
Thailand (Sakayaroj et al. 2004), 139 Malaysia (Alias et al.
2010), 131 India (Vittal and Sarma 2006), 128 Hong Kong
(Jones and Vrijmoed 2003) and 91 India (Maria and Sridhar
2003). However a core group of fungi can be identified and
these are listed in Table 3. However the core mangrove
fungi identified by Ananda and Sridhar (2004) and Sridhar
and Maria (2006) differ from those listed in Table 3.
Included in their core group are Aniptodera sp., Arenar-
iomyces parvulus (generally more common on wood

associated with sand), Savoryella lignicola, Kallichroma
tethys and Passeriniella mangrovei and the mitosporic fungi
Arthrinium sp., Aspergillus sp.1, Penicillium sp., which
reflects the lower salinity of the water during the monsoon
season. They also noted differences between dominant
species on wood collected in the monsoon and the summer
period. Various aspects of the ecology and biodiversity of
mangrove fungi have been undertaken and these are briefly
discussed below.

Colonization of other substrata

Other substrata that support the growth of marine fungi are
seaweeds (Zuccaro and Mitchell 2005), sea grasses (Cuomo
et al. 1982, 1985), salt marsh and other herbaceous
mangrove plants. The most intensively surveyed salt marsh
plant is Spartina (Gessner and Kohlmeyer 1976; Barata
2002). In a review of fungi growing on Spartina spp.,
Barata (2002) lists 123 species, from temperate and tropical
salt marshes. The most diverse taxonomic group is the
bitunicate ascomycetes with the genera Leptosphaeria (13
species), Phaeosphaeria (4 species) and Pleospora (6
species), well represented. In her study of marine fungi on
Spartina maritima at three salt marshes in Portugal, the
most frequently collected species were: Natantispora (as
Halosarpheia) retorquens, Phialophorophoma litoralis,
Sphaerulina oraemaris, Phoma sp., Dictyosporium pelagi-
cum and Byssothecium (as Passeriniella) obiones.

Invariably when new substrata are surveyed for fungi, a
wide range of new genera and species are encountered. This
well illustrated by studies of the brackish water palm Nypa
fruticans (Hyde et al. 1999) and the black needle rush
Juncus roemerianus, a plant commonly found in coastal salt
and brackish tidal marshes in the eastern USA (Kohlmeyer
and Volkmann-Kohlmeyer 2001). In both cases the number
of new species per host plant greatly exceeds the ration of
fungi to host used by Hawksworth (1991) to estimate the
global number of fungi.

Fungi Zone 1 Zone 2 Zone 3 Number posts
with fungi

−60 −40 −20 0 +20 +40

Marinospora longissima 40 46 18 1 37

M. calyptrata 26 21 13 2 28

Lulworthia sp. (150–350 μm) 25 15 8 2 11

Halosphaeria appendiculata 24 23 23 2 3 34

Aniostagma rotundatum 1 16 2 15

Lulworthia fucicola 6 22 15 4 23

Phaeosphaeria oraemaris 3 10 19 2 18

Aniptodera sp. 1 8 9 2 1 15

Sphaerulina oraemaris 1 15 9 11

Table 2 Vertical zonation of
marine fungi on 480 oak wood
samples from 40 mooring posts
in Svanemollen Harbour,
Denmark. (after Petersen and
Koch 1997)

76 Fungal Diversity (2011) 50:73–112



Several studies on the biodiversity of fungi on the
intertidal brackish water palm Nypa fruticans have been
undertaken (Pilantanapak et al. 2005; Hyde and Sarma
2006); however most describe new taxa (Hyde 1988d,
1992a, b; Jones et al. 1996a, b; Hyde and Alias 2000; Hyde
et al. 1999). Pilantanapak et al. (2005) collected 81 species
on the palm in Thailand while Hyde and Sarma (2006)
documented 46 species from the Tutong River, Brunei. Of five
surveys the most common species appear to be: Linocarpon
appendiculatum (in all studies 20–53% frequency of
occurrence), L. nypae (in 4, 17.5–32.5%), Oxydothis nypae
(in in all 5, 12–26%) and Astrosphaeriella striatispora (in 4,
18–49.5%) (Hyde 1992a, b; Hyde and Alias 2000; Besitulo
et al. 2002, 2010; Pilantanapak et al. 2005; Hyde and Sarma
2006). Many of the fungi, circa 45, are known only from
Nypa and may be host specific, or host recurrent e.g.
Aniptodera nypae, Helicascus nypae, Linocarpon nypae,
Tirisporella beccariana and Vibrissea nypicola.

The Kohlmeyers have undertaken a detailed study of
the fungi colonizing Juncus roemerianus, from the basal
rhizomes subject to inundation by seawater to the
terrestrial parts tolerant to sea spray. These have been
grouped according to the parts of the plant they have been
described from: obligate 6–52 cm above the rhizome),
facultative (15–56 cm above the rhizome) and terrestrial or
halotolerant (45–120 above the rhizome) (Kohlmeyer et
al. 1997; Kohlmeyer and Volkmann-Kohlmeyer 2000).
Their studies indicate that 107 species (44 obligate, 25
facultative and 38 halotolerant/terrestrial) are to be found
growing on J. roemerianus, of which 48 species have been
described, some supported by molecular data (Kohlmeyer
and Volkmann-Kohlmeyer, pers. com.). These taxa belong to
7 orders, 20 families and 44 genera (Table 4) (Kohlmeyer

and Volkmann-Kohlmeyer). In common with other studies of
new host substrata for fungi, many of the species encountered
cannot be assigned to a family or order e.g. Aquamarina,
Aropsiclus, and Heleiosa. Taxonomic placement of other
species has been resolved with sequence data, e.g. the
halotolerant Glomerobolus gelineus to the Ostropales,
Lecanomycetes (Schoch et al. 2006b).

Acanthus ilicifolius is a widely distributed shrubby
herbaceous plant found in mangroves and a species
surveyed for fungi by Sadaba et al. (1995). Forty four
fungi were found on the decaying standing parts of A.
ilicifolius in the intertidal zone at Mai Po Marshes, Hong
Kong, with the aerial portions dominated by mitosporic
fungi. The grass Phragmites australis and sedge Schoeno-
plectus litoralis supported 61 (17 ascomycetes, 44
mitosporic taxa) and 31 (6 ascomycetes, 25 anamorphic
taxa) species, respectively in Mai Po Marshes, Hong Kong
(Poon and Hyde 1998a, b; Wong et al. 1998). For both
plants, the fungi present on the submerged regions differed
from aerial regions, the latter supporting the greater
diversity. Of the taxa documented, most were typically
terrestrial-like, such as, Cephalosporiopsis sp., Septoria-
like sp., Phomopsis sp. and Colletotrichum sp. Sridhar et al.
(2010) followed fungal colonization, mass loss and bio-
chemical changes during decomposition of the mangrove
sedge Cyperus malaccernsis in the Nethravathi river delta,
Katrnataka, India. Nineteen taxa were found (8 ascomy-
cetes, 10 mitosporic taxa, one zygomycete). Initially
terrestrial fungi were dominant, but followed by typical
mangrove and marine fungi (Acrocordiopsis patilii, Cumu-
lospora sp., Okeanomyces cucullata, Leptosphaeria aus-
traliensis, Lignincola laevis, Lulworthia sp., Periconia
prolifica). Mass loss of the different parts of the sedge

Table 3 Core group of mangrove fungi as abstracted from published literature

Fungi Hyde and Jones (1988) Sarma and Hyde (2001) Alias et al. 2010 Alias and Jones (2009)

Dactylospora haliotrepha + + + +

Halocyphina villosa + + + +

Halorosellinia oceanica + + + +

Kallichroma tethys + + + +

Leptosphaeria australiensis + + + +

Lulworthia grandispora + + + +

Verruculina enalia + + + +

Hydea pygmea + + + −
Lignincola laevis + − + +

Phoma sp. + − + +

Halosarpheia marina + − − +

Dictyosporium pelagicum + − − −
Matsusporium tropicalis + − − −
Trichocladium alopallonella + − + −
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occurred over 4 weeks: bract 79%, basal stems 88% and top
stems 51%. Enzyme production (cellulose, xylanase,
pectinase) also peaked within the first 4 weeks of exposure.

The seagrasses Enhalus acoroides, Halodule bermuden-
sis, Halophila ovalis, Syringodium filiforme, Thalassia

testudinum, Zostera japonica, Z. marina, and Z. muelleri
(mostly tropical) and the temperate water species Cymodo-
cea nodosa and Posidonia oceanica, have been surveyed
for saprobic and endophytic fungi (Newell and Fell 1980;
Wilson 1998; Cuomo et al. 1982, 1985; Alva et al. 2002;

Table 4 New fungi on Juncus roemerianus (Modified from Kohlmeyer and Volkmann-Kohlmeyer 2001)
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Devarajan et al. 2002; Sakayaroj et al. 2010a). Early studies
on seagrasses listed the basidiomycete Falmingomyces
(=Melanotaenium) ruppiae on Ruppia maritima and Hal-
otthia posidoniae and Pontoporeia biturbinata on Posido-
nia oceanica (Kohlmeyer and Kohlmeyer 1979). In Table 5
saprobic fungi currently known from seagrasses are listed.

Banks of rotting seagrasses are common on the Mediterra-
nean coast (Fig. 1) where they undergo decomposition by
marine fungi, with Corollospora maritima being particular-
ly common (Cuomo et al. 1985). These banks of rotting
material are the feeding grounds of many invertebrates, e.g.
Paracentrotous lividus. Halotthia posidoniae and Ponto-

Table 4 (continued)

* Obligate marine, + facultative marine, # halotolerant/terrestrial
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poreia biturbinata are frequently collected on the rhizomes
of Posidonia oceanica along the Mediterranean coast.
Cuomo et al. (1985) found both species on P. oceancia with
a frequency of occurrence of 52% and 78%, respectively,
but not on Cymodcea nodosa, another local seagrass.
However collections made in Cyprus in December 2007
and February 2008 (Jones unpublished) showed H.
posidoniae to be more abundant than P. biturbinata.
Although H. posidoniae and P. biturbinata are commonly
collected on drift Posidonia, little has been done to follow
the process of colonization, indeed are they parasitic on
the seagrasses?

Other unique marine fungi are those that occur on sand
grains, corals and calcareous algae, shells of barnacles and
molluscs, exoskeletons of hydrozoa and tubes of marine
annelids (Kohlmeyer 1972a, b; Kohlmeyer and Kohlmeyer
1979). Some 40 arenicolous fungi have been documented,

with members of the ascomycete genera Arenariomyces,
Carbosphaerella, Corollospora, and the mitosporic species
Varicosporium ramulosa, the most commonly found
(Kohlmeyer 1966; Koch 1974; Rees et al. 1979; Tokura
1982; Koch et al. 1983; Farrant et al. 1985; Nakagiri and
Tokura 1987) primarily from temperate water seashores.
Accounts of arenicolous fungi from the tropics include
those by Steinke and Jones (1993) from South Africa, and
Sundari et al. (1996a, b) for Malysia and Singapore.
Corollospora species are well adapted to growing on sand
grains or other hard surfaces, with a well developed
subiculum and ostioles and necks located basally adjacent
to the subiculum. This is an advantage since long central
necks to the ascomata would be abraded by the constant
movement of the sand grains. The necks are plugged with
thick walled cells that prevent entry of seawter into the
centrum until ascospores are ready for discharge (Kohlmeyer
and Volkmann-Kohlmeyer 1989). The appendaged asco-
spores also aide in floatation and their dispersal in seawater,
and spores are often trapped in sea foam (Kohlmeyer 1966;
Tokura 1982). Experimental studies on the sedimentation of
spores (Rees 1980) and the effect of agitation on ascomata
attachment to sand grains have been carried out by Sundari
and Vikineswary (2002). Gonzáles and Hanlin (2010)
suggest that arenicolous ascomycetes might be used as
indicators of ecosystem disturbance of sandy beaches.

Many studies have examined the endophytes of various
seagrasses and clearly show they are different from the
saprobic fungi listed in Table 5 (Alva et al. 2002; Devarajan
et al. 2002; Sakayaroj et al. 2010a). As for saprobic fungi
on seagrasses, the number of endophytic species isolated is
low: 8, 16 and 17 taxa from Z. japonica, Z. marina and Th.
testudinum, respectively (Alva et al. 2002), 42 assemblages
from Enhalus acroides (Sakayaroj et al. 2010a). Frequently
isolated taxa from seagrasses include: Alternaria alternata,
Arthrinium arundinis, Aspergillus, Cladosporium, Fusa-

Fig. 1 Accummulation of rotting seagrass Zostera marina along the
Danish coast

Table 5 Marine saprobic fungi on seagrasses

Fungi Host seagrass Reference

Flamingomyces ruppiae (= Melanotaenium ruppiae) Ruppia maritima Bauer et al. 2007

Cladosporium algarum Thalassia testudinum Kohlmeyer and Kohlmeyer 1979

Corollospora maritima Th. testudinum Zostera marina Kohlmeyer and Kohlmeyer 1979; Cuomo et al. 1985

C. intermedia Posidonia oceanica Cuomo et al. 1985

C. lacera Th. testudinum Kohlmeyer and Kohlmeyer 1979

Lindra thalassiae Th. testudinum Kohlmeyer and Kohlmeyer 1979

Dendryphiella arenaria Th. testudinum Kohlmeyer and Kohlmeyer 1979

Varicosporina ramulosa Th. testudinum Z. marina Kohlmeyer and Kohlmeyer 1979

Halotthia posidoniae P. oceanica Cuomo et al. 1985

Pontopreia biturbinata P. oceanica Cuomo et al. 1985

Papulospora halima P. oceanica Cuomo et al. 1985
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rium, Penicillium, Trichoderma and Phoma spp. Sakayaroj
et al. (2010a) used molecular techniques to identify their
sterile isolates including a basidiomycete species, Penio-
phora sp. Most of the seagrass endophytes are similar to
those isolated from mangrove trees (Suryanarayanan et al.
1998; Kumaresan and Suryananyanan 2001; Ananda and
Sridhar 2002; Chaeprasert et al. 2010), and are predom-
inatly terrestrial-like taxa. However, Ananda and Sridhar
(2002) recovered the obligately marine fungi Hydea
pygmea, Lulworthia grandispora, Lulworthia sp., Tricho-
cladium alopallonella and Zalerion maritima from the roots
of mangrove trees. Further studies are required to determine
if these so called terrestrial isolates are adapted to life in the
marine milieu.

Marine animals also harbor fungi, and have been shown
to be a rich source of isolates yielding new chemical
structures, often bioactive compounds (Kendrick et al.
1982; Höller et al. 2000; Morrison-Gardiner 2002; Proksch
et al. 2008; Schulz et al. 2008; Li and Wang 2009; Aly et al.
2010; Rateb et al. 2010). Pivkin et al. (1999) isolated 27
fungi from tissues of three holothurians, while Proksch et
al. (2008), Wang et al. (2008a, b), Baker et al. (2009), Liu et
al. (2010) and Paz et al. (2010) isolated marine derived
fungi from marine sponges, all with matches to known
genera/species in the GenBank. Liu et al. (2010) opin that
thousands of fungal strains have been isolated from
different sponges with many yielding bioactive compounds
(Bugni and Ireland 2004). Most isolated fungi are primarily
genera and species considered terrestrial, such as, Asper-
gillus, Cladosporium and Penicillium spp. So are they
marine, are they metabolically active in the marine
environment, and how accurate is their identification? Paz et
al. (2010) examined the ability of fungi isolated from the
Mediterranean sponge Psammocinia sp., to inhibit the growth
of fungi. From 400 isolates, 85 taxa were identified; with 28
possessing antifungal properties, predominantly Trichoderma,
Acremonium, Bionectria, Aspergillus, and Penicillium spp.
Paz et al. (2010) also consider the role of these marine derived
fungi in the host sponge. As sponges are filter feeders, are the
fungi simply trapped in the sponge tissues and therefore have
no active role in the biology of their host?

Decomposition of mangrove substrata

Various studies have shown that mangrove fungi are able to
degrade lignocellulose (Leightley 1980), Mouzouras (1986,
1989), Mouzouras et al. (1988) and Leong et al. (1991).
Since most are ascomycetes and mitosporic fungi, they are
able to cause soft rot attack of various timbers. However the
basidiomycete Halocyphina villosa causes white rot attack
of wood (Mouzouras et al. 1988). Maria et al. (2006)
followed the decomposition of Avicennia officinalis and
Rhizophora mucronata twigs in Udyavara mangrove, India

over 18 months. Decay of twigs was slow over the first 10–
12 months, but more rapid in the last 6 months. This topic
is discussed further in a later section.

Factors affecting the distribution of mangrove fungi

The distribution of marine fungi is governed by a multitude of
interacting factors, and no single one can be identified to
explain their occurrence and frequency of occurrence.
However some factors are more important than others, for
example, availability of substrata, temperature, water salinity
and geographical location are key elements in the occurrence
and distribution of marine fungi (Booth and Kenkel 1986;
Pang et al. 2009; Suetrong et al. 2009a, b; Vrijmoed et al.
1986). Jones (2000) highlighted a consortium of factors
operating in determining the biodiversity of fungi in the sea:
water temperature, salinity, seasonality, pH, nutrient avail-
ability, tidal amplitude, availability of substrata and their
chemical composition, possession of specific enzymes to
degrade the substratum, natural occurring substrata or baited
samples, succession, period samples exposed to seawater,
and depth at which samples are recovered (Fig. 2). A number
of studies have discussed the importance of various factors in
the ecology of marine fungi (Kohlmeyer and Kohlmeyer
1979; Hyde and Lee 1995; Sadaba et al. 1995; Schmit and
Shearer 2003, 2004; Alias and Jones 2009), with Sarma and
Hyde (2001) proposing a protocol for documenting the
diversty of mangrove fungi.

Although a core group ofmangrove fungi can be identified,
there is great variation in the dominant fungi reported from
different locations, especially when sampling drift or senes-
cent attached wood. This can be accounted for by the different
sampling methods adopted: size/volume of the sample, period
exposed in the mangrove, presence or absence of bark on the
wood, salinity of the water, sample size and frequency of
collections. Fungi on mangrove wood can vary depending on
collection of material, especially in the dry or wet season of
mangroves subject to monsoons. Ananda and Sridhar (2004)
documented 68 taxa on mangrove wood during the monsoon
when the salinity was 0–1.05%, but only 55 species in the
summer period when water salinity was higher. Species
composition was also different with the terrestrial species
Arthrinium sp., Aspergillus sp. 1, and Penicillium sp.
dominant. Similar results were reported by Sadaba (1996)
for fungi colonizing Acanthus ilicifolius during the dry
season when salinity was high (20%0), marine fungi
predominated; while in the wet season when salinities are
low (1–5 ppm) typical terrestrial fungi occurred.

Sequence of colonization of mangrove substrata

Few studies have followed the process of colonization of
substrata by marine fungi. This has usually involved the
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submergence/exposure of test samples in the sea at various
depths, with their retrival at specific time intervals,
laboratory incubation to encourage sporulation and identi-
fication of the colonizing taxa. Early studies were by
Meyers and Reynolds (1960) and Jones (1968) who
reported the colonization of wood test blocks by Cerio-
sporopsis and Lulworthia speices after 12–18 weeks expo-
sure. Subsequent studies in temperate localities were by
Byrne and Jones (1974), Miller et al. (1985), Grasso et al.
(1985) and Panebianco et al. (2002) while tropical studies
focused on mangrove fungi (Tan et al. 1989a, b; Leong et
al. 1991; Alias and Jones 2000a). Tan et al. (1989a, b) and
Leong et al. (1991) followed fungal succession on four
mangrove timbers (Avicennia alba, A. lanata, Bruguiera
cylindrica, Rhizophora apiculata) at Mandai mangrove,
Singapore, while Alias and Jones (2000a) exposed Bru-
guiera parviflora and Avicennia marina samples at Kuala
Selangor mangrove, Malaysia. Although different timbers
were used the most common species were similar: Verrucu-
lina enalia, Lulworthia sp., Halosarpheia marina and
Lignincola laevis. Key findings from these studies include
1. There was 100% colonization of the test blocks, 2. Some
core mangrove fungi did not appear on the test samples e.g.
Dactylospora haliotrepha, Halorosellinia oceanica, and 3.
There was a clear pattern of fungal colonization. Early
colonizers (6–18 weeks) on both timbers at Kuala Selangor
mangrove were H. marina, N. retorquens, L. laevis,
Neptunella longirostris and Lulworthia grandispora. Inter-
mediate colonizers (26–54 weeks) were Dictyosporium
pelagicum, Halocyphina villosa, Saagaromyces ratnagirien-
sis, Periconia prolifica, Savoryella lignicola, T. achrasopo-
rum, T. alopallonellum and Verruculina enalia. Late
colonizers (60–96 weeks) were Aigialus parvus, Leptosphae-
ria australiensis, Saagaromyces glitra, Quintaria lignatilis,
Saccardoella marinospora and Tirispora unicaudata.

The fungi colonizing timbers in mangroves are uniquely
tropical and distinct from those occurring in temperate
waters (Byrne and Jones 1974; Miller et al. 1985). Various
laboratory studies have explored the factors that determine
fungal colonization: fungal competition, interference verus
exploitation and the chemical basis for such interactions
(Strongman et al. 1987; Gloer 1995; Shearer 1995; Miller
1986, 2000). However few have explored these parameters
under field conditions. Miller et al. (1985) followed the
fungal colonization of beech panels in Langstone Harbour,
England recording the number of perithecia of each fungus per
10 mm2: 137 perithecia of Lulworthia sp. were present when
it was the sole taxon sporulating on the wood, but only 53
when Ceriosporopsis halima also occurred on the panel. This
figure dropped further to 3 per 10 mm2 when Amylocarpus
encephaloides also appeared on the wood. Panebianco et al.
(2002) tested the effect of preconditioning balsa test blocks
before submergence in the sea over 15 months, with the
fungi Corollospora maritima, C. halima, Halospaheriospsis
mediosetigera and Marinospora calyptrata. Control test
blocks were colonised by C. halima, Corollospora maritima,
Halosphaeria appendiculata, Halosphaeriopsis medioseti-
gera, Lulworthia sp. and M. clalyptrata, all typical fungi
for the Langstone Harbour site (Jones 1968). On precondi-
tioned blocks of Corollospora maritima it was the only
fungus to sporulate on the wood for up to 6 months, similarly
H. mediosetigera, suggesting that these taxa affected the
colonization of the test blocks by “indigenous” species.
However, M. calyptrata showed no such inhibition and
became dominant at 9 months and the only species present at
15 months. Further studies are required to determine the
nature of this inhibition, as many marine fungi have been
shown to produce bioactive compounds.

Tan et al. (1995) have also shown that different fungi can
affect the sporulation of other species when grown together

Fig. 2 Factors that influence the
frequency of occurrenace of
mangrove fungi (reproduced
with permission of IOES, Kuala
Lumpur)
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on wood. Aigialus parvus, Lignincola laevis and Verrucu-
lina enalia were grown singly, or in mixed cultures, on
mangrove test blocks in shake culture and periodically
examined for the formation of ascomata. Sporulation of L.
laevis was suppressed by A. parvus, while L. laevis enhanced
ascomata production by V. enalia. All three fungi have been
shown to produce bioactive compounds (Abraham et al.
1994; Isaka et al. 2002, 2009).

Vertical distribution of marine fungi

Early studies on the vertical distribution of marine fungi
was undertaken by Schaumann (1968, 1969) in the Wesseer
Estuary and Helgoland, Germany, and proposed that “the
number of species increased from low-water mark towards
the mean-tide mark. However, Kohlmeyer (1969a, b)
reported there weas no vertical pattern of fungi on the
roots, and prop roots of Rhizophora spp., and suggested
further research was required. Vertical distribution of
marine fungi may be influenced by tidal amplitude, e.g. at
Morib mangrove, Malaysia with a wide intertidal zone
(Alias and Jones 2009).

However, vertical distribution of marine fungi has been
demonstrated for various fungi, while others are distributed
throughout the tidal range (Hyde 1988a, b, c, 1990; Sadaba
et al. 1995; Poon and Hyde 1998b; Alias and Jones 2000b;
Besitulo et al. 2010). Sadaba et al. (1995) observed vertical
distribution of fungi on standing plants of Achanthus
ilicifolius in a study in Mai Po mangrove, Hong Kong. The
apical portions were colonized by typical terrestrial fungi and
the basal portions by marine fungi. The highest number of
collections was from the basal portion, followed by middle
and upper portions with mitosporic fungi the dominant group
encountered at these levels. They attributed this to tissue type
and varying degrees of exposure to tidal inundation which
are important in governing species distribution along the
vertical line. Kohlmeyer and Volkmann-Kohlmeyer (2001)
also noted vertical distribution of fungi on Juncus roemer-
ianus, those on the lower parts of the culm were regarded as
obligately marine, with halotolerant species in the upper
zone (aerial). For example, those occurring: 6–52 cm above
the rhizome e.g. Phaeosphaeria roemeriani were obligate
species, 15–56 cm above rhizome e.g. Floricola striata
facultative, and 45–120 cm above rhizome e.g. Septoriella
unigalerita terrestrial or halotolerant.

Alias and Jones (2000b) examined the vertical distribution
of mangrove fungi, on the prop roots of Rhizphora apiculata
at Morib mangrove in Selangor, Malaysia. Intertidal prop-
roots were collected from three levels: upper 1.8–2.2 m
above mean low water mark (samples were superficially dry
for long periods), middle 0.8–1.8 m (submerged daily for
varying periods) and lower: 0.2–0.8 m (waterlogged or
submerged samples), with 100–200 samples per level placed

in clean polythene bags and returned to the laboratory.
Samples were washed to remove surface sediments and
fouling organisms scraped off, then incubated in plastic
boxes for up to 6 months at room temperature (Jones and
Hyde 1988). Fifty-three fungi from 330 samples were
collected, with Pyrenographa xylographoides, Halosmassar-
ina (=Massarina) thalassiae and Nectria sp. common in the
upper zone, while nine species occurred only in the lower
zone, including the more oceanic species: Antennospora
quadricornuta, Haiyanga (=Antennospora) salina and Tor-
pedospora radiata. Most species occurred in the middle zone
with nine species found only in this zone: Ascocratera
manglicola, Saagaromyces (=Halosarpheia) ratnagiriensis,
Morosphaeria (=Massarina) ramunuculicola and Moro-
sphaeria (=Massarina) velatospora the most frequent. Only
five species occurred at each level: Quintaria lignatilis,
Leptosphaeria australiensis, Lulworthia sp., Halocyphina
villosa and Lulworthia grandispora. However, Besitulo et al.
(2010) found no evidence of vertical distribution of fungi on
the palm Nypa fruticans in Siargao Island, Philippines,
although at the same locality zonation occurred on Rhizo-
phora apiculata and Xylocarpus granatum. Cucullosporella
mangrovei, Morosphaeria ramunculicola, and Marinos-
phaera mangrovei were found in the upper level with
Acrocordiopsis patili at the lower level only.

Factors that govern the vertical distribution of fungi
include exposure during the intertidal and in particular
desiccation, exposure to UV light, tolerance to freshwater
in the form of rain, and reproduction with the need to
release their spores. These aspects are further discussed by
Kohlmeyer and Volkmann-Kohlmeyer (1987a, b), Jones and
Tan (1987), Jones et al. (1988), Hyde (1991), Chinnaraj
(1993) and Sarma and Vittal (2002).

Molecular systematics

The advent of molecular systematics has greatly enhanced
our understanding of the origin and evolution of marine
fungi. The first molecular paper on marine fungi was by
Spatafora and Blackwell (1994) when they included a
sequence of Halosphaeriopsis medisetigera in their study
of ophiostomid ascomcyetes. Subsequently Spatafora et al.
(1998) established the independent terrestrial origins of the
Halospaheriales, while the genera Lindra and Lulworthia
formed a separate clade of marine perithecial ascomycetes.
There followed extensive research into the phylogeny and
taxonomy of marine fungi, which proceeded along three
separate lines: 1. Resolution in the delineation of species
and genera, 2. Higher order taxonomic placement of marine
fungi, and 3. Application to ecological studies, especially
the identification of sterile endophyte cultures and uncul-
turable isolates.
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Revision of genera

It had long been speculated that certain marine genera were
a complex of unrelated species, e.g. Corollospora, Hal-
osarpheia (Schmidt 1969, 1974) however, ultrastructural
studies of ascospore appendage ontogeny gave partial
resolution (Jones et al. 1983, 1984; Johnson et al. 1984,
1987). The delineation of other genera remained problem-
atic, especially the genera Halosarpheia and Massarina/
Lophiostoma (Hyde et al. 2002; Pang et al. 2003b). A wide
range of genera have now been sequenced, especially
members of the Halosphaeriales (Pang 2002; Sakayaroj et
al. 2005a, b). This has resulted in taxonomic changes and
the establishment of many new genera (Tables 6 and 8).
Many genera were shown to be polyphyletic, e.g. Cirrena-
lia, Cumulospora, Halosphaeria, Halosarpheia, Kirschstei-
niothelia, Lulworthia, Massarina, and Remispora, all
resulting in transfer of species to new genera (Sakayaroj
et al. 2010b) (Table 8). Sequence data also enabled the
identification or confirmation of teleomorphs of many
mitosporic genera: Cirrenalia (new genera for Hydea
pygmea and Matsusporium tropicale), Cumulospora (new
genus for Moromyces varius), Zalerion (Lulworthiales),
Halosigmoidea, Periconia (Halosphaeriales), Amorosia,
Dendryphiella (Pleosporales), Halenospora (Leotiales),
Glomerobolus (Ostropales) and Xylomyces (Jahnulales)
(Campbell et al. 2003, 2005; Schoch et al. 2006a, b; Jones
et al. 2008a, 2009a, b; Abdel-Wahab et al. 2010).

Molecular data has been used to support the erection of
new genera: Haloaleurodiscus (Russulales, Maekawa et al.

2005), Pseudolignincola, Thalespora (Halosphaertiales,
Jones et al. 2006), Halenospora (Leotiales, Jones et al.
2009a), Rostrupiella (Lulworthiales, Koch et al. 2007),
Sedecimiella (Hypocreales, Pang et al. 2010b) and new
species: Halosigmoidea parvula (Halosphaeriales, Jones et
al. 2009b), Halosarpheia japonica (Halosphaeriales,
Abdel-Wahab and Nagahama 2011a, b). Other examples
are listed in Table 8.

Other species referred to a family based on molecular
sequences include: Ascomycetes: Buergenerula spartinae,
Gaumannomyces medullaris, Pseudhalonectria halophila
(Magnoporthaceae, Thongkantha et al. 2008), Verruculina
enalia (Testudinaceae, Schoch et al. 2006a), Neomassar-
iosphaeria typhicola (Amniculicolacae, Zhang et al.
2009b), Keissieriella rarum, Lentithecium phragmiticola
(Lentitheiaceae, Zhang et al. 2009a), Paraliomyces lentife-
rus (Lophiostomataceae) Kirschsteiniothelia maritima
(Mytilinidiales) Suetrong et al. 2009a) and the basidiomy-
cetes: Flammingomyces ruppiae (Urocystaceae, Urocystales),
and Parvulago marina (Ustilaginaceae, Ustilaginales) (Bauer
et al. 2007). A number of new species could also be assigned
with confidence to known families/orders: the yeasts Candi-
da, Cryptococcus, Kwoniella, Pseudozyma, Rhodotorula
(Statzell-Tallman et al. 2008, 2010; Fell et al. 2010),
Glomerulispora, Moheitospora (TBM clade), and Halzoon,
Moleospora (Lulworthiales) (Abdel-Wahab et al. 2010), and
Lanspora (Ophiostomatales, Schoch pers. com.),

Other taxa that require further study when fresh material
becomes available, include marine species of Leptosphae-
ria, Lophiostoma, Massarina in the Dothediomycetes

Genus Previous name Taxonomic group Reference

Flamingomyces Melanotaenium Urocystales Bauer et al. 2007

Parvulago Ustilago Ustilaginales Bauer et al. 2007

Decorospora Pleospora Pleosporales Inderbitzin et al. 2002

Colemopsidium Verrucaria Pyrenulales Grube and Ryan 2002

Haiyanga Antennospora Halosphaeriales Pang et al. 2008a, b

Magnisphaera Halosarpheia Halospaheriales Campbell et al. 2003

Morakotiella Haligena Halospaheriales Sakayaroj et al. 2005a

Natantispora Halosarpheia Halospaheriales Campbell et al. 2003

Neptunella Lignincola Halospaheriales Pang et al. 2003a

Okeanomyces Halosphaeria Halospaheriales Pang et al. 2004a, b

Panorbis Halosarpheia Halospaheriales Campbell et al. 2003

Saagaromyces Halosarpheia Halospaheriales Pang et al. 2003b

Kohlmeyeriella Lulworthia Lulworthiales Campbell et al. 2005

Lulwoana Lulworthia Lulworthiales Campbell et al. 2005

Lulwoidea Lulworthia Lulworthiales Campbell et al. 2005

Halenospora Zalerion Leotiales Jones et al. 2009a

Halosigmoidea Sigmoidea Halosphaeriales Jones et al. 2009b

Nohea Nautofragella Halosphaeriales Abdel-Wahab 2011a, b

Table 6 Taxonomic revision of
genera of marine fungi since
2000–2009, based on sequence
data
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(Suetrong et al. 2009a); Lulworthia species (L. grandi-
spora, L. purpurea, L. opaca) and the polyphyly of the
genus Lindra in the Lulworthiales (Koch et al. 2007); and
the polyphyly of Verrucaria, Verrucariales (Gueidan et al.
2007). The genus Lindra has already been shown to be
polyphyletic, but no fresh material of the type species
(Lindra inflata) has been available to resolve the phylogeny
of the genus (Koch et al. 2007). Lindra obtusa and its
anamorph Anguillospora marina are distantly placed from
Lindra crassa and L. thalassiae, and these two enties also
differ morphologically (Jones et al. 2009a). Many marine
genera are not assigned to any higher order position: the
cleistothecial ascomycetes Biflua, Drysophaera, Marisola-
ris always found on wood and associated with sand (Koch
and Jones 1989); Biatriospora, Halotthia, Heleiosa, Ponto-
poreia, Tirisporella (Pleosporales incertae sedis) (Suetrong
et al. 2009a); and Adomia, Lanceispora, Phomataospora
(Xylariales incertae sedis) (Jones et al. 2009a).

Families and orders: new lineages

Spatafora et al. (1998) were the first to identify marine
fungal lineages, the Halosphaeriales and Lulworthiales,
although the latter was not formally designated until later
(Kohlmeyer et al. 2000). The Halosphaeriales (now
regarded by some authorities as a family Halosphaeriaceae
in the Microascales) comprises 126 species in 53 genera
(Sakayaroj et al. 2010b). The diagnostic features of the
order are perithecial ascomata, asci that are clavate to
fusiform, lacking an apical apparatus and deliquescing
early, presence of catenophyses, and primarily 1-septate,
hyaline ascospores with various polar and equatorial
appendages, and saprobes in aquatic habitats (Jones 1995;
Pang 2002). The Lulworthiales comprise 8 genera: Hal-
oguignardia, Kohlmeyeriella, Lulworthia, Lulwoana, Lul-
woidea, Lindra, Rostrupiella, Sapthluospora and their
anamorphs: Cumulospora, Hydea, Matsusporium, Orbimy-
ces and Zalerion (Jones et al. 2008a; Abdel-Wahab et al.
2010). The teleomorphs all share a common feature in
ascospores with an apical chamber from which a drop of
mucilage may be released (Jones 1994). The genera
Koralionastes and Pontogenia form a monophyletic clade
basal to the Lulworthiales and are a third ascomycete
marine lineage, the Koralionasteales (Campbell et al. 2009).
This group differs from members of the Lulworthiales in that
the ascospores lack an apical mucous-filled polar end chamber
(appendages).Koralionastes is a unique genus of five species
that occur on coralline-coated rocks and sponges, and known
from the Atlanic Ocean, Belize, Central America, and
Australia (Kohlmeyer and Volkmann-Kohlmeyer 1987c;
1990). Pontogenia species were initially referred to Zigo-
nella, but were transferred to the new genus because of
differences in the morphology of the ascomata, and in

particular the hyaline, sepate ascospores parasitic on marine
algae. Eight species have been described from green and
brown algae (Kohlmeyer 1975).

Sakayaroj et al. (2005b) showed that the genera
Torpedospora and Swampomyces formed a monophyletic
group that was a sister group to the Hypocreales. Schoch et
al. (2006a) confirmed that these genera, along with
Etheirophora and Juncigena, formed a novel marine
lineage in the Hypocreomycetidae grouping with the orders
Coronophorales and Melanosporales and referred to as the
TBM clade (Torpedospora, Bertia, Melanospora). Howev-
er, the family and order relationships were not resolved and
Schooch et al. (2006a) suggested further sampling was
required with protein coding loci (RPB1, EF-1+). A related
lineage of aquatic fungi is the Savoryellales with the genera
Ascotaiwania, Ascothaliandia, Savoryella and their ana-
morphs (Canalisporium, Monotosporella, Helicoon) and
also form a relationship with the TBM clade (Boonyuen et
al. 2011). Schoch et al. (2009) also highlight three
nonlichenised lineages in the Dothideomycetes: plant
pathogenic Coryneliales, lichen parasitic Mycocaliciomy-
cetidae and the marine saprobic Dactylospora-clade
(Dactylospora haliotrepha). For sure other new lineages
of marine fungi remain to be discovered as further taxon
sampling is undertaken.

Three marine lineages have been identified within the
homobasidiomycetes, representing three to four indepen-
dent transitions from terrestrial to aquatic habitats (Hibbett
and Binder 2001; Maekawa et al. 2005). The Nia clade
(Halocyphina villosa, Nia vibrissa, Calathella mangrovei)
in the euagarics is primarily evolved from cyphelloid forms,
with both mangrove and marine forms (Hibbitts et al. 1981;
Binder et al. 2006). The second lineage in the euagarics,
and not related to cyphelloid forms, is the physalacriaceae
clade and comprises Physalacria maipoensis and Mycaur-
eola dilsea, a parasite of the red alga Dilsea edulis (Porter
and Farnham 1986; Binder et al. 2006). A third lineage
includes Haloaleurodiscus mangrovei which occurs on dead
trunks and branches of Sonneratia alba in Japanese
mangrove forests (Maekawa et al. 2005). Sequence data
phylogentically placed this species in the root of the
Peniophorales clade, euagaric Homobasidiomycetes. Both
Ph. maipoensi and H. mangrovei were reported from the
more freshwater mangrove zone and regarded as halotoler-
atent, but the former has been collected at Futian mangrove
growing on the intertidal senescent stems of Acanthus
ilicifolius (Jones, unpublished data) (Inderbitzin and
Desjardin 1999; Maekawa et al. 2005).

As the result of molecular studies a number of new
families have been identified that have marine taxa. Within
the Dothideomycetes eight new families have been pro-
posed: Aigialaceae, Morosphaeriaceae (Suetrong et al.
2009a), Amniculicolaceae, Lentitheciaceae (Zhang et al.
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2009a, b), and Trematosphaeriaceae (Suetrong et al. in
press) (Pleosporales); Aliquandostipitaceae (Inderbitzin et
al. 2001) (Jahnulales), Hypostromataceae (Mugambi and
Huhndorf 2009) Lautosporaceae (Kohlmeyer et al. 1995)
(Ascomycetes incertae sedis). Lautospora gigantea is a
wood-inhabiting ascomycete with cylindrical asci with an
ocular chamber and large, thick-walled hyaline, 4–7 septate
ascospores lacking appendages or a sheath (Hyde and Jones
1989b). A second species L. simillima was described from
Juncus roemerianus and because of the unusually large
thick-walled ascospores a new family Lautosporaceae was
erected to accommodate these two species and refered to
the Dothideomycetidae incertae sedis (Kohlmeyer et al.
1995). No sequence data is available to resolve its higher
taxonomic position (Suetrong et al. 2009a).

The Hypostromataceae was erected to accommodate two
genera Hypsostroma and Manglicola, a family with no
known relationship to any group in the Dothideomycetes,
but with “probable affinities to the Melanommatales or
Pleosporales” (Huhndorf 1994; Mugambi and Huhndorf
2009). Fresh collections enabled the referral of Manglicola
guatemalensis to the Jahnulales based on sequence data,
while the position of Manglicola samuelsii, collected on
dead culms of bamboo in Guyana, remains unresolved.
Inderbitzin et al. (2001) established the Aliquandostipita-
ceae for a new genus, Aliquandostitpite, with two freshwa-
ter ascomycetes collected in China and Thailand, but not
referred to any order. The family can now be placed in the
Jahnulales, an order described by Pang et al. (2002) with
the genera Aliquandostitpite, Jahnula, and Patescospora,
and the recently added Manglicola (Suetrong et al. 2009b),
Megalophylla (Campbell et al. 2007), and the anamorphic
genera Brachiosphaeria, Xylomyces (Campbell et al. 2007)
and Speiropsis (Prihatini et al. 2008). The order is
characterized by large-celled ascomata, often born on a
stalk, broad vegetative hyphae (10–40 μm) and ascospores
with a variety of gelatinous appendages, pads or sheaths.
Shearer et al. (2009) opinioned that the order contains 4–5
separate lineages that require further molecular data to
resolve their inter relationships.

The genera Aigialus, Ascocratera and Rimora (Massarina
mangrovei), known only from mangrove habitats, form a
monophyletic group with high statistical support, with the
erection of a new family, Aigialaceae, in the Pleosporales
(Suetrong et al. 2009a). Another new family in the
Pleosporales is the Morosphaeriaceae which includes the
marine genera Heliscus, and Morosphaeria and the freshwa-
ter ascomycete Kirschsteiniothelia elaterascus (Suetrong et
al. 2009a). Suetrong et al. (2009a) referred the marine
species Halomassarina thalassiae and Falciformispora
lignatilis to the Trematosphaeriaceae; however this was not
formally introduced in their paper. This has now been
formally described (Suetrong et al. 2011) with Trematos-

phaeria as the type genus. Zhang et al. (2009a) erected the
family Lentithiaceae to accommodate Massarina species that
could not be assigned to the Massarinaceae, and included the
marine fungi Lentithecium (Massarina) phragmiticola and
Keisieriella rarum. Verruclina enalia, a common mangrove
ascomycete, grouped in the Testudinaceae (Schoch et al.
2006a; Suetrong et al. 2009a) although in the anlaysis of
Mugambi and Huhndorf (2009) it is placed in the Platysto-
maceae, with weak support.

Although there has been great progress in our under-
standing of the molecular phylogeny of marine fungi, many
taxa await assignment to a family or order, in particular
members of the Dothideomycetes (Suetrong et al. 2009a).

Application to ecological studies

A key question when undertaking ecological studies of
marine fungi is, have you isolated/recovered all the species?
Most of the biodiversity studies documented above have
been of fungi sporluating on selected substrata or isolated
from them on to agar media (Hyde et al. 1999; Raveendran
and Manimohan 2007; Alias and Jones 2009; Jones et al.
2009a; Pang et al. 2010a, b). Also many of the fungi
isolated as endophytes are sterile and do not sporluate in
culture, in particular basidiomycetes and ascomycetes
(Ananda and Sridhar 2002; Rungjindamai et al. 2008;
Sakayaroj et al. 2010a). Such sterile strains can now be
determined by the use of molecular techniques, as shown
by the studies of Zuccaro et al. (2003, 2004) and Sakayaroj
et al. (2010a). Forty four fungal asemblages were isolated
from the seagrass Enhalus acoroides of which 25 were
sterile cultures (Sakayaroj et al. 2010a), and sequence data
enabled generic identification of these strains, and some to
species. This will become an increasingly important
technique for the identification of fungi in ecological
studies (Pivikin et al. 1999; Pivkin 2000).

A major unknown when dealing with fungal ecology, is
have all the species present in host/substrtum been
determnined? This is particularly so for studies of marine
soils and sediments. This is well illustrated by ecological
studies of terrestrial soils when most of the fungi
documented are mitosporic fungi or readily sporulating
ascomycetes. Basidiomycetes are only occasionally listed,
yet woodland soils are rich in such fungi. New techniques
are therefore required to obtain a complete knowledge of
the total mycological compliment of such substrata. Pang
and Mitchell (2005) have outlined the range of molecular
techniques available to assess fungal diversity in the marine
environment, so that interactions between microbial diver-
sity and ecosystem function can be better understood. PCR-
DGGE (denaturing gradient gel electrophoresis) analysis of
DNA exracted from various substrata has now been wildly
used to document fungal communities using fungal specific
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primers e.g. May et al. (2001) Nikolcheva et al. (2005),
Duong et al. (2006), and Seena et al. (2008). However its
application to the study of marine fungi is relatively new
(Pang and Mitchell 2005; Zuccaro et al. 2004, 2003, 2008).
Zuccaro et al. (2004) extracted DNA from the brown alga
Fucus serratus using primers nuSSU and nuLSU rDNAwhen
a number of ascomycete phylotypes were identified. The
majority of the environmental phylotypes isolated matched
those of the culturable diversity, with representatives of the
Dothideales, Halosphaeriales, Hypocreales and Lulworthiales.
Four of the phylotypes could be matched with Corollospora
angusta, Halosigmoidea (= as Sigmoidea) marina, Lindra cf
obtusa and Emeicellopsis/Acremonium group. However, a
number of phylotypes did not match those that were isolated
by traditional methods. Such techniques are not without
problems, short sequences and data interpretation, potential
over estimates, number of sequences in the GenBank for
comparison, estimation of taxon richness, and are these taxa
ecologically active in the habitat. Zuccaro et al. (2004) further
discuss the issues highlighted here and emphasise the
importance of databases of fungal sequences for future
ecological studies and “the development of probes for the
detection of nonculturable and parasitic fungi”.

Ultrastructure studies of marine fungi

Ulrastructural studies of marine fungi have focused on three
topics: 1. The development of ascospores and their
appendages, 2). To seek diagnositic features for the
characterisation of species and 3. To observe the attachment
of spores to various substrata.

Marine fungal spores and their appendages

As most unitunicate marine fungi possess ascospores with
morphologically diverse appendages, it is natural that these
features have been widely used in the delineation of species
and genera (Jones et al. 1986). Jones (1995) outlined a
scheme that characterised the different developmental forms
in ascospore appendage development. A number of studies
followed to examine the different ways ascospore appen-
dages were formed at the scanning and transmission electron
microscope level (SEM, TEM) (Read et al. 1993a, b; 1995),
which often resulted in a reevaluation of the taxonomy of
selected genera (Jones et al. 1983; Johnson et al. 1987; Jones
1995). Schmidt (1969) was the first to draw attention to the
possibility that the genus Corollospora was polyphyletic
which promoted Jones et al. (1983a) to examine ascospores
structure and development of various species. This con-
firmed its polyphyly and species were assigned to the genera:
Kohlmeyeriella (ascospores with polar endchambers formed
by the epi- and mesosporium, and filled with mucilage),

Nereiospora (appendages polar and equatorial, hair-like
extensions of the spore wall), Arenariomyces (appendages
sub-apical terminating in hook-like structures) and Corol-
lospora (primary appendages apical formed by the epi- and
mesoporium, secondary appendages formed by fragmenta-
tion of the exosporium). Similar studies showed other genera
were polyphyletic: Halosphaeria and led to the reestablish-
ment of the genera Halosphaeriopsis, Remispora, and the
erection of the genera Ondiniella, Ocostaspora (Johnson et
al. 1984; Jones et al. 1984); Ceriosporopsis and reestablish-
ment of Marinospora while it was suggested that C.
tubulifera should be referred to another genus (Johnson et
al. 1984) and transfer of Haligena amicta to a new genus
Appendichordella (Johnson et al. 1987).

Ascospores with hamate, bipolar unfurling appendages
are common in the Halosphaeriales, but ultrastructural
studies have shown that there is great variation in the orgin
of these structures: appendages arising from a distinct pore
(Magnisphaera spartinae); appendages emerging from a
hood-like structure (Cucullosporella mangrovei); arising
from discontinuities in the episporium (Saagaromyces
ratnagiriensis) (Jones 1962; Alias et al. 2001; Baker et al.
2001). However, Yanna and Hyde (2003) showed that the
genera Linocarpon and Neolinocarpon, with filiform
ascospores, could not be delineated based on the ultrastruc-
ture of the polar appendages. Yusoff et al. (1995) undertook
a similar study of the filiform ascospores of the genera
Lindra and Lulworthia, with the latter genus possessing
mucilage-filled polar end chambers formed by episporial
and mesosporial wall layers. In Lindra species, the spore
wall comprises an episporium and mesosporium with a
mucilaginous layer around the spore poles but lack an end
chamber. Thus descriptions of new genera and species have
been considerably enhanced by electron micrographs of the
ascomata, asci and ascospores.

One feature common to all the marine species investigated
was the demonstration of a delimiting membrane (or
membrane complex) which surrounds the developing spore
and appendages and only breaks down once they have been
released into water. This delimiting membrane prevents the
premature expansion of the appendages until they are released
from the ascomata. For example, ascospores ofHalosarpheia,
Cucullosporella, Saagaromyces spp., once released from the
ascomata and in water, the delimiting membrane deliquesces
and the hamate polar appendages unfurl to form long thread-
like appendages (Alias et al. 2001; Baker et al. 2001; Jones
2006). Similarly, ascospore appendages of Corollospora
species only expand when the delimiting membrane ruptures
once in water and the exosporic layer peels away from the
spore wall and undergoes a fragmentation process (Jones et
al. 1983; Hsieh et al. 2007; Jones 2006).

While unitunicate ascomycetes possess ascospores with
elaborate appendages, spores in bitunicate taxa generally
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have gelatinous sheaths, e.g. Rimoria velatospora, or are
elaborated into wing like appendages e.g. Decorospora
gaudefroyi (Yusoff et al. 1994). As most marine bitunicate
fungi are intertidal and generally forcibly eject their
asocospores, the presence of elaborate appendages would
be a disadvantage if they expanded before release from the
ascus. Thus the delimiting membrane prevents the prema-
ture expansion of ascospore appendages and sheaths until
they are ejected into the surroung water (Read et al. 1994,
1997a, b; Jones 2006). The ultrastructure of a wide range
of bitunicate ascomycetes have been investigated to
determine the ontogeny of ascospore appendages and
sheaths (Au and Vrijmoed 2002), in particular Capronia
ciliomaris (Au et al. 1999b), Leptosphaeria pelagica and
Trematospheria malaysiana (McKeown et al. 2001), Para-
liomyces (Read et al. 1992), Massarina species (Read et al.
1994, 1997a, b), Julella avicenniae (Au et al. 1999a) and
Tirisporella beccariana (Jones et al. 1996a, b), to list but a
few. In unitunicate ascomycetes the ascospore wall gener-
ally comprises three layers: meso-, epi- and exosporium,
but in bitunicte species the wall may be more elaborate with
a bilamellate mesosporium (Dactylospora haliotrepha,
Julella avicenniae, Leptosphaeria pelagica; Au et al.
1996, 1999a; McKeown et al. 2001).

Few detailed studies of ascomata and ascus development
of marine fungi have been published, and mostly of
sections observed at the light microscope level (Lloyd and
Wilson 1962; Wilson 1956; Kohlmeyer and Kohlmeyer
1966; Schatz 1983; Pang et al. 2010a, b). Au et al. (1999b)
showed at the TEM level, that the ascoma wall of Capronia
ciliomaris comprised 2–3 layers with setae arising from the
outer layer. Initially the upper third of the centrum was filled
with rounded cells embedded in an extracellular matrix, but
break down at maturity with the extension of the asci.
Periphysoidal elements arose from the inner upper third of
the ascomal wall and ostiolar canal, extended through the
ostiole and merged with a crown of apical setae. Hsieh et al.
(2007) followed ascoma development in Corollospora
gracilis from ascogonium initiation, antheridium-
ascogonium conjugation, production of ascogenous hyphae
to peridium and ostiole development. Pit-connections of the
centrum pseudoparenchyma have been reported for a
number of marine ascomycetes, e.g. Antennospora salina,
Arenariomyces trifurcatus, Kohlmeyeriella tubulata
(Kohlmeyer and Kohlmeyer 1979; Kohlmeyer and
Volkmann-Kohlmeyer 1987b) but their origin has not been
determined. At the TEM level, pit-connections in C.
gracilis were found to be modified ascomycetous septal
pores, fluorescing with Calcoflour white, which stains
material rich in 1, 4-β-glucans. Another observation made
in this study was the occurrence of a plug of thick-walled
non-melanized cells at the base of the ostiole that separated
the rest of the centrum tissue by a thin melanised separation

layer. Similar structures have been reported by Kohlmeyer
and Volkmann-Kohlmeyer (1987a; b; c; 1989) in Corol-
lospora cinnamomea and C. armoricana, and may occur in
other species in the genus (Nakagiri and Tokura 1987). This
plug may play a role in preventing the entry of seatwater
into the centrum until ascospore release is imminent.

Attachment studies

Jones (1973) and his co workers, initiated various studies to
investigate spore dispersal, attachment and colonization of
substrata in the sea. Various stages can be identified leading
to spore attachment: spore release, transport (dispersal,
flotation), settlement, and deposition (attachment). These
stages involve passive attachment (entrapment) to active
attachment leading to the production and release of
extracellular adhesive, spore differentiation, germination
with germ tube development and formation of a hyphal
sheath, development of appressoria and the penetration of
the substrataum (Rees 1980; Rees and Jones 1984; Hyde et
al. 1986a, b, 1989; Jones 1994, 2006). Fazzani and Jones
(1977) carried out preliminary studies to document spore
realese in various marine fungi, but this has not been
followed with any further experimental work.

Spore entrapment to substrata has been documented for
species such as, Nantantispora retorquens with its bipolar
unfurling appendages wrapping around wood fragments, or
conidia of Orbimyces spectabilis trapped to jagged wood
cell walls (Rees and Jones 1984). Many marine ascomy-
cetes have spores with mucilaginous appendages that aid
passive attachment to the substratum: Ondiniella torquata
(annulus-like equatorial appendage that forms an adhesive
pad on contact with the substratum) and Lautosporopsis
circumvestita; release of a drop of mucilage from apical end
chambers, that form an adhesive pad that spreads out on the
substratum to anchor the spore (Kohlmeyeriella tubulata,
Lulworthia spp.) and sticky fibrous threads that aid
attachment (Carbosphaerella leptosphaerioides, Appendi-
chordella amicta, Nereiospora cristata, Nautosphaeria
cristaminuta). Other species, especially bitunicate ascomy-
cetes, possess mucilaginous sheaths that aid in spore
attachment: Halomassarina thalassiae, Julella avicenniae,
Morosphaeria velatospora (Rees and Jones 1984).

Active attachment results when ascospores have made
contact with a substratum and begin to germinate, with the
formation of germ tubes surrounded by mucilage (Hyde et
al. 1986a, b). The trigger mechanism for this has not been
elucidated. Subsequently hyphae are formed ensheathed by
mucilage which further adhere the spore to the substratum
(Hyde et al. 1986b). Mucilaginous hyphal sheaths have
been known for some time (Szaniszlo et al. 1968; Palmer et
al. 1983) but their function was speculative. Hyde et al.
(1986a) followed the germination of 15 marine fungi on
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wood veneers and polycarbonate membranes and reported
the development of hyphal sheaths in each species. It was
postulated that these sheaths serve in the adhesion of the
developing hyphae prior to penetration of the substratum.
This is supported by the observations of other authors (Akai
et al. 1967; Hau and Rush 1982).

Experimental studies of spore attachment of marine
fungi have included factors affecting sedimentation rates
of spores (Rees 1980), the use of waterjets to determine
their strength of attachment to surfaces (Rees and Jones
1984), and a Fowler Radial Flow Chamber (Hyde et al.
1989). Hyde et al. (1989) found that ascospores of marine
fungi became attached to the discs, albeit relatively weakly
over 24 h. The spores of some species became more
strongly attached (e.g. Eiona tunicata) than others (e.g.
Amylocarpus encephaloides) and the strength of attachment
increased with time with greater shear stress required to
remove spores at time intervals up to 96 h. Hyde et al.
(1993) studied the flotation, deposition and attachment of
spores to solka flock, while Sundari and Vikineswary
(2002) examined the effect of agitation on ascomata
formation in the marine ascomycete Corollospora gracilis.
Marine fungi must secure rapid attachment, often under
turbulent wave action, and further studies are warranted to
explore their ability to colonize substrata in the sea,
especially pathogenic and endophytic taxa. Few mycolo-
gists have considered the world wide distribution/dispersal
of marine fungi and their center of origin. While some taxa
can be regarded as temperate (e.g. Lindra inflata), cold
water species (e.g. Toriella tubulifera), tropical (e.g.
Halorosellinia oceanica) others are cosmopolitan (e.g.
Corollospora maritima, Lignincola laevis) (Abdel-Aziz
2010; Pang et al. 2009, 2010a, b; Abdel-Wahab 2011a, b).

Bioactive compounds

It is impossible to estimate how many marine/marine
derived fungi have been screened for bioactive compounds
or new chemical structures, but it runs into thousands, for
example, Cuomo (1986) screened some 1500 marine
strains. The Italian survey showed that the anamorphic
fungus Dendryphiella salina was a prolific producer of new
chemical structures yielding trinor-eremophilane or eremo-
philane sesquiterpenoids (Guerriero et al. 1988, 1989):
dendryphiellin A, B, C, D, A1; dendryphiellic acid A, B,
glyceryl dendryphiellate A, and five eremophilane deriva-
tives. Since the discovery that the marine basidiomycete
Halocyphina villosa produced the bioactive compound
siccayne in 1981 (Kupka et al. 1981), our knowledge of
their potential for production of secondary metabolities has
increased dramatically. The result has been a number of
extensive reviews of the subject: Biabani and Laatsch

(1998), Miller (2000), Verbist et al. (2000), Faulkner
(2002), Jensen and Fenical (2002), Lin and Zhou (2003),
Bugni and Ireland (2004), Jones (2008) and Ebel (2010).
The late Dr John Faulkner for a number of years reviewed
the new secondry metabolites produced by marine micro-
organisms, which included marine fungi (Faulkner 2002,
and references included therein) and this is being continued
by Peter Proksch in Fungal Diversity (Aly et al. 2010;
Debbab et al. 2011). The number of new bioactive
compounds reported from marine fungi has increased
steadily over the years: 1 (1981), 100 (2002), 272 (2004)
and may be well over 400 now. These reviews document
this information according to chemical structures (Verbist et
al. 2000), activity of compounds (Aly et al. 2010) while
Bugni and Ireland (2004) focus on the source of the fungi
and their biological activity. Table 7 lists some recently
published new compounds from marine fungi.

Bugni and Ireland (2004) have calculated that most
compounds from marine fungi are from sponges (33%)
followed by algae (24%) and wood (13%), with the number
of new compounds following the same trend: 29, 27, and
10% from sponges, algae and wood, respectively. Although
so called obligate marine fungi have been shown to produce
a wide spectrum of secondary metabolites (e.g. D. salina:
Guerriero et al. 1988, 1989, Kallichroma tethys: Alam et al.
1996, Halorosellinia oceanica: Schilingham et al. 1998;
Chinworrungsee et al. 2001, 2002; Li et al. 2001), the most
prolific are the marine derived fungi isolated from a wide
range of substrata (Höller et al. 2000; Morrison-Gardiner
2002; Pivikin et al. 1999). Pivikin et al. (1999) isolated a
large number of strains from bottom sediments, algae, animals
and sea foam yielding 179 species from the Sea of Japan.
From 418 strains tested 78 showed activity against Gram-
positive and gram-negative bacteria. Of the marine derived
fungi from a large number of studies, typical terrestrial taxa
such as: Aspergillus, Fusarium, Penicillium, Phoma and
Trichoderma were the most common but whether they are
active in the marine environment is subject to debate. It is
vital that molecular sequences of these strains are available
so as that they can be compared with their terrestrial
counterparts, and aid future studies. However, they generally
produce quite different secondary metabolites to similar
terrestrial strains (Bhakuni and Rawat 2005).

Marine fungi produce a wide spectrum of secondary
metabolites and some examples are included here:

lipids: ceramide was obtained from Lignincola laevis
(Abraham et al. 1994), and asperamides A and B
from an endophytic Aspergillus niger isolated from
Colpomenia sinuosa (EN-13), a brown alga (Zhang et
al. 2007);
heterocycles: penicilazine from a Penicillium sp. (Lin
et al. 2000) and is related to the compound triochode-
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mamide from the marine derived fungus Trichoderma
virens isolated from a marine ascidian (Eliane et al.
2003);
allenolic series: xyloallenolide A, isolated from a
mangrove Xylaria sp. strain #2508 (Lin et al. 2001a),
allenic moieties are rather uncommon, with most from
marine habitats;
ketal series: xyloketals 9–16 were isolated from a
Xylaria strain #2508 (Lin et al. 2001b). Xyloketals
have importrant phamacological activities with great
efforts being made for their synthesis under laboratory
conditions;
depsipeptides: a novel cyclic depsipeptide enniatin G
was isolated from the mangrove fungus Halosarpheia sp.
collected on mangrove wood in Thailand (Lin et al.
2002a);
alkaloids: two new diketopiperazines were obtained from
a Penicillium sp. isolated from a deep ocean sediment
sample, and roquefortine H, J and I (Du et al. 2010);
cyclic peptides: marine fungi produce a wide range of
peptides as illustrated with Beauveria felina isolated
from the marine alga Caulerpa yielding two new cyclic
depsipeptides; pseudodestruxin C and β-Me-pro des-
truxin E chlorohydrin (Lira et al. 2006); Spicellum
roseum isolated from a Caribbean sponge Ectyplasia
perox produced two new cyclohexadepsiptides spice-
llamide A and B (Kralj et al. 2007); mangrove strain
#2516 yielded three new cyclotetrapeptides and four
cyclic dipeptides, while strain #2524 isolated from
seeds of Avicennia marina produced two new cyclic
pentapeptides (cyclo-(L-Phe-L-Leu1-L-Leu2-L-Leu3-l-
lle, and cyclo-(Phe-Val-Leu-Leu-Leu), the former

exhibiting cytotoxic activity against human cancer cell
line Bel-7401 (Li et al. 2004), and the hexacylic
dipeptide azonazine was isolated from the marine
derived fungus Aspergillus insulicola (Wu et al. 2010);
isocumarins: two new isocumarins avicennin A and B,
and vermopyrone were isolated from the leaf endophyte
of Avicennia marina (Lin et al. 2001c), while isocul-
morin was obtained from the mangrove fungus Kalli-
chroma tethys (Alam et al. 1996; Kong and Kim 2002);
terpenes: a number of marine fungi produce these
compounds: Dendryphiella salina (dendryphielins A-
D, Guerriero et al. 1988); endophyte #2492 and
Halorosellinia oceanica (two unique dipterpenes
isomers hypoxylin A and B, and a sesquiterpene
lactone: Luo et al. 2004; Li et al. 2001); unidentified
marine fungus (MPUC 046), isolated from a brown
alga Ishige okamurae (phomactin I, 13-epi-phomactin
I and phomatcin J: Ishino et al. 2010); Penicillium sp.,
isolated from sea mud (two new eremophilane
sesquiterpenes: 3-acetyl-9,7(11)-dien-7a hydroxyl-8-
oxoeremophilane and 3-acetyl-13-deoxyphemenon:
Huang et al. 2008);
diketopiperazines: an Aspergillus sp. isolated from
Mytilus edulis (mussel) yielded a series of prenylated
diketopiperazines, notoamides A-D and F-K (Kato et
al. 2007); while another species A. fumigatus isolated
from Stichopus japonics (holothurian) produced seven
such compounds including spiro-3-indolinone, spiro-
tryprostatin C, D and E, and Eurotium rubrum and P.
bilaii yielded dehydroariecolorin L and dehydroechi-
nulin and bilains A, B and C respectively (Li et al.
2008);

Table 7 Examples of some new compounds from marine fungi 2008–2011

Fungus Substratum 2nd metabolite Reference

Alternaria sp. Sonneratia alba China xanalteric acids I, II Kjer et al. 2009

Unidentified ascomycete Marine sponge, Figi New dibenzofurans: Rateb et al. 2010

Fasciatispora nypae Mangrove wood, Malaysia 2,2,7-trimethyl-2H-chromen-5-ol Zainuddin et al. 2010

Phomopsis sp. Mangrove bark China phomopsin A Tao et al. 2008

Penicillium aurantiogriseum Marine mud China verrucosidinol verrucosidinol acetate Yu et al. 2010

Unidentified Red Sea Egypt deuteromycol A, B Nawwar et al. 2010

Fusarium sp. Gorgonian sea fan, Thailand anthraquinone cyclopentanon derivatives Trisuwan et al. 2010

Talaromyces sp. Bark Kandelia candel, China 7-epiaustdiol, 8-0-methylepiaustdiol Liu et al. 2010

Paecilomyces sp. Bark mangrove tree, Taiwan paecilozocins A, B Wen et al. 2010

Phoma sp. Caribbean marine sponge, Dominica epoxyphomalins C, D, E Mohamed et al. 2010

Penicillium sp. Sediment sample, China meleagrin D, E roquefortine H, I Du et al. 2010

Unidentified sp. Leaves Xylocarpus granatum, Thailand merulin A, B, C Chokpaiboon et al. 2010

Unidentified sp. Marine brown alga, Japan phomactin Ishino et al. 2010

Penicillium chrysogenum Marine sponge, Italy sorbifurans A-C Bringmann et al. 2010

Aspergillus insulicola Sediment, Hawaii azonazine Wu et al. 2010
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lactones: Helicascus kanaolanus, a mangrove ascomy-
cete yielded helicascolides A and B (Poch and Gloer
1989), while a Eutypa sp. isolated from Avicennia
marina yielded eutpoid A a new α,β-unsaturated-γ-
lactone (Lin et al. 2002b), while others have been
reported by Yang et al. (2006) and Shao et al. (1999);
anthraquinones: many marine fungi have been shown
to produce known and new anthraquinones: Haloro-
sellinia sp. (Jiang et al. 2000), an endophytic fungus
from Avicennia sp. (Zhu et al. 2004), Paecilomyces sp.
(Wen et al. 2007) and an endophytic strain isolated
from Acanthus ilicifolius (Shao et al. 2007).

Marine fungi have been shown to have activity against a
broad range of microorganisms and pharmacological con-
ditions; however few have made it commercially. In
comparing the activity of 1,500 marine and 1,450 terrestrial
strains, the major difference in antimicrobial activity was in
that terrestrial isolates were more active against gram-
negative bacteria, while those from marine fungi were active
against fungi (e.g. Candida albicans, Pythium dabaryanum,
Botrytis cincerea). Biological activities range from:

antibacterial: nigrospoxydon A showed activity
against Staphylococcus aureus (NIC 64 μg/mL)
(Trisuwan et al. 2008);
antifungal: isoculmorin (Alam et al. 1996), culmorin
(Strongman et al. 1987), microsphaeropsin from a
Microsphaeriopsis sp. (Höller et al. 2000), mactana-
mide (Lorenz et al. 1998), two macrodiolides from
Cladosporium herbarum (Jadulco et al. 2001), three
lipodepsipeptides affect fungal cell wall synthesis and
thus have a potential in the control of dermatophytes
(Schilingham et al. 1998), while Paz et al. (2010)
showed that 36 marine derived fungi isolated from a
Mediterranean sponge Psammocinia sp. possessed
antifungal activity;
broad antimicrobial activity: halymecins A-C (from a
Fusarium sp.) and D-E (from Acremonium sp.) (Chen
et al. 1996);
antimalarial: hypothemycin and aigialomycin D ac-
tivity at IC50 values of 2.2 and 6.6 μg/ml (Isaka et al.
2002), while bostrycin showed weak activity (Trisuwan
et al. 2010);
cytotoxic (penochalasins A-C most potent against
P388 leukemia cell line (Numata et al. 1996; Iwamoto
et al. 1999), while trichdenones A-C are mildly
cytotoxic (Amagata et al. 1998), communesins A and
B are cytotoxic alkaloids from a Penicillium sp.
(Numata et al. 1993, 1996), paeciloxocin A against
HepG2 cell line (Wen et al. 2010), pentostatin A-D,
nigrosporanene A against MCF-7 and Vero cells
(IC50 values of 9.37, 5.42 μg/mL, respecvtively)
(Rukachaisirikul et al. 2010); Xylaria psidii and strain

KT31 (a sterile algicolous strain from Kappaphycus
alvarezii) showed strong cytoxic activity at IC50
values of 4 μg/mL and 1.5 μg/mL, respectively
(Tarman et al. 2011);
platelet activating factor PAF) antagonists: phomac-
tins are a new class pf specific PAF antagonsis (Sugano
et al. 1995). Other uses of metabolites from marine
fungi are dicussed by Verbist et al. (2000).

Pan et al. (2008) screened more than 100 fungal strains
isolated from various substrata collected in the South China
Sea, with 25 yielding 40 new compounds of which 20 were
new bioactive compounds. Intensive screening of marine
and marine derived fungi has yielded a huge number of
interesting compounds, with a wide range physiological
activity. Some marine fungi have been shown to be a
prolific source of compounds: Dendryphiella salina isolat-
ed from seaweeds and other marine substrata, yielded some
12 new chemical structures some with bioactivity. Jensen
and Fenical (2002) indicate that Dendryphiellin A is “an
unpresentented sesquiterpene esterified with a branched C9
carboxylic acid”. Halorosellinia ocenaica is another species
that yields a wide range of novel compounds: 15G256α,
15G256β, 15G256γ, 15G256δ, 15G256ε (Abbanat et al.
1998; Schilingham et al. 1998), halorosellinic acid
(Chinworrungsee et al. 2001), a sesquiterpenoid lactone
(Li et al. 2001, 2005), while a Halorosellinia sp. (#1403)
yielded seven anthraquinones, one of which was a new
compound (Jiang et al. 2000). Of equal interest are two
Fusarium strains isolated from the gorgonian sea fan
(Annella sp.) which yielded five new metabolites (a
modified anthraquinone fusaranthaquinone, cyclopentanon
fusarone, a naphthquinone fusarnaphthoquinone, fusarnaph-
thoquinone B, furanaphthoquinone C and 18 known com-
pounds (Trisuwan et al. 2010). In the search for new sources
for bioactive compounds, marine fungi have yielded a wide
range of novel compounds both chemical structures and in
their pharmacologically activity. Fungi isolated from man-
grove wood, and marine derived strains from sponges, algae
and tunicates top the list as sources for novel chemistry (Bugni
and Ireland 2004). More recently endophytes of various
plants and animals have also been shown to be an excellent
source of new compounds (Schulz et al. 2002; Jones 2008;
Pan et al. 2008; Chaeprasert et al. 2010; Rateb et al. 2010)
with Schulz et al. (2008) demonstrating that endophytic
fungi were a better source of novel secondary metabolies
than fungi associated with marine algae. Schulz et al. (2008)
further concluded that “neither plant organ from which
endophytes originated nor host species affected antifungal
activity of the culture extracts and the genera Geniculospo-
rium, Nodulisporium and Phomopsis species produced the
greatest numbers of metabolites per isolate”. It is not
surprising that the first two genera produced so many
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novelties, as they are xylariaceous mitosporic fungi, a known
rich source of bioactive compounds (Stadler and Hellwig
2005). This is an area of marine mycology that will continue
to expand and yield fascinating results.

Wood decay

Wood decay research in the 1960–1970’s was the result of
the great losses in timber structures in the marine
environment by wood boring animals (molluscs and
crustaceae) and the role of fungi in the preconditioning of
wood prior to larval settlement. This led to the setting up of
a special working group by OECD on the preservation of
wood in the sea, and was later incooperated into Comité
International pour la Recherch sur la Préservation des
Matériaux en Millieu Marin COIPM (Jones 2009).

Some of the early studies of the physiology and
biochemistry of marine fungi dealt with their ability to
cause decay of wood (Jones 1971; Meyers 1971a, b) in
particular their ability to cause soft rot attack of wood cell
walls (Mouzouras 1986; Mouzouras et al. 1988). Later
studies have focused on: 1. Mechanism of wood cell wall
breakdown, 2. Enzymes produced by marine fungi, and, 3.
Potential use of marine fungi in bioremediation.

Mechanism of wood cell wall breakdown

Early studies examined the ability of marine fungi to cause
soft rot attack of wood, cordage and cellulose, although the
number of species screened was low (Jones 1971).
Corollospora maritima, Monodictys putredinis and Lulwor-
thia purpurea caused weight losses of wood of 25.7, 16.8
and 9.8%, respectively over an 18 week exposure period.
Soft rot cavities were observed in the middle layer of the
secondary wall in transverse sections, and as diamond
shaped cavities in longitudinal sections in polarized light.
Mouzouras (1986) screened 24 species for soft rot attack
and cell-wall penetration, with cavity formation observed in
16, and weight losses was dependent on the wood used.
Significant weight loss was observed by the anamorphic
fungus Monodictys pelagica (40%), and basidiomycetes
Nia vibrissa (28%) and Halocyphina villosa (23%) on balsa
wood (Ochroma lagopus), lower weight loss on Fagus
sylvatica (21, 5.5 and 8%, respectively), with no losses on
Pinus sylvestris. Mouzouras (1989) and Mouzouras et al.
(1988) showed that temperature affected the degree of
weight loss caused: the cold water basidiomycete Digita-
tispora marina cuased 14% weight loss of balsa wood at
10°C but only 5% at 22°C, while the opposite was noted
for the mangrove basidiomycete H. villosa (0% at 10°C and
23% at 22°C). The results for Nia vibrissa, a cosmopolitan
species, were 13 and 28% loss at 10 and 22°C, respectively.

Butcher et al. (2004) also determined the wood mass loss
under exposed and submerged conditions by 48 marine
strains, with the greatest losses by Ascocratera manglicola
(20%), Cryptovalasa halosarciicola (20%) and Rhizophila
marina (12%). Weight losses were much lower under
submerged conditions. Two terrestrial fungi included for
comparison caused losses of 56% (Phanerochaete chrys-
osporium) and 73% (Pycnoporus sanguineus), indicating
marine fungi were less active in the decay of wood.

The marine basidiomycetes caused white rot decay of
wood and this has been demonstrated by Leightly and
Eaton (1979) for Nia vibrissa and by Mouzouras (1989) for
Halocyphina villosa.

The mechanism of soft rot attack had been widely
speculated on until Hale and Eaton (1984, 1985a, b) observed
cavity formation in two marine fungi (Trichocladium
alopallonella and Monodictys putredinis) using a combina-
tion of continuous photomicrography and Scanning and
Transmission Electron microscopy. They were able to
observe the oscillatory growth of the fine proboscis hyphae
in the wood cell wall and the stop start mycelial growth
leading to the formation of cavities.

Enzymes produced by marine fungi

Early studies of the enzyme activity of obligate marine fungi
was by Chesters and Bull (1963) who studied the enzymes
associated with various algal polysaccharides, e.g. laminarin,
and Sam Meyers and his group (Meyers 1968, 1971b) on
wood decay fungi isolated from wood and cordage (Meyers
1971a, b). These studies also included observations on their
ability to sporulate under laboratory conditions, to
degrade seagrasses (Meyers et al. 1965) and the
relationship between marine fungi and nematodes in the
marine environment (Meyers et al. 1964). These and other
more recent studies have been reviewed by Verbist et al.
(2000) who list redox enzymatic activity laccase, tyrosi-
nase, peroxydase, polyphenoloxydase), xylanasic and
cellulosic activities (xylanase, β-D-xylosidase, cellulose,
β-D-glucosidase) and amylasic, pectinasic, alginastic and
laminarinasic activities. Most of the fungi screened were
isolated from Spartina, wood, decaying mangrove wood
and seagrasses and “showed a great variety of enzymatic
activities for a given genus”.

More recent studies have focused on the cellulolytic and
ligninolytic activity of marine fungi, especially ascomycetes.
Pointing et al. (1998) screened 15 fungi for cellulolytic activity
with all displaying endoglucanase and cellobiohydrolase
activity. Lignolytic activity was determined by well estab-
lished dye discolouration methods, with seven and 14
displaying peroxidase and laccase activity, respectively.
Similar results were obtained by Raghukumar et al. (1994)
when they isolated and screened mangrove and seagrass fungi
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for laccase activity. A few produced significant levels of
laccase (Saagaromyces ratnagiriensis, Hydea pygmea,
Gliocladium sp.), three showed manganese-dependent
peroxidase activity but none had lignin peroxidase
activity. Butcher et al. (2004) screened 48 strains of
marine fungi for lignolytic acitivity, 89% were celluloytic,
84% xylanolytic, 60% decolourised Poly-R, 23% oxidized
syringldazine and 12% decolourised Azure B. Luo et al.
(2005) screened 29 fungal isolates collected from tropical
and subtropical mangrove/marine habitats for the presence
of lignocellulose-degrading enzyme activities in agar
media. Endoglucanase and xylanase were the most
common enzymes produced. However, none of the fungi
exhibited an ability to decolourise Poly-R-478 dye,
indicating the lack of ligninolytic peroxidases. Three
groups of fungi were categorised according to their
cellulolytic, xylanolytic, and ligninolytic enzymes. Group
I contained 21 isolates (ca. 72% of the test fungi) able to
produce the three enzymes: endoglucanase, xylanase and
laccase. Group II comprised two isolates lacking the
ability to utilise filter paper and/or xylan, whereas Group
III consisted of six isolates (ca. 21%) with no laccase
activity. Laccase activity would appear to be widespread in
marine fungi but other lignin degrading enzymes were less
common. This may be accounted for by the fact most
species screened were ascomycetes.

Typical terrestrial-like basidiomycetes have been shown
to occur in brackish water mangroves e.g. Phellinus sp.
causing butt rot of Xylocarpus granata, while Grammothele
fuligo has been repeatedly collected on the decaying frond
bases of Nypa fruticans (Jones and Choeyklin 2008).
Basidiomycetes have also been isolated as endophytes from
marine plants: Peniophora from the seagrass Enhalus
acoroides (Sakayaroj et al. 2010a), while Menezes et al.
(2010) and Bonugli-Santos et al. (2010a, b) isolated a
number of basidiomycetes from the marine sponges
Amphimedon virdis and Dragmacidon reticulata from the
coastal town of Săo Sebastiăo, Săo Paulo state Brazil. They
showed that isolates of Marasmiellus sp. Peniophora sp.
and Tinctoporellus sp. showed great laccase gene diversity
and new putative laccases. These laccases were produced
when the fungi were grown on seawater media, suggesting
they may be active in the marine environment. However the
number of basidiomycetes recovered from marine habitats
remains low and further studies involving innovative
isolation methods is warranted.

Potential use of marine fungi in bioremediation

The ability of marine fungi to produce lignin degrading
enzymes has stimulated research into the decolourization of
bleach plant effluent from pulp and paper mills, effluent
from textile and dye making industries and molasses spent

wash from alcohol distilleries (Raghukumar 2008). Various
authors have screened marine fungi for their ability to
decolourize a range of dyes or produce lignin degrading
enzymes (Pointing et al. 1998; Raghukumar et al. 1999;
Raghukumar 2002, 2008). Raghukumar (2002) screened 11
marine fungi for lignin degrading enzymes and their ability
to decolourise industrial dyes, with 70% showing laccase
activity, and 82% cellulose activity. Three and one showed
manganese peroxidase and peroxidase activity, respectively. A
white rot basidiomycete, Flavodon flavus, isolated from a
decaying sea grass in a coral lagoon in India, produced all
three major classes of lignin degrading enzymes: manganese-
dependent peroxidase, lignin peroxidase and laccase, and
was the most effective in the decolourization of dyes. For
example: Congo red, remazol brilliant blue, and 80% of
pigments in spent molasses were decolourised.

Although various fungi (especially white rot species) have
been shown to decolourise a wide range of dyes and
effluents, there has been no commerical application. One of
the major problems is the rate at which reactions take place,
e.g. to achieve 80% decolourization of spent molasses
pigments takes 8 days, and this is unrealistic when thousands
of gallons per hour have to be treated. Raghukumar (2002)
has also discussed some of the problems related to
bioremediation of water born pollutants and dyes by fungi.
Pointing (2001) reviewed the wide range of pollutants in
the environment, the ability of white rot fungi to bring
about their transformation and minerlization, and set out
some of the conditions that have to be met for their use in
bioremediation. White rot fungi, such as P. chrysosporium,
Pycnoporus cinnabarinus and Tramtes versicolor, have
been used in bioreactors (Das et al. 1995; Schliephake
and Lonergan 1996; Leidig et al. 1999). However, marine
fungi may have a greater potential in the bioremediation of
oil spills in coastal waters (Sadaba and Sarinas 2010).

Deep sea fungi

Initial records of deep sea fungi were by Jones and Le
Campion-Alsumard (1970) and Kohlmeyer (1977) on wood
or polyurethane covered panels and retrieved as part of
other ongoing projects. More recently Dupont et al. (2009)
recovered two fungi (Alisea longicola, Oceanitis scuticella)
from depths of 1,000 m in the Pacific Ocean, off the
Vanuatu Islands. All these studies were based on the
fungi sporulating on the retrieved substrata. The study of
deep sea fungi has been hampered by the cost of such
research and available sampling methods and equipment
(Raghukumar et al. 2010).

Current studies utilize a combination of culturing and
molecular techniques to characterize the diversity of fungi
in the deep-sea, especially those present in deep-sea
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sediments (Nagano et al. 2010; Raghukumar et al. 2010).
Damare et al. (2006) and Singh et al. (2010) have
recovered 163 cultivable fungi from the Central Indian
Basin deep-sea sediments, most filamentous strains were
ascomycetes, and most yeasts basidiomycetes. Common
genera were Aspergillus, Cladosporium and Penicillium,
thus complementing the data for marine derived fungi
from various substrata, endophytes of marine plants and
algae and sediments from mangrove and coastal waters.
The fungal diversity reported has been surprisingly low
with few novel taxa recovered (Bass et al. 2007), however
Le Calvez et al. (2009) did recover new species from three
fungal phyla, using DNA extracts from hypothermal vent
samples. Further innovation using molecular techniques
(Groβ et al. 1994; Takishita et al. 2006), wider sampling
of the world’s oceans (Raghukumar et al. 2010), and
habitats in the deep-sea: hypothermal vents (Lopez-Garcia
et al. 2001, 2003) and methane seeps (Lai et al. 2007), will
undoubtedly yield an even wider range of undocumented
fungi.

Algicolous fungi

The first marine fungi were those collected on algae
(Sutherland 1915, 1916a, b), but the discovery lignicolous
species (Barghoorn and Linder 1944) attracted marine
mycologists with a consequent loss of interest in algicolous
fungi. Bugni and Ireland (2004) commented that fungi
isolated or growing on algae were the second largest source
of marine fungi. They include parasites, saprobes and
endophytes of seaweeds and planktonic taxa, and most are
ascomycetes. Algal genera that have been shown to support
fungi include: Ascophylum (Sutherland 1915; Webber
1967), Ballia (Kohlmeyer 1967), Chondrus (Schatz
1980a, b), Dilsea (Stanley 1992), Fucus (Zuccaro et al.
2008), Laminaria (Kohlmeyer 1968), and Sargassum
(Kohlmeyer 1972a, b) to name but a few. Jones (2011)
draws attention to the large number of algae that have yet to
be explored for the occurrence of fungi. Not only are algae
very numerous in marine habitats (9,200 to 12,500
described seaweeds) but also cover vast areas of the sea
bottom, e.g. circa 30% of bottom surface in the Maritime
Antarctica are algal beds, yielding an estimate of 74,000
tons of wet biomass (Nedzarek and Rakusa-Suszczewski
2004). Harvested seaweeds in Japan and Korea are 655,000
and 777,090 tons wet weight, respectively, which again
indicate the potential source for marine fungi (Ohno and
Largo 1998; Sohn 1998). An estimate of the standing crop
of kelp bed biomass for British Colubmia was 651,697 WT
of which 130,34WT was harvested for various products
(Lindstrom 1998). These extensive standing seaweed crops
are in urgent need of more intensive surveys for marine

fungi (Fig. 3). Algae in storage, prior to extraction of
phycocolloids, are often subject to deterioration by mitosporic
fungi, such asPenicillium, Trichoderma (Critchley and Jones,
unpublished data).

Marine algae are known to harbor endophytes (Jones et
al. 2008b), but few taxa have been studied in any detail.
Zuccaro and Mitchell (2005) list some 79 marine fungi
growing on seaweeds as parasites or saprobes, with only a
few new algicolous species described over the last two
decades (Zuccaro et al. 2004; Janson et al. 2005; Mantel et
al. 2006; Jones et al. 2009a, b). In a study of the
“endophytes” and saprobes of Fucus serratus Zuccaro et
al. (2003) reported 84 species, from six Ascomycota orders,
with membeers of the Dothideales the most numerous.
Halosigmoidea marina and Acremonium fuci were the most
common species when algal tissue was surface sterilized.
Only phylotypes from four orders were detected from living
and dead F. serratus: Dothideales (33%), Halosphaeriales
(17%), Hypocreales (33%) and Lulworthiales (17%).
Further studies are warranted especially of the larger
seaweeds: tropical Sargassum spp. and the extensive kelp
beds of temperate waters (Fig. 3).

Recently there has been a resurgent of interest in fungi
growing on marine algae. Loque et al. (2009) studied the
filamentous fungi and yeasts associated with the marine
algae Adenocystis utricularis, Desmarestia anceps and
Palmaria decipiens from Antarctica. Seventy five species
were isolated (27 filamentous fungi, 48 yeasts) belonging to
the genera Geomyces, Antarctomyces, Oidiodendron, Pen-
icillium, Phaeosphaeria, Aureobasidium, Cryptococcus,
Leucosporidium, Metschnikowia and Rhodotorula. Chytrids
and the Chromistan (Straminipiles) oomycetes parasitic on
algae have also attracted interest (Sekimoto et al. 2008a, b;
Strittmatter et al. 2009; Gachon et al. 2006, 2009, 2010).

Fig. 3 Brown algal bed of Durvillea antarctica in the Falklands,
to illustrate substrata for colonization by marine fungi (Photo
Dr R.L. Fletcher)
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Many of these studies have been concerned with commer-
cially important algae, e.g. Pophyra in the production of
nori, and the resultant economic losses (Gachon et al.
2010). Filamentous marine algae, e.g. Pylaiella, have also
been examined for marine oomycetes (Sekimoto et al.
2008b).

Planktonic fungi

Planktonic fungi include unicellular yeasts, chytrids and
chromistan organisms and their study has varied greatly
over the years. Some of the early studies of marine chytrids
were by Cohn (1865), and Sparrow (1934, 1936) with
greater research interests in the period 1950–1970: Höhnk
(1955a, b, 1961), Höhnk and Aleem (1953), Harder and
Uebelmesser (1955), Ulken (1967, 1968, 1969, 1974),
Chakravarty (1974), Booth (1969, 1971) and Sparrow
(1969). Some of these dealt with parasitic chytrids, while
others were saprobic species (Patersen 1958). Catastrophic
collapse of planktonic organisms, such as unicellular algae,
zooplankton, by chytrids is well documented (Walsh 1983;
Tillmann et al. 1999; Kagami et al. 2007). Marine yeasts
were intensively studied by Fell (1967, 1974, 1976), Fell et
al. (1960), Meyers et al. (1967), van Uden and Casttelo-
Branco (1963), van Uden and Fell (1968), van Uden and
Zobell (1962) and Ahearn and Crow (1986). Kohlmeyer
and Kohlmeyer (1979) listed some 140 facultative marine
yeasts, largely based on the studies of Fell (1967, 1976),
Ahearn et al. (1968) and van Uden and Casttelo-Branco
(1963). Recent studies of marine yeasts have been by Kutty
and Philip (2008), Chen et al. (2009) and Fell and his co-
workeers (Fell et al. 2004, 2010). Currently there may be as
many as 1,500 marine yeasts and they are particularly
common in mangroves (Fell pers. comm.). Statzell-Tallman
et al. (2008) reported 55 and 58 species, respectively, of
ascomycetes and basidiomycetes yeasts from three mangrove
habitats, 50% of which are un-described. Subsequently, Fell
et al. (2010) and Statzell-Tallman et al. (2010) described
other marine yeasts from the Everglades and coral reefs in
the Florida Keys, and mangrove regions in Belize and
Bahamas (Table 8). In the Everglades study, 74 previously
described species were documented with an equal number of
new taxa (Fell et al. 2010). Not only are yeasts abundant in
coastal waters, they also form extensive communities in open
ocean waters and may be more numerous than filamentous
fungi (Lachance and Starmer 1998).

Chromistan organisms have been widely isolated by
sampling water at various depths, and most belong to the
Thraustochytriales and Labyrinthulales (Höhnk 1955b;
Goldstein 1963; Gaertner 1972, 1974). Thraustochytrids
are rarely seen growing on recently recovered substrata, and
pollen baiting techniques have been used for their isolation

and growth in culture (Gaertner 1968; Clokie and Dickinson
1972; Bahnweg and Sparrow 1974; Clokie 1974). In recent
years this group has attracted considerable interest for their
ability to producte high yields of polyunsaturated omega-3-
fatty acids (Bajpai et al. 1991; Singh et al. 1996; Yaguchi et
al. 1997; Bowles et al. 1999; Fan et al. 2000).

Culture techniques have been used to document plank-
tonic fungal communities, but these are very selective and
do not include unculturable organisms. Total biodiversity
estimates are only possible by the use of molecular
techniques; such are denaturing gradient gel electrophoresis
(DGGE), and other more advanced techniques. These have
been applied to characterize saprobic fungal communities
(Pang and Mitchell 2005) but have not been extensively
used to study planktonic fungal communities (Gao et al.
2010). However, densities of 10³ to 104 fungal cells per
milliliter of seawater have been reported by Kubanek et al.
(2003). In a study of Hawaiian coastal waters, Gao et al.
(2010) identified 124 clones including 46 fungal species
that belonged to the Ascomycota (n=4) and Basidiomycota
(n=42), however 39 of the latter were likely new fungal
phylotypes. Thus coastal waters harbor as yet many
unidentified fungi, and our estimates of the marine fungal
community may be well off target.

Marine derived fungi

In the previous sections, the isolation of terrestrial-like
fungi has been frequently referred to, species that show no
morphological affinities with the so called obligate or
facultative fungi recovered from substrata such as drift-
wood and attached mangrove wood, intertidal seagrasses
(Spartina, Posidonia) and some seaweeds. Marine derived
species have been isolated from a broad spectrum of
substrata: saprobic fungi on marine algae, woody substrata
(but not sporulating on the wood), sediments and sand, in
the water column; or parasitic on algae and marine animals;
or as endophytes (Udea 1980; Udea and Udagawa 1983;
Mantel et al. 2006; Phongpaichit et al. 2006; Jones et al.
2009b; Duc et al. 2009). Many of these species are known
from studies of mangrove and marine sediments (Swart
1958, 1963; Chowdhery and Rai 1980) or in the isolation
and screening for new bioactive compounds (Jensen and
Fenical 2002; Janson et al. 2005).

Most marine derived fungi are mitosporic taxa belonging
to the genera Aspergillus, Cladosporium, Fusarium, Glio-
cladium, Microsphaeriopsis, Paecilomyces, Penicillium,
Phoma, Phomopsis, Trichoderma and Ulocladium (Bugni
and Ireland 2004). They have been isolated in high
numbers from various sources: 617 from coral reefs
(Morrison-Gardiner 2002), 1000 strains from marine sedi-
ments (Pivikin et al. 1999), 800 as mangrove endophytes
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(Pang et al. 2008a) and 1743 from diverse marine taxa
(Schulz et al. 2008). Many of these strains were sterile and
others could only be identified to genus. While sequence
data has greatly aided in the identification of these strains,
especially those isolated as endophytes (Sakayaroj et al.
2010a), their true origin remains unclear. What role do they
play in the ecology of oceans? Are they truly adapted to life
in the marine environment? Preliminary studies indicate
that “so-called” terrestrial species may have evolved into
marine forms and this aspect warrants continued study
(Alker et al. 2001; Zuccaro et al. 2004).

Marine fungi on animal hosts

Few studies have examined shells, calcareous algae, coral
and soft corals in any detail to determine what role marine
fungi play in their biology (Kohlmeyer 1969a, b). More
recently, Le Campion-Alsumard et al. (1995) showed
endolithic septate fungal hyphae in coral skeletons and soft
coral tissue, while Porter and Lingle (1992) found thraus-
tochytrids boring into mollusk shells. Kendrick et al. (1982)
have also found evidence for “microborings” (light and
scanning electron microscopy) in aragonite of coral
skeletons. Vast quantities of mollusk shells are cast up on
our shores (Fig. 4) and undergo decomposition (Fig. 5) and
fungi may utilize the conchyolin which makes up part of
the shells (Alderman and Jones 1967).

Marine fungi also cause diseases of marine animals and
plants but this is a realtively unexplored topic (Kohlmeyer
1973, 1979; Kohlmeyer and Demoulin 1981; Gachon et al.
2010; Jones 2011; Gleason et al. 2011). Crustacean species,
fish and algae are the most frequently cited hosts of
pathogenic marine fungi. Various Fusarium spp. have been
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Fig. 4 Shells of marine molluscus washed on to the shore at Koh
Chan, Thailand
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reported to cause disease of prawns (Khao et al. 2005), tiger
prawn (Khao et al. 2004), infections of the eggs of
loggerhead sea turtle (Sarmiento-Ramirez et al. 2010),
Aphanomyces sinensis infections of juvenile soft-shelled
turtle (Takuma et al. 2011) and various fungi causing skin
infections of southern right whale (Reeb et al. 2011). Algae
susceptible to fungal infections include: the red algae
Bangia, Palmaria, Polysiphonia and Porphyra (Pueschel
and Vandermee 1985; Müller et al. 1999; Sekimoto et al.
2008a, b), and the brown algae Cystoseira, Halidrys, and
Pylaiella (Alongi et al. 1999; Gachon et al. 2006; Harvey
and Goff 2010). A fuller list of parasitic marine fungi is
given by Zuccaro et al. (2004).

Many new fungi have been described as pathogens:
Trichomaris invadens in tanner crab (Sparks 1982),
Labyrinthuloides haliotidis of juvenile abalone (Bower
1987), Haliphthoros milfordensis juvenile stages of lobster
(Fisher et al. 1975), Atkinsiella panulirata from spiny
lobster (Kitancharoen et al. 1994), and Plectosporium
oratosquillae in mantis shrimp (Duc et al. 2009). The role
of marine zoosporic fungi in parasitizing plants and animals
is imperfectly known and greater attention is required of
this important group (Gleason et al. 2011).

Physiology of marine fungi

Early physiological studies of marine fungi focused on their
salinity tolerance (Jones and Jennings 1964; Jennings
1986b), temperature requirements (Jones et al. 1971),
nutrient requirements (Amon 1986), enzyme production
(Molitoris and Schaumann 1986; Schaumann et al. 1986),
aspects of wood decay (covered above) and ability to grow
on different polysaccharides (Barghoorn and Linder 1944;
Meyers 1971b). Marine fungi can be defined based on their
morphology, physiology and ecology, and their ability to
reproduce in the marine environment. Although these are

important, for others no single criterion may apply, e.g. so
called terrestrial species, as they may not be morphologi-
cally or physiologically adapted to the marine habitat.
Studies of the effect of salinity on their growth and
morphology were undertaken in order to try and definie
them based on their physiology and need for seawater for
growth and reproduction. It soon became apparent that
marine fungi showed a broad response to growth in
seawater, while vegetative growth occurred at all salinities,
maximum growth was often at 20–60% seawater (Jones and
Jennings 1964; Meyers 1971b). Similar variation was noted
for sporulation: most required salinities of 40–100%
seawater (Luworthia floridana, Lindra thalassiae), others
formed peritheca in media made up with distilled water
(Halosphaeriospsis mediosetigera, Torpedospora sp.).

However, zoozporic fungi were shown to be more
sensitive to changes in salinity (Harrison and Jones 1974;
Tsui et al. 2011). Studies progressed to examine what
elements in seawater were necessary for the growth of
marine fungi, was sodium a requirement? For some, such
as, Haliphthoros and some Thraustochytrium spp., sodium
was required as a macronutrient (Jennings 1986a, b).
Further investigations focused on the mitosporic fungus
Dendryphiella salina as it was aminable to laboratory
experimental studies (Jennings 1986a, b). Topics that were
studied included ion concentration within the mycelium
(Jones and Jennings 1965; Wethered et al. 1985; Gibb et al.
1986), carbohydrate metabolism in relation to salinity
(Holligan and Jennings 1972), sodium sequestered in
spores and their germination (Galpin and Jennings 1975;
Galpin et al. 1978), and the role of polyols in maintaining
turgor in mycelium (Wethered and Jennings 1985; Wethered
et al. 1985). More recently Tsui et al. (2011) have shown
that thraustochytrids are well adapted to mangrove habitats
producing the greatest number of zoopsores at 7.5 to 15‰
salinity, and suppressed at salinities above 15‰. Zoospore
motility was also investigated (both curvilinear velocity and
straight-line velocity), with the highest motility at 7.3‰
salinity, but this decreased with increasing salinity (Tsui et
al. 2011). Physiological determinants for the growth of fungi
in the sea include: polyol concentration in the mycelium, an
alkaline environment, sodium extrusion from the mycelium
and tolerance to high salinity. Marine yeasts have also been
studied for their ability withstand high salinities (Norkrans
1966; Norkrans and Kylin 1969), while the mitosporic
species Asteromyces cruiciatus has been shown to tolerate
concentrations of sodium chloride of 2.5 M, providing a
divalent ion, such as calcium, is present in the medium.

Marine fungi have been shown to produce a wide range
of enzymes with Chesters and Bull (1963) screening some
160 organisms for laminarin-hyrolyzing enzymes. Dendry-
phiella salina was shown to produce siginificant laminar-
inase activity as well as to degrade alginate and cellulose.

Fig. 5 Cast conch shells undergoing minerlization along the Bahamas
coast
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Widespread screening has followed with the studies of
Meyers (1971b), Molitoris and Schaumann (1986), Sadaba
et al. (2000a) and these, and other studies, have been
collated by Verbist et al. (2000). Complex organic matter in
the sea includes lignocellulose (discussed above), algal
polysaccharides (Meyers 1971b), and chitin, estimated at
billions metric tonnes (Yu et al. 2010). Grant et al. (1996)
showed that the ascomycetes Corollospora maritima and
Lindra obtusa produced chintinolytic enzymes, while
Velmurugan et al. (2011) reported a novel low temperature
chitinase from the marine fungus Plectosphaerella sp.

With major oil spills all to common, it is not surprising
that many studies have focused on the role of marine fungi
in hydrocarbon utilization (Crow et al. 1976; Ahearn and
Crow 1986), fungal communities on bunker oil (Okereke et
al. 2007; Obire and Anyanwu 2009; Sadaba and Sarinas
2010) to the effect of oil spill dispersants on fungal spores
(Curran et al. 1997). Other topics that have attracted
attention of marine mycologists include: osmoregulation
in Hydea pygmea (Ravishankar et al. 2006), marine fungi
as fish food (Cuomo 1986; Jaritkhuan 2002), and fungal
protein production (Jones and Irvine 1972).

Conclusions

Although marine fungi have been studied for some
100 years, and increasingly over the past 50 years, many
aspects still remain poorly documented. Our knowledege of
the marine Chytridomycota, Oomycota, Zygomycota, are
fragmentary, but there is evidence of greater awareness of
these groups, in particular their role in marine food webs
(Gleason et al. 2011). Are these groups poorly adapted to
marine habitats, or are suitable hosts/substrata lacking for their
growth and reproduction? The more plausible explanation is
lack of mycologists interested in these groups. Data on the
occurrence of pathogens of the larger seaweeds, plankton,
animals, are also lacking. This may well be due to the
availability of material for study as such disease outbreaks
often go undocumented and mycologists fail to sample on a
wide enough scale. However, over the past 5 years there has
been a reawaking of interest in this topic (Sekimoto et al.
2007, 2008a, b; Gachon et al. 2006, 2009; Strittmatter et al.
2009; Loque et al. 2009; Kubanek et al. 2003).

While our knowledge of deep sea fungi has increased in
recent years, those present in the plankton remain poorly
documented. Biodiversity studies have dominated the marine
mycology literature overe the past decades, but these are often
just lists of taxa sporulating on the substrata, offering little of
ecological vaule. What is now required is a greater in depth
study of the process of substratum colonization, and the
documentation of non sporulating fungi by the use of
molecular techniques to elucidate sequential colonization.

The technology is now available and biodiversity studies need
to capatilise on this. Most endophytes of marine algae,
seagrasses and mangrove plants are not truly obligate marine
fungi. Again these studies simply document the sporluating
species and the use of molecular techiques needs to be
undertaken to include taxa not isolated by the usual methods.

The greatest challenge for marinemycology is to investigate
the physiology and biochemistry of these unique fungi, their
ability to produce bioactive compounds, enzymes to tolerate
both salinity and pH, and their use for commercial application.
Also to document their role in the turn over of complex organic
matter in the sea and their contribution to the food web of
marine ecosystems. Marine fungi have been shown to have
ability to breakdown of hydrocarbons, so can they be
developed to play a role in marine bioremediation of oil spills?

Surveying for marine fungi needs to continue as many
substrata, habitats remain unexplored (e.g. fungi colonizing
mollusk shells, marine lichens, fungi within soft marine rocks)
(Figs. 4, 5 and 6). Also many taxa documented colonizing
mangrove substrata are misidentified or insufficient material
was available for their identification, so continued studies are
required. Although there is a substantial body of data on
marine fungi, in many respects much needs to be tackled,
and some of these areas have been highlighted above. Some
may regard the study of marine fungi as somewhat esoteric
but they do play a vital role in ecology of marine ecosystems
and in the food web of the oceans.

New marine fungi described since 2009

The last update of new fungi described from marine
substrata was by Jones et al. (2009a) when 530 species
were listed. Table 8 lists those described over the past
18 months including nomenclature changes introduced as

Fig. 6 Soft rocks on shore at Kog Samui, Thaiand, potenial source of
marine fungi
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the result of phylogenetic studies (Suetrong et al. 2009a;
Abdel-Wahab et al. 2010; Abdel-Wahab 2011a, b; Abdel-
Wahab and Nagahama 2011a, b).
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