
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-022-00426-x
Datenbank Spektrum (2022) 22:195–215

Testing Very Large Database Management Systems: The Case of SAP
HANA

Thomas Bach1,2 · Artur Andrzejak2 · Changyun Seo1 · Christian Bierstedt1 · Christian Lemke1 · Daniel Ritter1 ·
DongWon Hwang1 · Erda Sheshi1 · Felix Schabernack1 · Frank Renkes1 · Gordon Gaumnitz1 · Jakob Martens1 ·
Lars Hoemke1 · Michael Felderer3 · Michael Rudolf1 · Neetha Jambigi3 · Norman May1 · Robin Joy1 ·
Ruben Scheja1 · Sascha Schwedes1 · Sebastian Seibel1 · Sebastian Seifert1 · Stefan Haas1 · Stephan Kraft1 ·
Thomas Kroll1 · Tobias Scheuer1 · Wolfgang Lehner4

Received: 2 June 2022 / Accepted: 8 October 2022 / Published online: 24 November 2022
© The Author(s) 2022

Abstract
Software Testing is an established activity in the software development process to ensure and improve the quality of
a software. Consequently, there exists a wide range of literature, popular information, and even multiple ISO standards
covering this topic. However, we found that testing very large database management systems (DBMS) requires special
adaptations of the generally available guidance for software testing and requires to solve specific challenges that may not be
relevant for other areas or smaller software projects. We therefore discuss the testing of SAP HANA, a very large software
project with millions of lines of code, to share insights about our approach, best practices, and unsolved challenges that
are open for further research.

Keywords DBMS · Testing · Software Quality · SAP HANA

1 Introduction

Today, software testing is an integral part of the software
development process [43, 44, 81] to gain information about
the quality of the software under test and to subsequently
improve it if needed. Software testing is motivated by the
experience that software programs can contain defects.
These defects, if they are encountered during software
execution (failure), can lead to undesirable results ranging
from unimportant details to hundreds of million dollars in
costs or even loss of life [40]. Loss of trust from users also
translates to financial costs. Therefore, avoiding such costs
is a strong motivation for software testing.

Generally speaking, the costs of defects may increase if
costs of software testing decrease and vice-versa. There-

All authors contributed to the work in specific subsections and
are ordered by first name. Except for the first author who is
the corresponding author and contributed the general sections,
combined and edited all parts, and filled missing gaps.

� Thomas Bach
thomas.bach03@sap.com

Extended author information available on the last page of the
article

fore, there is a break-even point between both costs. The
existence of such a break-even point motivates that the test-
ing of very large database systems (DBMS) such as SAP
HANA is of special interest. The high costs of defects im-
ply high effort for testing. The high costs of defects are
caused by the purpose of the system and the size of the
software project. First, a DBMS is typically the core plat-
form for data handling and must store and retrieve data
correctly. Data might be the most valuable asset of a user
and defects in a DBMS can cause severe costs. Second, the
size of a very large software project typically corresponds
to its requirements. A very large project translates to a large
number of users that use it in complex scenarios. This again
makes defects costly as they might affect a large number
of users. In summary, for a very large DBMS, the costs of
defects are high and it follows, as reasoned by the concept
of a break-even point with an economic approach to maxi-
mize the overall gains, that the expected efforts for software
testing are also high.

In addition to the cost argument, DBMS, even more
DBMS for enterprise scenarios, are typically complex soft-
ware projects that need to fulfill a wide range of require-
ments. DBMS may even provide core functionality of an
operating system [13] and therefore reach a similar com-

K

https://doi.org/10.1007/s13222-022-00426-x
http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-022-00426-x&domain=pdf
http://orcid.org/0000-0002-9993-2814


196 Datenbank Spektrum (2022) 22:195–215

plexity as an operating system. In addition, as performance
is important, the design of a DBMS may trade perfor-
mance over simplicity. In the case of our study subject SAP
HANA, the complexity is already represented by the source
code size of about 40 million lines of code and the history
that partly spans over several decades of development.

The high effort for software testing and the high com-
plexity of a DBMS motivate that studying the software
testing of a very large DBMS can provide additional in-
formation compared to other software types. In our work,
we investigate the testing of SAP HANA, a DBMS targeted
for enterprise scenarios by SAP. Similar work is available
for other DBMS such as SQLite [39, 86], Oracle data-
base [2, 16], MongoDB [18, 19, 41], PostgreSQL [68], or
MySQL [58] and for other large projects from Google [36,
57, 87] or Meta [54].

The contributions of our work are:

1. A description of how SAP HANA is tested.
2. Solutions to several specific challenges in the context of

testing a very large DBMS.
3. A set of open challenges with practical relevance for test-

ing very large projects.

The remainder of this work starts with a description
of SAP HANA and general concepts in Sect. 2 and, as
testing is a complex topic, is structured according to mul-
tiple dimensions. Sect. 3 contains the people perspective
and Sect. 4 presents the process dimension from the time
a change is created and contributed to the source code
repository (pre-submit) until it is released (post-submit).
Sect. 5 describes continuous test activities that extend the
development process. Sect. 6 focuses on challenges of test-
ing SAP HANA Cloud. Sect. 7 lists open challenges, and
we conclude with Sect. 8.

2 Overview

SAP HANA is an in-memory database management system
targeted for enterprise scenarios [28, 29, 56]. It is avail-
able as an on-premises version and as SAP HANA Cloud,
a database-as-a-service (DBaaS) offer comprising managed
hardware environments and a wide range of other services.
Depending on the context, the term SAP HANA Cloud
might only refer to the database part.

We first provide numbers to reason why SAP HANA
is a very large and complex project. Then, we describe
the historical development of testing and quality for SAP
HANA and finally, we describe testing and quality for SAP
HANA as of today.

2.1 The Size of a Very Large Project

The number of lines for the source code provide a very
general metric to represent the size of a software project.
Measured with cloc [20], the source code repository for
SAP HANA consists of 36 million code lines, see Table 1
for comparison to other projects. The source code is dis-
tributed over about 200 components where each compo-
nent represents a separate part of the software project. The
source code consists mainly of C++ and C code, but also
includes Assembly. The test code mainly contains C++ and
Python code, but also other programming languages, XML
and JSON configuration files.

The source code is versioned via git [32]. The reposi-
tory size is about 30GiB and contains the history of several
sub-projects up to the year 2000. All older history is con-
tained in a different version control system. Per day, the
repository is modified by over 800 source code changes
(commits) to multiple development branches and about 80
commits are integrated in the main code lines. The num-
ber of developers contributing to SAP HANA depends on
how each committer is accounted for, but there are over
100 people contributing regularly to SAP HANA. Since the
year 2000, there are about 3000 different authors that con-
tributed 1.4million commits in about 1000 branches to the
source code repository of SAP HANA and predecessors.

The development of SAP HANA creates per year more
than 10TiB of metadata such as build information, test
results or development progress information. The data is
partly stored in and analyzed by an internal SAP HANA da-
tabase instance (Sect. 5.6). Still, maintaining accurate and
consistent metadata is challenging for a large project.

For the context of this work, additional numbers about
testing are of interest. Counting the total number of tests is
a complex task. It is debatable how tests with multiple pa-
rameters should be counted or how often the same tests for
multiple product versions should be counted. In addition,

Table 1 Sizes of multiple large projects as of 2022-05. Lines of code
(LoC) measured with cloc [20]. Size, commits and authors based on
github git repositories

Name LoC 106 GiB Commits
103

Authors

SAP HANA 36.1 29.6 1368 3082

MySQL 3.8 4.7 172 1685

Postgres 1.6 0.8 82 55

SQLite 0.3 0.4 87 38

FreeBSD 17.1 3.8 897 3358

Linux 23.4 5.2 1090 32486

Chromium 32.2 33.4 1302 12432

CERN ROOT 5.2 1.4 87 488

Firefox 29.3 7.1 893 10437

LibreOffice 9.3 5.6 559 2505

K



Datenbank Spektrum (2022) 22:195–215 197

techniques such as fuzz testing create a variable number
of tests depending on settings like available time or stop-
ping criteria. Counting all tests from pre-submit testing to
the final product release for a specific change for a specific
product variant results in about 900000 tests overall. Some
of these tests are executed multiple times per day, yielding
3 million test executions per day [4, 5, 7]. The tests are ex-
ecuted on a dedicated infrastructure that consists of about
1000 servers with (on average) 40 CPU cores (3GHz fre-
quency), and 256GB of RAM. Executed sequentially, the
total execution of all automated tests would require up to
4weeks. Executed in parallel, the execution time is typically
between 30min and 10h. The variance can be attributed to
different test types, required execution resources, require-
ment and availability of special hardware, cluster load fac-
tor, or test configuration. In addition, effects such as flak-
iness (Sect. 7) that result in restarts may increase the test
execution time. For comparison, Google and Facebook re-
port 150 [57] and 10 million [54] tests executed per day,
respectively.

2.2 Historical Development

Common quality standards: The first release of SAP
HANA in 2010 included several technologies that already
existed before. These previous projects had their own
working style, source code organization, and also their own
approach to testing. Integrating all of these projects was the
main challenge for the quality team in 2010. A common
quality standard had to be established for the combined
project SAP HANA that still preserves the individual best
practices. While several previous projects had a strong
focus on a specific test type, the combination formed over
time a test pyramid that is discussed in Sect. 4 and shown
by Fig. 2.

Fig. 1 Test deployment hierarchy

Fig. 2 DBMS variant of the test pyramid [15]. The block size of each
layer represents focus during development

Distributed teams: The integration started by combin-
ing existing tests into a common test driver. However, exe-
cuting the common test set then required loading several
gigabytes of data from network stores. This was in the
year 2010 a challenge for the distributed team setup across
several locations in Germany (Walldorf, Berlin) and Ko-
rea (Seoul). The test execution time increased due to the
amount of data transferred over the network. Consequently,
test data sizes were reduced by replication and deduplica-
tion. These approaches are still important today with central
test executions to reduce overall test execution times.

Central pre-submit testing: Once all previous projects
were unified in a single source code repository, the in-
creased frequency of distributed changes showed structural
problems for the development process. Developers were
used to execute the full test suite on their local develop-
ment machines and then submit their code. This resulted in
complex setup instructions and long waiting times for test
executions. This consequently negatively affected the fre-
quency of how often developers executed tests and by that
also negatively affected the quality of most recent source
code state. Therefore, central pre-submit testing was intro-
duced. Changes had to pass a set of tests before integration
into the central code repository. Over time, this resulted in
the testing stages as shown in Fig. 3

Test execution framework: Over time, scalability issues
affected testing. Test executions slowed down due to lim-
ited hardware resources for test executions, but also due to
limitations in bandwidth and available disk space to transfer
and store increasing sizes of project artifacts. The underly-
ing framework for test execution was based on Jenkins [79],
which, at least at that time, did not scale with the require-
ments of such a large project. Therefore, SAP developed
a framework to define, schedule, distribute, and execute
tests with fine-grained resource control adapted to the en-
vironment at SAP.

Customer first: In addition to project-internal testing,
it was also important from the very beginning that SAP
HANA correctly works with applications that utilize SAP
HANA. For example, the development and testing of SAP

K



198 Datenbank Spektrum (2022) 22:195–215

Fig. 3 Testing stages hierarchy of SAP HANA. From left to right, scope and execution time increase, frequency decreases. Sects. 3.2 and 4 cover
pre-/post-submit testing. Sect. 5 covers continuous test activities in post-submit/extended testing

Business Warehouse [67] was interleaved with SAP HANA
development that supported the interaction between both
software projects if they were deployed together.

Superlinear increase in test costs: Over time, test
costs became an important issue as they increased super-
linearly [7]. SAP applied two fundamental strategies to
reduce test costs but to keep a high degree of quality and
development velocity. First, a layered test strategy reduces
the average test execution frequency and therefore reduces
the costs. Second, cross-function teams take care of gen-
eral test result assessment and optimizing the general test
infrastructure.

Outlook: Some challenges continue to exist. The ever-
increasing complexity of SAP HANA itself and the (cloud-)
environment it runs on, decreasing the time between an is-
sue is reported and fixed, cases where testing obstructs de-
velopment instead of supporting it, avoiding test flakiness,
or test cost reduction remain to be challenges to this day.

2.3 Quality

Quality refers to “the degree to which a set of inherent cha-
racteristics fulfills requirements” [45]. Consequently, soft-
ware quality refers to “(the) degree to which a software
product satisfies stated and implied needs when used un-
der specified conditions” [43]. In our experience, most re-
quirements and needs are implicit. Two typical cases are
stability and performance. For stability, the user expects to
use a database instance for a long term even if a continu-
ously increasing amount of data is stored. Obviously, this is

not compatible with hardware limitations that the software
cannot change. For performance, users expect answers from
the database in a certain, often undefined amount of time,
even if the data or retrieval queries change. Managing such
implicit requirements with respect to quality is challenging.

Therefore, over decades, SAP has established a practi-
cal and customer-first handling of quality and encoded it
in internal standards and guidelines. First, SAP identified
the most important requirements for users of SAP HANA
and invests into reaching a high quality there, i.e., a high
degree of satisfaction. Second, the database is highly con-
figurable to allow users mitigation of a subset of potential
issues without waiting for changes to the software product
itself. Lastly, SAP offers a multi-level support to provide
tailored and effective solution to potential issues. These as-
pects are then supported by extensive SAP-internal testing
as described by this work.

The most important requirement for users is stability.
A DBMS manages data which is a core value for many
businesses today. It may have direct negative consequences
on the business if the DBMS does not provide the expected
services. The most significant failure causes are crashes,
out-of-memory situations, regressions, security issues, data
loss, data corruption, wrong results, or severe performance
degradation. A crash does not only abort all current op-
erations, it can also result in considerable waiting times
for restarts and restore operations. Out of memory situa-
tions can trigger crashes but can also result in cases where
a DBMS refuses additional requests. A regression in a ver-
sion vn+1 exists if vn+1 does not support functionality F

K



Datenbank Spektrum (2022) 22:195–215 199

supported by vn and vn+1+m supports F again. If all ver-
sions � vn+1 do not support F , then it is an intended in-
compatible change. SAP aims to avoid regressions, as they
may negatively impact the stability from the view of a user.
The effect of security issues depends on the threat vector
(see Sect. 5.10). Finally, data loss, data corruption, wrong
results, and severe performance degradation can have a neg-
ative impact, but depending on the use case of the user, they
may not be noticed or may even be ignored.

SAP implements testing, prevention and mitigation
strategies for all these failure causes (Sects. 4 and 5). Thus,
testing is part of a plan-do-check-act (PDCA) cycle [22]
for continuous improvements.

2.4 Test Dimensions

The test organization of SAP HANA may not follow typical
terms of other projects due to historical reasons and the size
of the project. In related work to software testing, a test
suite is often the top-level category that contains all tests.
SAP HANA as a large and highly complex project consists
of several smaller projects (components). Therefore, terms
such as test suite are then also used on a sub-level and are
therefore not suitable to use anymore on an overall level.
Fig. 1 shows how different terms connect to each other for
SAP HANA as they have been established over time.

Providing an overview over all test activities is a chal-
lenging task because of the large set of testing activities for
the development of SAP HANA. Therefore, we provide a 3-
dimensional view on testing. First, a people dimension that
shows the perspective of people working on SAP HANA
(Sect. 3). Second, a temporal or process dimension from
creation until delivery of a change (Sect. 4). Third, a con-
tinuous dimension with activities that do not fully match
the other dimensions (Sect. 5).

Within the people dimension, from the perspective of
a developer, a test pyramid represents a guidance for how
tests should be implemented [15]. A special property of the
test pyramid for a DBMS is that the pyramid is not strictly
a pyramid as shown by Fig. 2 for SAP HANA. The system
test layer contains a comparatively large amount of tests
based on SQL-statements as SQL is the major communica-
tion language for DBMS.

Regarding the temporal dimension of a change, the
overview is more aligned to a process and contains more
steps compared to what one could conclude from the test-
ing pyramid. Fig. 3 shows the testing stages hierarchy of
SAP HANA that can be roughly separated to pre-submit
and post-submit testing that represent activities before and
after a change is included in the central code repository.
Finally, the extended testing represents activities towards
a release. Although continuous deployment is a desirable

goal, it is in practice currently not fully feasible due to high
costs and duration of the activities required for a release.

2.5 Bug Handling

We utilize for SAP HANA a bug handling system to ma-
nage the lifecycle of bugs where a bug has a 1 W n rela-
tionship to product versions. Each bug-fixing change must
reference the corresponding bug. Automated tools check the
existence of such a reference. Thus, the mapping between
bugs and bug-fixing commits is accurate. SAP then uti-
lizes an internal instance of SAP HANA (see Sect. 5.6) and
the graph based data retrieval functionality of SAP HANA
to implement extended tooling about the git repository of
SAP HANA, the state of bugs and the corresponding fixes.
A side effect of this mapping (and other factors such as the
motivation to avoid unnecessary complexity or more work)
is that bug fixes typically only contain bug fixing code and
no other unrelated changes (tangling is a problem reported
for open source projects [37]).

The available tools then also allow us to efficiently han-
dle the maintenance of multiple product versions without
introducing regressions. A user should never “loose” a bug
fix or feature after an upgrade from version vi to a later
version vi+n. This requirement is simple to fulfill if devel-
opment is linear: The set of all changes in vi+n (ignoring
reverts) is a super set of the set of changes in vi if devel-
opment is linear. However, the linearity does not hold if
multiple versions are maintained in parallel. We then must
ensure that a new patch release for an older product version
contains only changes that are also included in all product
versions that can be a target version for an upgrade. To
accomplish this, each (major) product version has its own
git branch. We then define for each such branch a set of re-
quired branches where a change must be included first. This
leads to a directed, acyclic graph of requirements with the
most current state as the root node. Our tools then check for
each change whether the required branch is fulfilled. With
that, our tooling prevents regressions caused by missing
changes.

The bug handling system also provides a common and
central tool to collect and track all issues indicated by any
other tool. As shown in Sect. 5, there are several dozens
of tools that report issues where SAP HANA developers
must act. Working with so many tools does not scale if
every developer must access and understand each tool as
this requires access handling, regular training and will still
lead to confusion if developers only infrequently access
some tools. Tracking the progress in all these tools for all
developers is a complex task, too. To avoid such an n W m
relationship, we utilize the bug handling tool in a similar
way as in a star topology. Developers primarily interact
with the bug handling tool and all additional tools report

K



200 Datenbank Spektrum (2022) 22:195–215

into the bug management tool. With that, developers do not
have to interact with different tools anymore and we have
an n W 1 W m relationship that scales practically. If possible,
we provide information to developers in their development
environment and as comments for changes towards the cen-
tral code repository to further simplify interactions.

A final observation over time is that bugs should have
a single attribute that precisely defines the urgency or im-
portance. There are recurring discussions to provide more
dimensions such as value, cost, impact, effort. However,
a developer can only work at one item and hence needs
a one-dimensional list of sorted items to work on. There-
fore, even if there were multiple attributes, they would have
to be mapped again to a single dimension. Conclusively,
these attributes are redundant and useless over time and
maintaining them would be a waste of time and resources.

2.6 Risk-BasedQuality Assurance

Risk-based quality assurance uses risk assessment to steer
the application of quality assurance (QA) techniques [30].
We apply it within SAP HANA to enable both efficient
QA to control and distribute resources to QA activities as
well as effective QA to avoid, manage or remove critical
issues as early as possible in the development lifecycle. For
instance, we use risk-based QA to select and prioritize test
activities for each change to the software. With that, we can
reduce test costs without negatively impacting the quality
of the software.

Exploiting the potential of risk-based quality assurance
requires a proper risk assessment procedure via identifica-
tion of risk items and the analysis of risks. For SAP HANA,
an example are software defects. They are important risk
items that also steer regression testing activities. Assessing
the risk of a software defect manually via its report is an
expensive task and the assessment results are unreliable.
Therefore, we apply, among others, machine learning (ML)
techniques (support vector machines, decision trees) to au-
tomate the risk assessment based on available data about
bugs [51]. Similarly, we use ML-based approaches to clas-
sify issues for root cause analysis while replaying recorded
workload data [47].

3 People Perspective

We show the perspective on testing from different groups
of persons based on interviews and experiences of the au-
thors. We start with a general description of the quality
culture. Then, we show the view of developers, architects
and management.

3.1 Quality Culture

Quality in software products often focuses on technical as-
pects, but the software product is created by persons. Over-
all, quality is not “tested into a product”, but must be inte-
grated into the whole development process that starts with
the people. Leaders need to understand and communicate
the value of quality and testing. Engineers must buy into the
quality strategy. Therefore, we first describe how the qual-
ity culture develops and we then describe a key activity that
gives engineers time to improve the quality.

Quality culture development: This requires active par-
ticipation in shaping the quality strategy, exchange on chal-
lenges, and collaboration across team boundaries. A key
component is to feature a quality leader. This is not the
person who is responsible for testing or quality, but some-
one who advocates for quality by sharing information about
quality, best practices, and development and testing expe-
rience. To foster a quality culture and a common under-
standing of what quality is and how it is achieved, there
is a wide range of activities for exchange about software
quality. Examples start from mandatory code reviews, static
code analysis, presentations on detection of memory leaks,
deadlocks, or optimization issues, over process simplifica-
tions, “How we test!” meeting series, post-mortem analysis,
to developer efficiency, tools, and training courses. Such
knowledge sharing is also frequently repeated or, if possi-
ble, the findings are encoded via automatic tooling, as any
large project has a considerable churn of new employees.

Root cause analysis: One important process to reserve
time for developers towards improvements are root cause
analysis (RCA). An RCA is initiated by a set of pre-defined
triggers such as outages, crashes, and regressions. These
triggers are aligned with the main quality goals. Therefore,
the additional time that developers spend on RCA is well-
invested. In addition, an RCA can be requested on a per
need basis for larger issues. The goal of an RCA is first to
identify root causes of an issue and share knowledge about
them. Second, an RCA should always define improvement
actions (IA). The IA then aim to either prevent the issue
from happening in the future or reduce the impact. Three
key observations for the RCA process are that they must
be conducted without blaming, in a timely fashion, and
IA must be decided and planned timely. First, conducting
RCAmust be an open discussion process for finding techni-
cal limitations, it is not about blaming specific developers,
and individuals are typically not the only root cause of an
issue. If people are blamed, they will apply defensive be-
havior that is not compatible with a root cause analysis.
Second, RCA must be conducted close to the incident. The
larger the time delay between an incident and an RCA is,
the less useful an RCA is as memory fades away, investi-
gations must be replicated, logs are not available anymore

K



Datenbank Spektrum (2022) 22:195–215 201

and finally the chance that an issue occurs again increases
over time. Third, and maybe most important, the IA de-
rived from an RCA must be utilized. Otherwise, the whole
RCA process has only very limited benefits and may not be
worth the effort. As the effort to implement an IA differs
widely, IA must be categorized with respect to complexity
and expected gains, and decisions about their state must be
facilitated in a timely manner. Decisions whether an IA will
be rejected, implemented now, or added to the backlog of
the next planning cycle are complex decisions and involve
all complexity of product management for large projects.
However, such decisions are required to improve the qual-
ity.

Overall, the RCA process allows developers to invest
time into understanding issues, identifying improvements,
and finally implement improvements. Conclusively, this fa-
cilitates a quality culture towards continuous improvements.

3.2 Developer

As shown in Sect. 2.1, the source code of SAP HANA
is large and heterogeneous. A single person may not be
able to comprehend all the code at once. While the over-
arching structure follows a layered architecture, the size of
the components and their level of interaction varies greatly.
Similarly diverse is the development organization with team
sizes reaching from a few experts to more than a dozen en-
gineers distributed across multiple locations, using differ-
ent development tools as well as personalized workflows.
While some developers focus on specific topics, others are
involved in and contribute to several components. Despite
these differences all of them interact with central tooling
(Sect. 5.1).

Figs. 2 and 3 show the relationship of different test
scopes from a development perspective. Local testing is im-
portant for obtaining immediate feedback about modifica-
tions to the code base. The CMake-based [55] build system
allows developers to build and execute unit and component
tests locally, but this can only cover a limited number of sce-
narios. Offloading testing tasks to the central CI (Sect. 5.1)
not only allows validating changes in more complex or dis-
tributed settings in parallel, but it also enables developers to
switch contexts and continue working on other tasks, such
as feature design, code reviews, and root cause analysis of
failures.

The build and test infrastructure (Sect. 5.1) is not only
a pool of hardware resources managed by a job scheduler,
but it also integrates and interfaces with various tools for
defect reporting and project management, among others.
An intuitive web-based user interface presents summaries
of static code analysis, builds, and test strategy runs, and
allows exploring the details to analyze test failures. Known
defects are detected automatically by comparing the test

failure output and are marked as such in the user interface to
be identified quickly, and new defects can be reported with
the test log files attached. Test sets for pre-submit testing
can be configured on a branch level or a developer can con-
figure a specific set of tests for a specific code change. Bi-
secting test failures to identify a culprit commit is centrally
provided to simplify and speed-up the usage for developers.

The test infrastructure of SAP HANA keeps evolving,
both in terms of functionality and capacity. For example,
SAP HANA Cloud requires new runtime environments for
hardware architectures or container-based execution. Addi-
tionally, tools for static code analysis and security screening
must be integrated into the development process (Sect. 2.5).
The less time developers must invest in orchestrating tools,
gathering or evaluating results, the more time they have
for software development tasks. Thus, a stable infrastruc-
ture with fast reaction times is one of the most important
requirements from a developer view.

However, even with all these achievements, improving
test costs and quality is a permanent activity. Long running
integration tests should be replaced with short unit tests,
the structure of the source code must be adapted to changes
in architecture, and legacy code should be separated into
modules with interfaces to decrease coupling.

3.3 Architect

Architects are experts who design the principal architecture
of SAP HANA from a high-level view. As software testing
aims to gain information about the quality of the software
under test, architects can utilize software testing to make
better informed and evidence-based decisions.

A typical example is code coverage, i.e., information
about what parts of the software are executed by tests (see
Sect. 5.2). While there are comprehensive discussions in the
literature about the usefulness of coverage ratios (like 95%
of the code is covered), an architect utilizes coverage infor-
mation to learn more about architectural and technical chal-
lenges. For example, a high code coverage from tests can
indicate an architecture is testable without much effort and
therefore has often well-structured interfaces. This is then
helpful to evaluate effort and risks for refactoring activities
which can be lower for areas with high code coverage. In
addition, a low number of bugs together with a high code
coverage can indicate a high code quality, although this
still depends on whether the functionality represented by
the corresponding code is frequently used by a large num-
ber of users or not. There is also a trade-off between high
code coverage from tests and effort of test implementation
and maintenance. A balance must be found that translates
into a long-term high velocity of the development teams.

Velocity and developer efficiency is a second important
example where in this case not the software testing results

K



202 Datenbank Spektrum (2022) 22:195–215

are important, but the software testing process. From an
architectural point of view, the software, the architecture,
and the testing process must allow quick and reliable test
activities. The time it takes to create and execute tests di-
rectly translates to longer waiting times or context switches
for developers, both reducing efficiency. Unreliable test re-
sults create unnecessary work, frustration, and loss of trust.
Again, these aspects reduce the development efficiency.

Considering the given examples, software testing can
provide information for architects to initiate activities for
improvements. A high number of bugs can trigger a further
investigation of the types of the bugs and based on the
types of bugs can trigger a re-implementation to avoid such
bugs in the future [78]. A high number of bugs that cannot
be reproduced can indicate complexity that is not well-
understood. A high number of bugs that are in fact not bugs
but misunderstanding can indicate a lack in supportability
and usability of the system [65, 74]. Low code coverage
can result in activities to separate concerns, create smaller
concerns and introduce well-structured interfaces. This can
even improve compile and test times.

3.4 Manager

From a management point of view, testing serves two main
purposes. First, as management is “the process of dealing
with or controlling things or people” (Oxford dictionary),
testing provides information to enable effective manage-
ment. Second, testing is part of the quality assurance pro-
cess to ensure requirements of the users are fulfilled. For
SAP HANA, the main requirements are stability and data
integrity (Sect. 2.3).

With the help of testing, management gains information
about required efforts and can plan budgets for developing
new functionality and maintaining the software (see also
Sect. 3.3). Therefore, there is a need for testing activities
itself, but also to reduce costs for testing. For example,
bug handling (Sect. 2.5) costs resources. Typically, the re-
source costs are higher, the later a bug is found. Therefore,
it is important for management to facilitate development
and test processes that prevent issues and find them early if
they exist (“shift left” [80]). However, conducting test ac-
tivities early typically means a higher frequency and higher
costs. Consequently, analysis and decision about trade-offs
is a permanent task for management. Similarly, if new fea-
tures are planned or developed, testing can provide infor-
mation about how much effort is required to implement or
release the functionality with a sufficient degree of quality
(“gap analysis”).

Fundamentally, testing only provides information. How-
ever, this information is then used to trigger improvements
if required (see Sect. 2.3). With that, testing is important for
management to satisfy the requirements stated by users. For

example, when issues with the stability of SAP HANA may
negatively affect the business of a user, this user then may
expect immediate solutions from management. Therefore,
even if “testing can (only) be used to show the presence of
bugs, but never to show their absence” (Edsger W. Dijk-
stra [23]), it is important to utilize it for reducing the cases
where bugs lead to issues. Testing should not only pre-
vent negative changes, but it is also required to document
positive changes. For example, testing the performance or
memory usage may document improvements that can be
used by management to advertise the product.

The switch from classical on-premise software to SAP
HANA Cloud requires adaptations in the quality concept
that we further explain in Sect. 6. It is also the responsibility
of the management to shift resources and culture towards
such adaptations.

Finally, from a management perspective, it is a con-
stant challenge to determine the best distribution of re-
sources. The proportion of resources spent for implemen-
tation, improvements, or support (handling and fixing is-
sues) is a topic of continuous debate. We experienced that
concepts of control theory may provide good results. That
means, a fixed distribution of resources has severe limita-
tions in practice and applying corrective behavior leads to
a better control of a dynamic system. For example, we con-
trol the resources for feature implementation of a compo-
nent by the number of issues that are found in the respective
component. Resource distribution in large software projects
is still a topic where more best practices and research is
welcome.

With respect to managing human resources, there are
several hundred persons involved in the development of
SAP HANA. There is a wide range of experiences and
knowledge in addition to a constant natural churn of em-
ployees. This leads to the challenge of how software devel-
opment can be fundamentally improved to avoid categories
of issues and how such an improvement can be designed
in a scalable way. It seems to be a poor approach that soft-
ware engineering still mostly adopts a learning by mistake
methodology.

4 Pre-/Post-Submit Testing

The lifecycle of a new change can be differentiated into
pre-submit and post-submit states that differentiate whether
the change is not yet included in the central code repository
or it is.

4.1 Pre-Submit Testing

For pre-submit testing, we assume that a developer creates
a new change locally. During the development process, the

K



Datenbank Spektrum (2022) 22:195–215 203

developer will utilize and implement testing activities based
on a test plan, given project guidance and experience. In ad-
dition, the developer utilizes a subset of the existing tests
to test for regressions. Then, the first formalized step is
doing component tests for which a developer might push
a change to a development branch for the corresponding
component. Each component, represented by a team of de-
velopers, defines a set of regression tests that are executed
for all changes within their component. After the change
is finished from a functionality point of view, the devel-
oper will push it to the main code branch to integrate it
in the main code line. Due to scaling reasons, such a push
might include multiple changes or multiple new features.
The main purpose of the main code line testing is then to
a) ensure that the main code line is in a good state, i.e.,
compiles and passes a fundamental set of tests, and b) that
changes for one component do not introduce regressions in
other components. The overall goal is that the main code
line can be used at any state in production. A change can
only be included in the main codeline if the pre-submit
testing results have been positively assessed. Surprisingly,
this is a rather complex task due to flaky tests (Sect. 7.3).
For SAP HANA, a dedicated team supports development
with test assessment, and we utilize automated approaches
that classify for a test result whether any further action is
required or not.

A challenge for a large project like SAP HANA is, as
detailed in Sect. 2.1, that we must test about 80 changes
per day in pre-submit tests. Considering that it can take
several hours until we know the test results for a given
change it is clearly not possible to run all these changes in
a sequence and integrate them if the tests run successfully.
Now, one could argue that we can execute pre-submit test-
ing for multiple changes in parallel. However, this reduces
the information we gain from testing. If we execute the
tests for change c1 and change c2 in parallel, then even if
all tests pass, we only know information about the state S1

after c1 and the state S2 after c2. We know nothing about
the state S12 after applying c1 and c2. S12 could contain
so-called higher order merge conflicts [12, 88] where, for
example, c1 starts to call a function, but c2 changes the
results of this function. As we need to integrate the given
number of changes per day into our code repository, we ac-
cept the risk of such conflicts and execute pre-submit tests
in parallel. We reduce the probability of issues by executing
a rather fast syntax test for compilation before integrating
the new state, S12 in our example. On average, we still find
about 1 higher order merge conflict for every 800 changes.

4.2 Post-Submit Testing

For post-submit testing, we assume that a change is already
integrated into the main code line for a new version of the

software vn. The state of vn is then tested by additional
regular testing activities. These are typically tests that have
long execution times, high resource usage, or have shown
in the past a low number of detected issues (for example
tests for established components without further modifica-
tions). In addition to these post-submit testing activities,
there are, depending on release cycles, extended test activ-
ities for a release of vn. These activities then include for
example manual testing where new functionalities will be
tested from a user perspective based on requirements and
documentation, upgrade paths from previous releases to vn
are verified, or user-specific workloads are extensively used
to test against regressions. All the described activities are
embedded in well-defined development, test, and release
processes. The test results are documented, and their con-
formance to expectations is checked for releases. Together
with other activities, these aspects of the software develop-
ment process for SAP HANA then align with SAP global
frameworks for development, quality management, and re-
leases.

Challenges in pre-submit testing are test execution times
and the mapping between issues found and responsible per-
sons. As post-submit testing activities may execute over
days and weeks, they must be carefully scheduled along
release cycles. In contrast to pre-submit testing, where the
author of a change and therefore the responsible person for
an issue exists, we need to identify a responsible person
for issues found in post-submit testing. We utilize a mix of
git bisecting, data retrieval and human knowledge to solve
this.

5 Continuous Test Activities

In contrast to pre- and post-submit testing, there are also
test activities that happen at any time, independent of
a change or a release. Theoretically, all the continuous
activities could be conducted for each change, but the over-
head in time and costs does not correspond to the expected
benefits. Therefore, the scope of such continuous testing
activities is typically the source code of the whole project
and they can be understood as a continuous effort towards
testing and improving the quality of SAP HANA.

5.1 CI Tooling

The staged testing concept of SAP HANA (Sect. 2.4) and
the size of the project (Sect. 2.1) requires an automated,
resilient, scalable, reliable, and performant Continuous In-
tegration (CI) infrastructure. The main components of the
build and test infrastructure are a CI tool, a cloud-native
execution platform, and domain-specific services for data
analysis and interpretation.

K



204 Datenbank Spektrum (2022) 22:195–215

The central CI tool configures tests activities for each
code branch. A central repository versions each change.
The configuration is flexible and supports all the quality
measures that are described in this work (and more). The
user interface of the application shows for each CI run the
progress, aggregated results, and mostly automated result
assessment based on an underlying rules engine.

The execution platform translates the workload of a CI
run into a domain-specific graph language. Each node in the
graph represents an automated job and has defined resource
requirements. For example, an integration test may consume
multiple terabytes of RAM and more than 100 CPU cores,
while a static code analysis job may require less resources.
The platform governs a hardware cluster hosted both on-
premises and on public clouds. A custom scheduler dedu-
plicates the execution graph and delegates the workload to
cluster nodes offering free resource capacity. Containeriza-
tion ensures performance isolation at the cluster nodes. The
execution platform also comprises a data management sys-
tem, which transparently transports input and output data
between graph nodes and takes care of data lifecycle ma-
nagement.

Internal SAP HANA instances (Sect. 5.6) persist the re-
sults of CI jobs together with the corresponding metadata.
The information can be retrieved via SQL and APIs. We
apply statistical analysis and machine learning techniques
to derive insights and correlate information across CI runs,
code lines, and branches [1, 6].

The CI stack is complemented by tools supporting the
development process, such as a customized extensions for
C++ IDEs (Qt Creator1, Visual Studio Code2), bug tracker,
and tools showing quality metrics per component such as
code coverage, compiler warnings, or open bugs.

5.2 Code Coverage

Code coverage provides information about which part of
the source code is tested. Obtaining this information has
an overhead in terms of times and resources as we have
to identify a mapping between execution of a test back to
the underlying source code for the executed part of a bi-
nary [4]. For a very large software project as SAP HANA,
the overhead translates to considerable costs. In addition
to these expected costs, we experienced that most tools to
collect code coverage are not compatible with the size and
complexity of SAP HANA and therefore additional techni-
cal challenges must be solved, which further increase costs.
Therefore, we proceed similar to other large projects [46]
and collect code coverage not for every change but only 2
to 3 times per week.

1 https://www.qt.io/product/development-tools.
2 https://code.visualstudio.com/.

While there are discussions in the literature about the
usefulness of code coverage as an indicator for the quality
of a test suite [42], we see code coverage as a source of
information, but not as a specific goal for quality. Com-
ponents must achieve a specific threshold for the cover-
age ratio. However, the underlying motivation is not that
this threshold defines a specific degree of quality, instead
a threshold regulates the amount of time that is spent for
creating tests. In fact, the value of the threshold is not rel-
evant as it just represents a relationship between coverage
ratio and time invested into creating tests. Sect. 3.3 de-
scribes concrete examples how information gained by code
coverage steers further activities.

In addition to the general aspect, code coverage also
allows us on a technical level to apply techniques from re-
search work to reduce test code or to improve quality [1,
4, 8]. However, we found that we must carefully check the
usefulness of such techniques. First, the coverage of SAP
HANA has the possible unexpected attribute that there is
a large part of so-called common coverage, i.e., some parts
of the software are executed by all tests. As a large part of
our tests are based on SQL statements, each such test ex-
ecutes the whole database stack. With that, every test that
executes any SQL statement may execute the same millions
of source code lines as any other test and might only deviate
by some hundred executed lines from another test. That is
for example a challenge for spectrum-based techniques [1]
or any technique that assumes every line included in cov-
erage data is equally important. In addition to this tech-
nical limitation, we also found that some techniques are
not relevant for large projects. There is for example a wide
range of work for test case prioritization [62], which has
no benefits for a large project due to flakiness and long
test execution times where developers will not frequently
check intermediate results but switch to other tasks and
come back to checking the test results later. Previous work
provides more information about the practical usefulness of
code coverage for SAP HANA [4].

5.3 Customer Scenario Testing

As detailed in Sect. 2.1, SAP maintains an extensive set
of regression tests for SAP HANA. However, even with
such an extensive test suite, users may utilize the software
in a way that is not explicitly tested. For example, users
may utilize a different table and data distribution, workload
management, system utilization, size or configuration. It
is therefore important to test a new software version with
workloads that replicate real usage scenarios.

One approach at SAP to achieve this is recording all
workload from a user system over a certain time [9] in
a GDPR-compliant way. This workload can then be re-
played at any time for any new version. On a high level,

K

https://www.qt.io/product/development-tools
https://code.visualstudio.com/


Datenbank Spektrum (2022) 22:195–215 205

the implicit test oracle, i.e., the verification whether the
test has passed or not, is whether the replay executes suc-
cessfully or if there are any errors encountered during the
execution [3, 31, 61, 82, 85, 90]. In addition, the recording
also allows a fine-grained analysis of individual queries and
performance.

The recorded replays then represent a typical workload
from a specific customer. Depending on the customer, such
a workload can be dominated by updates, by analytical
queries, or by a specific special functionality such as graph-
related queries or machine learning.

Customer scenario testing aims to replay these workloads
as part of the CI process. While the idea of replaying work-
loads sounds simple in theory, it poses severe challenges
in practice while implementing a fully automated process.
They span from identifying the most helpful workload pat-
terns to record, risk of operational mistakes during the re-
play, false positives in test results, distinguishing different
root causes, deduplicating redundant findings, to reliably
reproducing new errors with a minimal reproduction setup.

Several challenges require to map a large amount of data
to correct actions, i.e., typical classification tasks. Hence,
we utilize machine learning to, e.g., analyze false positives
in test results and identify root causes of failures [47].

Overall, customer scenario testing then ensures that users
can upgrade to newer versions without regressions and that
the required testing is automated and meaningful although
the input of user workloads is diverse and only structured
to some extent. Avoiding regressions for user workloads
is especially important for SAP HANA Cloud where SAP
controls software upgrades and their effects (see Sect. 6).

5.4 Logs, Traces, and Debugging

For large projects such as SAP HANA, it is important to
provide extensive information for debugging. It must be
available on multiple levels of detail for different target
groups from users to developers. As stability is important
(Sect. 2.3), SAP HANA collects a wide range of informa-
tion in the case of a crash (unexpected end of a process)
such as stack traces, CPU register and memory content, or
state of program variables and threads. In addition, SAP
utilizes reverse debugging to deterministically reproduce
crashes and backwards in time execution to find the causes
for issues [26].

In addition to support debugging, we automatically col-
lect logs and traces from SAP HANA Cloud instances to
either predict issues and mitigate them before they occur or
to report and map them to known bugs or create new bug
reports (Sect. 2.5). Therefore, logs and traces can be consid-
ered as a test tool in the sense that they provide information
about the state of the software.

5.5 Malfunction Testing

Even with the availability of multiple terabytes of memory
for single systems, out of memory (OOM) issues can still
be relevant for a running SAP HANA instance. Fundamen-
tally, either data is larger than anticipated, or the statement
is running into a statement memory limit and the memory
manager throws an exception. Such exceptions can occur at
any place that allocates memory, i.e., almost anywhere in
the code. As out of memory situations can impact the avail-
ability and due to the large number of places where issues
can occur, it is important to have a specialized concept for
testing such situations properly.

As SAP HANA utilizes a custom-tailored memory ma-
nagement framework [63], we can set the memory manage-
ment into a special “malfunction” mode for testing pur-
poses where the memory manager decides voluntarily and
randomly to not provide memory but throws an exception
instead. A heuristic further decreases the locality of such
exceptions to avoid throwing exceptions repeatedly at the
same code location. The malfunction mode can be used
for C++ based tests or for a whole SAP HANA instance.
Overall, the malfunction tests contributed and contribute to
a large extent to the stability of SAP HANA even in OOM
situations.

In addition to expected OOM situations, there can also
be incorrect memory handling that results in memory leaks,
use-after-free situations, or other memory safety violations.
A memory leak occurs if memory is allocated but not re-
leased although it is not needed anymore. This does not
only negatively affect the availability of SAP HANA as
even small memory leaks might accumulate over the long
periods that DBMS are executed, but also has a negative
impact on the total cost of ownership that partially depends
on required memory. In addition, issues with memory safety
can result in crashes or security vulnerabilities.

Therefore, testing for and the detection of incorrect
memory handling are important tasks for SAP HANA.
SAP achieves this with multiple approaches. First, due to
the custom-tailored memory management framework, we
typically know at runtime where memory was allocated,
where it is released (or not), and can attribute all allocated
memory on a rather fine-grained level to the allocating
places and components. In addition, we check for memory
safety violations with tools such as AddressSanitizer [77],
ThreadSanitizer [76], MemorySanitizer [83], Valgrind [59],
fuzzing [91], or debug it via reverse debugging [26, 84].
Finally, we utilize our own and third-party static code
checkers to detect issues with memory management as
early as possible and have internal recommendations to
avoid specific programming patterns that are error prone.

K



206 Datenbank Spektrum (2022) 22:195–215

5.6 Qualification of Internal Systems

The qualification of SAP-internal SAP HANA systems is
one step of the quality process. We use multiple SAP HANA
systems to store multiple terabytes of information about de-
velopment, testing, delivery, crash call stack information,
bugs, or infrastructure observability events. This approach
offers the possibility of testing development versions and
new features of SAP HANA at an early stage with large
systems and practical workloads. In addition, developers
also experience stability issues by themselves. This pro-
vides a helpful regulation cycle.

5.7 Performance Testing

The existence of prominent database benchmarks such as
defined by TPC [11], indicates the importance of perfor-
mance for databases. Performance is also important for
users if they need to achieve certain response times or
throughput for their target workload. Therefore, perfor-
mance testing is part of pre- and post-submit testing for
SAP HANA [71]. Developers create performance tests to
measure the performance of their code, but also to protect
against regressions in future updates. In our experience,
the latter becomes increasingly important for functional-
ities that have many dependencies as the complexity of
the product increases. The pre-submit tests must execute
quickly and typically focus only on specific features or
components. The post-submit tests include both extensions
of pre-submit tests, more complex tests that cover multiple
features or components, and long running performance
tests. The tests are typically written in C++ or Python
and interact with SAP HANA via SQL statements. On
a unit level, performance tests for core algorithms and data
structures may utilize Google benchmark [33, 64].

In the context of performance tests, we speak of meas-
urements as the smallest (executable) entity. In each meas-
urement, we may measure multiple metrics. While the most
common metrics are elapsed time, CPU time, and memory
consumption, there can also be others such as throughput
metrics for I/O or queries. We store all measurement results
in a database (Sect. 5.6) which serves several purposes: The
data is used to define and track the baselines that we com-
pare against, to track performance changes over time, to
detect “broken” hardware that produces inconsistent perfor-
mance results, and to assess quality and stability of tests.
For performance improvements, we automatically adapt the
baselines that we compare against.

Special properties of performance tests: In compari-
son to functional tests, performance regression testing dif-
fers both in the way a regression is detected and in the
requirements towards the test environment. In functional
regression testing, we test for equality against an expected

result and the test environment must provide enough re-
sources to execute the test. That implies multiple tests can
run in parallel on shared hardware, and tests can run on dif-
ferent types of hardware if the executed code is the same.
In performance regression testing we in fact do statistical
tests against a threshold and we must reduce the number of
variables that can affect the result of the statistical test to
a minimum. Therefore, the environment in which a test is
executed must be exactly the same for all measurements.
This implies exclusive use of identical hardware for each
measurement to ensure reproducible performance measure-
ments.

In an ideal world, a series of identical measurements for
the same code is just a series of identical results (flat line).
However, in practice, there are undesired derivations that we
call noise. The three main factors for noise are hardware,
runtime behavior, and the build.

To exclude noise from hardware effects, we run tests on
pools of identical machines, i.e., same vendor, board, CPU,
memory, discs, firmware, OS, and system settings. A land-
scape check verifies the execution environment before each
test execution.

In case of noise from runtime fluctuations there are var-
ious strategies to stabilize the measurement. First, we must
avoid noise from asynchronous background processes that
are triggered on a schedule, by the setup before the measure-
ment, or by the previous test. We deactivate such processes
to a minimum and wait until they are finished. Second, we
increase the number of repetitions and utilize the available
additional data to remove noise via statistical methods.

We use the category of build noise for a complex but
important aspect. We sometimes see regressions that seem
unrelated to code changes. They even might disappear again
after more unrelated code changes. The reasons for such re-
gressions are manifold. For example, adding code in a dif-
ferent submodule can influence the inlining decisions of the
compiler. Removing or adding a member variable can shift
the cache alignment and cause false sharing. Changes to the
binary layout can influence CPU behavior like instruction
cache usage, TLB misses, or branch prediction. These types
of regressions are challenging to locate and fix. Still, from
a user perspective, it is a regression and must be treated as
such.

Practical tooling: The evaluation of performance results
for the pre-submit barrier is automated. We do automatic
restarts if one of the measurements shows a regression to
rule out fluctuations before the final evaluation. About 10%
of all changes are rejected and blocked by this automated
test. Such blocked changes can be re-evaluated manually to
detect false positives. Typical reasons for false positives are
accumulations of small regressions from previous changes,
unstable measurements, or too aggressive adaptations of
the baseline in case of improvements. For the post-submit

K



Datenbank Spektrum (2022) 22:195–215 207

tests we generate reports with regression candidates that are
reviewed by a team of experts. In case of regressions, our CI
tooling (see Sect. 5.1) utilizes an automated git bisect to find
the culprit, i.e., the change that caused the regression. The
team then opens bugs for those performance regressions
and assigns them to the responsible developers.

The performance test framework also integrates profilers
to further analyze performance behavior and the causes of
regressions. This includes the SAP HANA Kernel Profiler,
JobExecutionLog [74], (allocator) traces, SQL plan ana-
lyzer, and other SAP HANA built-in profiling mechanisms.
External tools like vTune [72] or perf [50] can also be inte-
grated. While most performance regressions can be repro-
duced on developer machines, we also implemented a cen-
tral hardware rental service to analyze specialized hardware
or distributed scenarios.

For SAP HANA Cloud, performance testing is still
a challenge. SAP HANA runs in Kubernetes pods, which
raises concerns with noisy neighbor effects, CPU over-
provisioning, network issues, or hardware capabilities [70].
The complexity of the cloud infrastructure raises challenges
regarding the robustness of performance test execution [41]
and requires further elaboration and tooling.

5.8 Multi-Modal Testing

Most of the testing in SAP HANA is done on relational
data. However, SAP HANA, as a multi-model [53] database
also supports graph, spatial, and (JSON) document models.
Creating input data, workloads, and queries for correctness
and performance for these models is a challenge [64].

For graph engines, we use data generators like R-MAT [14]
and publicly available datasets [27, 52]. In comparison to
graph models, there is less previous work on spatial and
JSON document store benchmarks [21]. Existing bench-
marks from other domains [17] have limitations regarding
external validity [41, 48]. Thus, we created DeepBench [10]
to generate JSON-specific data and queries for technical
and domain-specific workloads. For spatial models, we
generate data by ourselves and from OpenStreetMap [60].
We also employ regression tests for multiple clients, e.g.,
QGIS3, GDAL4, or ESRI5.

5.9 Randomized Testing

Automatically generating input that was not expected by
developers can provide new insights about the behavior of
the software. In our experience, such an approach is useful
to find concurrency issues such as race conditions, testing

3 https://www.qgis.org/de/site/.
4 https://gdal.org/.
5 https://www.esri.com/.

the interaction of multiple components and verifying cor-
rect input parsing of, e.g., SQL statements. Therefore, we
utilize existing tools such as SQLsmith [75] but also devel-
oped our own tools for SQL [34] and unit test level [91].
Developing our own tools allows us to support a wider
range of data types, more statement variants, parallel exe-
cution, and integration with internal debugging and analysis
functionality.

The main challenges for tests based on automatically
generated input is the test oracle. If we enter random in-
put, we get random output of which we may not know in
general whether it is correct or not. Therefore, our random-
ized testing approaches utilize implicit test oracles such
as crashes, memory leak detection (Sect. 5.5), consistency
checks, and internal assert statements. For generating in-
put, our tools can randomize a wide set of entities, such as
write, read and defining SQL statements, hints, monitoring
views, configuration parameters, or commits and rollbacks
for transactions.

Each month, we spent several years of CPU time to con-
duct randomized testing. These tests found a wide range of
errors, such as crashes, deadlocks, wrong results, memory
leaks and corruption, recovery issues, or regressions.

Integrating the results of the randomized testing into the
development process is another challenge. For that pur-
pose, we automated the failure assessment, bug creation
(Sect. 2.5), debugging data collection (Sect. 5.4), the ge-
neration of a step-by-step manual to reproduce the issues,
and the integration of fixes. We also utilize a sophisticated
labeling and mapping system, which allows us to ignore
known issues to avoid duplicated work.

5.10 Security Testing

The stability of a SAP HANA instance should not be neg-
atively influenced by persons that use the system in a way
that was not intended (Sect. 2.3). Furthermore, aware-
ness and requirements for data protection increased over
time. With SAP HANA Cloud, cloud-based threat models
with severe impacts require appropriate measures. SAP has
therefore a secure software development process that builds
upon best practices of developing secure software within
SAP and on industry standards.

As part of the development process, security experts con-
duct threat modeling to derive the requirements and security
measures for the product or for features. These requirements
are then part of the overall design that is implemented in the
development phase. Beside those specific threats that need
to be addressed, there are product security standards that
developers follow. They contain information about topics
such as cryptography standards, data protection manage-
ment, or processes to handle security vulnerabilities.

K

https://www.qgis.org/de/site/
https://gdal.org/
https://www.esri.com/


208 Datenbank Spektrum (2022) 22:195–215

Automated security checks included into central CI tool-
ing (Sect. 5.1) support the developers. For example, static
analysis tools identify potential security issues in the C++
code of SAP HANA. The usage of third party libraries is
automatically detected and security information is provided
for those. As an example for dynamic testing, fuzzing tests
the robustness of the SQL parser (Sect. 5.9). The results
of these activities are integrated in the central bug manage-
ment tool (Sect. 2.5).

In addition to internal code checks, SAP also works to-
gether with external vendors that conduct security analysis
and penetration tests for SAP HANA. SAP HANA might
also be investigated by independent security researchers.
For this case, SAP has publicly defined processes for re-
porting and disclosing security vulnerabilities. SAP pro-
vides regular information and recommended actions about
security issues that are found in released versions of SAP
HANA. In the case of SAP HANA Cloud, SAP mitigates se-
curity issues based on risk and threat analysis, see Sect. 2.6.

6 SAP HANA Cloud

As presented in Sect. 2, SAP offers SAP HANA Cloud,
a database-as-a-service where the instances of SAP HANA
are managed by SAP via containers. Managing SAP HANA
in a cloud environment provides specific challenges in com-
parison to delivering software that is installed by users.

Testing HANA Cloud requires two major adaptations.
First, SAP shares a greater part of the responsibility that
users can use new versions without issues. In the past, it was
expected that users test new versions on their own depend-
ing on a risk assessment. With SAP HANA Cloud, users
expect that SAP manages the system and guarantees ser-
vice level agreements (SLA). As a second major difference,
there is a strong pressure on a more rationalized test strat-
egy. Before SAP HANA Cloud, major releases had a rather
long test and improvement period (“stabilization”) as also
depicted by Fig. 3. With SAP HANA Cloud however, the
release frequency increases which requires to reduce the
time for testing. Still, users might even have higher expec-
tations on quality. Therefore, from a management point of
view, testing must be rationalized to be a best fit for the
purpose.

These adaptations towards a cloud product have several
practical consequences. For example, SAP may not know
how users utilize and integrate SAP HANA into other sys-
tems. Therefore, SAP must focus more on providing (and
testing) interfaces (see also Sect. 3.3) and must learn from
usage data. Another example is a situation where one user
may urgently require a fix for an issue. SAP must carefully
assess the impact such a change has on other users, because
the change might be immediately available to all instances

of all users. A third example is the need to rationalize the
testing concept towards a continuous testing approach to
reduce test periods and increase release frequency.

The following sections provide more details for the gen-
eral testing concept and the given examples.

6.1 Infrastructure Test Strategy

The SAP HANA database containers are hosted in a mi-
cro service environment based on Kubernetes [38]. These
micro services follow their own release cycles. This infras-
tructure comprises more than 100 micro services that pro-
vide various features including an observability stack, an
integration into SAP Business Technology Platform, and
it allows to dynamically provision and host thousands of
database instances in a stable and scalable setup. Identical
to SAP HANA, users expect stability and data availabil-
ity from SAP HANA Cloud. Therefore, the most important
goals for the test strategy are preventing downtimes and
data loss while maintaining a high release frequency.

SAP HANA Cloud follows a micro delivery paradigm
where each change on any micro service leads to a new
release of the respective micro service. A change must pass
unit tests, integration tests, and compliance scans before it
is delivered to users. Every new micro service version must
show in scenario testing that it can be updated without is-
sues and that other available features still work. Each new
version is tested in a copy of the target environment com-
prising different Kubernetes clusters where the new version
interacts in a production-like setting with all other services.
A new version must pass all tests without downtimes or data
loss before it can be deployed. The test process is fully au-
tomated, and we create and delete thousands of Kubernetes
clusters per day for testing purposes.

After validating a new service version as described be-
fore, we apply the new version on existing long-lived en-
vironments. As an additional quality measure and risk mit-
igation we define subsets of environments through which
new micro service versions are progressively deployed over
time. We call that rollout. The first subset of environments
includes internal development and validation clusters where
a new service version is tested with diverse interactions and
more realistic workload. The new service version can only
reach internal production, which is the next subset of en-
vironments, if there are no open concerns or test findings.
At that point the quality of a new version is sufficiently en-
sured to operate on the internal production environments,
which are permanently monitored for any issues just like
user-facing production environments.

After a validation period where the length depends on the
service (average: 7 days), the new service version can enter
production landscapes if no blocking concerns exist. The
length depends on a risk analysis that includes the impact

K



Datenbank Spektrum (2022) 22:195–215 209

of potential issues and the complexity of the new version.
Based on the risk analysis, the length is between an hour and
a month. Depending on the risk, additional continuous and
manual testing activities are conducted during the validation
period.

Depending on the risk and the benefits (Sect. 2.6), a new
version can be made available more quickly if an urgent
issue must be solved. In that case, testing activities will be
focused and prioritized on this new version to shorten the
time from creation to deployment to a few hours.

6.2 Feature Toggles

In our development environment with highly frequent de-
ployments, ongoing feature development is not aligned with
any planned deployment pipelines. Thus, new micro service
versions might include code as part of a new feature that is
not yet ready for release to users.

Feature toggles can hide ongoing development behind
a configuration setting. That setting can be changed to
be, e.g., active for development and testing, but inactive
for other users. With that, developers can regularly sub-
mit smaller changes that are easier to review and have
a smaller chance for introducing regressions as the integra-
tion of a new feature is not a binary once and all decision.

However, the higher number of configuration options
draws the challenge to test suitable combinations of tog-
gles. Testing the complete matrix of possible options results
in a potential exponential number of combinations, which
would dramatically increase the required testing time. This
would then negatively impact the frequency of deployments
and is not compatible with the desired development and
testing process. Hence, every micro service must test mean-
ingful combinations of configurations of their service. This
usually includes the configuration as deployed in produc-
tion environments (all new features toggled off), the con-
figuration for release ready toggles where development is
considered complete but not yet finally decided, and exper-
imental setups to test ongoing development of incomplete
features.

Feature toggles then also allow a progressive roll-out
based on user groups or number of systems. This reduces
the blast radius, i.e., the number of affected systems if there
is an issue. Finally, feature toggles can also be deactivated
at runtime which allows for faster responses to mitigate an
issue compared to reverting code for a functionality and
releasing a new version. An open challenge is the tracking
of feature toggles and handling of obsolete feature toggles,
i.e., the question of when the code for the toggling and the
previous code path should be removed if a new feature is
released and stable [69].

Fig. 4 Stages for SAP HANA Cloud releases

6.3 SAP HANA Stages

A new version of SAP HANA is not directly deployed
into a SAP HANA Cloud production environment after it
is built. Instead, there are multiple so-called stages where
a new version is made available for testing before being
deployed in the general production environment. As shown
in Fig. 4, each stage represents a different state of stabil-
ity and distance from the newest development state and is
therefore suitable for a different purpose. These stages allow
to balance the requirement to access and maybe influence
new versions early and the requirement for stability that
assumes less frequent changes. From a quality perspective,
the stages allow to identify and mitigate issues early be-
fore reaching later stages. Therefore, we say that new SAP
HANA versions progress through the SAP HANA quality
pipeline.

Consequently, each stage has a position in the pipeline
and consists of a set of instances with the same SAP HANA
version. Furthermore, each stage defines the amount of time
a version is expected to stay in that stage and a set of quality
metrics. The quality metrics utilize feedback from testing
and stability of the instances within the stage. They provide
an indicator whether a version can progress to a new stage
in the pipeline.

Instances are assigned to stages depending on a trade-off
between having new functionality to test it and a require-
ment for stability. Instances which are located in earlier
stages accept the higher risk of instabilities but can test and
influence new functionality. It is expected that the earli-
est stages contain development and internal test instances.
Stages in the middle of the pipeline contain instances from
other SAP products that utilize SAP HANA and want to
test new features or compatibility towards new versions.
The latest stages contain productive instances.

A version can transition to the next stage via promotion.
A promotion validates the quality of a version and con-
cludes whether the quality is sufficient for the next stage.
The decision is based on the aforementioned quality metrics
and experienced-based input from so-called stage owners.
Once a promotion is confirmed, a version vi at stage sn is
assigned to the next stage so that vi+1 is at sn and vi at sn+1.
Alternatively, if a promotion is finally rejected, vi drops out

K



210 Datenbank Spektrum (2022) 22:195–215

of the pipeline as vi+1 will be promoted from sn−1 to sn.
sn+1 continues to stay on vi−1 as vi did not advance. vi−1 is
then available in two stages: sn+1 and sn+2. Orthogonal to
promotions, an instance can either switch to a lower stage
by upgrading to a newer version, stay on the same stage
by linking upgrades to promotions so that both happen in
parallel, or progress to a higher stage by staying on the
same version if a promotion occurs.

Overall, the stages concept allows a flexible quality ma-
nagement with multiple stages of different purposes where
instances can trade stability for availability of new changes.

7 Challenges

Several challenges are already presented in previous sub-
sections. Therefore, we will only briefly reference them.
Due to the importance of test costs and flakiness, we will
discuss them in detail.

7.1 Overview

Sect. 4 shows that a day does not have enough hours to
conduct testing for all changes of a very large software
project. In general, it is a constant open challenge how to
improve turnaround times for pre-submit testing, i.e., the
time from a change submission to the central CI system
until test results are known, or the time-to-merge [49].

The question of test adequacy, i.e., when did we test
enough, remains unanswered in general despite decades of
investigations. We believe that in practice, the answer is if
test costs are higher than the expected gain, but this only
shifts the problem. For example, it is also unclear how tests
should be distributed over different scopes such as the test
pyramid, which is even not a pyramid in practice for DBMS
– see Sect. 2.4. We welcome empirical studies and recom-
mendation from research towards practical test adequacy.
Similar, we welcome any recommendation how we can es-
timate the usefulness of a test. From a cost perspective,
a test that never indicates an issue may not be worth to get
executed over and over again, is it? On the other hand, are
tests that indicate a lot of issues “better”? Or maybe only
more flaky?

Maintaining metadata about testing is challenging as de-
scribed in Sect. 2.1. We constantly learn from research
and knowledge sharing about new data that we might have
needed to collect in the past, although there are already
some established data attributes [89].

Interacting with a large amount of tools related to testing
is a constant challenge for developers where we aim to
reduce n W m relationships to n W 1 W m (see Sect. 2.5).
While we understand the simplicity of creating yet another
tool for a new testing technique, it would be appreciated

if there was a common understanding how tools can be
embedded in workflows.

For performance testing, we see automated performance
regression detection and performance testing in a cloud en-
vironment as open challenges. See Sect. 5.7 for further de-
tails and our open data set about performance regressions
measurements to foster new research in this area6.

Based on popular literature, the typical expectations to-
wards cloud systems are that they are stateless and updates
happen immediately. As discussed in Sect. 6, this is not true
for SAP HANA Cloud, which creates considerable chal-
lenges where users expect that SAP maintains and updates
a DBMS instance, but also expect availability of 99.99%
per year or more. In addition, due to a combination of the
large systems and growth in users of SAP HANA Cloud,
we face continuous scaling challenges where trade-offs be-
tween time and costs must be adapted regularly.

In the context of SAP HANA Cloud, SAP has now ac-
cess to a wider range of data and metrics about how DBMS
are used. We believe that this data can help to improve the
quality of SAP HANA and the offered service for users. It
is an open question how the availability of a large amount
of diverse data can shape future developments. For exam-
ple, the availability of github has also contributed to the
development of empirical research in computer science.

Finally, in the context of SAP HANA Cloud where we
use feature toggles, there are open questions on how to test
combinations of feature toggles and how to maintain them
long-term from introduction to removal, see Sect. 6.2.

From a people perspective, it remains unclear how re-
sources are best distributed and how software development
could be improved to make better software with improve-
ments that scale across the number of persons involved, see
Sect. 3.4.

7.2 Test Costs

From a quality perspective, it may be desirable to test
each change to the software by executing all available tests
against the change before the change is included in the cen-
tral code repository. However, as described in Sect. 2.1, the
amount of tests and the number of commits is rather large.
As the costs are then the number of tests multiplied with
the number of changes, we can conclude without further
calculations that the test costs will also be large. One could
argue that a large project may just have large test costs and
the costs scale with the project. However, in practice, the
test costs scale super-linearly over time [7] and the available
time per day is limited by a constant (typically 24h). It is
practically and economically not feasible to satisfy a super-
linear increase in test costs. Also, if each change requires

6 https://github.com/SAP/performance-regression-data-set.

K

https://github.com/SAP/performance-regression-data-set


Datenbank Spektrum (2022) 22:195–215 211

2h to test and there are 80 changes per day, then a day does
not have enough hours to sequentially test all changes.

Therefore, as already shown in Sect. 2.4, SAP does not
execute all tests for each change but a specific subset of
tests for each stage. The core principle for this approach
is risk-based quality management as discussed in Sect. 2.6
and a layered test strategy as shown in Fig. 3. For example,
pre-submit tests are executed for each change, but post-
submit tests only once per day (see Sect. 4). With that, the
super-linear increase in test costs over time is reduced to
a linear increase [7]

Still, decreasing tests costs while maintaining the same
level of quality or accepting only small decreases on quality
is a continuous challenge. Even small improvements in tests
cost can be worth the effort for very large projects.

7.3 Flaky Tests

A test is considered as flaky if it can pass or fail without
changes of the code under test [66]. Such behavior under-
mines the central idea of tests as guards signaling software
defects or undesired outputs. The negative effects of flak-
iness include wasted human effort for identifying possibly
spurious code defects, additional resource utilization for re-
running such inconsistent tests, and loss of trust in the out-
comes of tests, potentially leading to lower software quality
standards. Even more, flakiness has detrimental effects on
techniques assuming the test outcome depends only on the
code under test. This includes fault localization and auto-
matic program repair, test suite generation, and mutation
testing methods [66].

Test flakiness is a well-known problem in the software
industry for large companies like Google, Microsoft, Face-
book/Meta or SAP and to open source developers [25, 66].
A typical finding is that 10% to 20% of all tests show flak-
iness [35, 57, 66], which is similar to numbers for SAP
HANA [24]. A widely used method to mitigate flakiness is
repeating test execution multiple times to accept the test as
passing if at least one repetition passes [66], which is also
used for testing SAP HANA.

Despite the intense academic research in this field and
process improvements driven by practitioners [66], test flak-
iness remains a challenging and still unsolved problem. In
context of large-scale projects such as SAP HANA, the
reasons for this include the inherent complexity of the code
under test, massively parallel test execution, rapidly evolv-
ing test code, heterogeneous testing platforms, and a large
number of involved software and hardware components.
These factors lead to a high diversity of causes for test flak-
iness and make it hard to adapt academic solutions whose
assumptions might not be realistic or affordable in the in-
dustrial practice.

More specifically, for SAP HANA, the following aspects
are unsolved: What would be a sound definition of flaki-
ness? A question also raised by related work [66]. The
common description of a test that passes and fails for the
same code does not respect for example tests that fail due
to infrastructure or hardware issues although this situation
is common in large projects. Another aspect is the question
of how to differentiate between flaky test results and con-
currency issues? This is an important question for a DBMS,
yet remains unsolved. Then, do we have to accept flakiness
as a consequence of reality? Computer science builds upon
well-defined mathematical concepts and a bit operates on 2
states. However, the reality does only approximate the the-
ory to some probabilistic degree. And finally, although there
is a wide range of other small open questions, how can we
minimize the costs introduced by flakiness on a technical,
human, and process level?

8 Conclusion

We described how testing is done for SAP HANA. Our de-
scriptions contain solutions to several specific challenges in
the context of testing a very large DBMS. Furthermore, we
provide a set of open challenges with practical relevance for
testing large projects and testing DBMS. Although we kept
most of the descriptions brief, the overall sum of activities
follows the very large size of the project. Our descriptions
may provide a general understanding but solving specific
challenges might require further efforts. Therefore, we con-
tinue to collaborate with the research community [73], and
we aim to make more open data available to foster inde-
pendent research.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. An G, Yoon J, Sohn J, Hong J, Hwang D, Yoo S (2022) Auto-
matically identifying shared root causes of test breakages in SAP

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


212 Datenbank Spektrum (2022) 22:195–215

HANA. In: Proceedings of the 44th International Conference on
Software Engineering, ICSE-SEIP 2022

2. Anonymous oraguy (2018) Experience report of how the Oracle
database is tested internally. archived by Internet Archive at https://
web.archive.org/web/20220514124832/, https://news.ycombinator.
com/item?id=18442941 from https://news.ycombinator.com/item?
id=18442941. Accessed: 14.05.2022

3. Arruda F, Sampaio A, Barros FA (2016) Capture & replay with text-
based reuse and framework agnosticism. In: SEKE, pp 420–425

4. Bach T (2020) Testing in very large software projects. PhD thesis,
Heidelberg University, Germany, https://archiv.ub.uni-heidelberg.
de/volltextserver/31757/

5. Bach T, Andrzejak A, Pannemans R (2017a) Coverage-based re-
duction of test execution time: Lessons from a very large indus-
trial project. In: 2017 IEEE International Conference on Software
Testing, Verification and ValidationWorkshops (ICSTW), IEEE, pp
3–12

6. Bach T, Andrzejak A, Pannemans R, Lo D (2017b) The impact
of coverage on bug density in a large industrial software project.
In: 2017 ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM), pp 307–313 https://
doi.org/10.1109/ESEM.2017.44

7. Bach T, Pannemans R, Schwedes S (2018) Effects of an economic
approach for test case selection and reduction for a large industrial
project. In: 2018 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW), IEEE Com-
puter Society, Washington, DC, USA, pp 374–379 https://doi.org/
10.1109/ICSTW.2018.00076

8. Bach T, Pannemans R, Haeussler J, Andrzejak A (2019) Dynamic
unit test extraction via time travel debugging for test cost reduction.
In: Proceedings of the 41st International Conference on Software
Engineering: Companion Proceedings, IEEE Press, ICSE ’19, pp
238–239 https://doi.org/10.1109/ICSE-Companion.2019.00093

9. Baek S, Song J, Seo C (2020) RSX: Reproduction scenario extrac-
tion technique for business application workloads in DBMS. In:
2020 IEEE International Symposium on Software Reliability En-
gineering Workshops (ISSREW), IEEE, pp 91–96

10. Belloni S, Ritter D, Schröder M, Rörup N (2022) DeepBench –
benchmarking JSON document stores. In: Proceedings of the 9th
International Workshop on Testing Database Systems,
DBTestSIGMOD 2022, Philadelphia, Pennsylvania, July 17, 2022,
ACM

11. Boncz P, Neumann T, Erling O (2013) Tpc-h analyzed: Hidden
messages and lessons learned from an influential benchmark. In:
Revised Selected Papers of the 5th TPC Technology Conference
on Performance Characterization and Benchmarking, vol 8391.
Springer, Berlin, Heidelberg, pp 61–76 https://doi.org/10.1007/
978-3-319-04936-6_5

12. Brindescu C, Ahmed I, Jensen C, Sarma A (2020) An empirical in-
vestigation into merge conflicts and their effect on software quality.
Empir Softw Eng 25(1):562–590

13. Cafarella MJ, DeWitt DJ, Gadepally V, Kepner J, Kozyrakis C,
Kraska T, Stonebraker M, Zaharia M (2020) DBOS: A proposal
for a data-centric operating system. CoRR abs/2007.11112. https://
doi.org/10.48550/arXiv.2007.11112

14. Chakrabarti D, Zhan Y, Faloutsos C (2004) R-MAT: a recursive
model for graph mining. In: Berry MW, Dayal U, Kamath C, Skil-
licorn DB (eds) Proceedings of the Fourth SIAM International
Conference on Data Mining, Lake Buena Vista, Florida, USA,
April 22-24, 2004, SIAM, pp 442–446 https://doi.org/10.1137/1.
9781611972740.43

15. CohnM (2010) Succeeding with agile: Software development using
Scrum. Pearson Education

16. Colle R, Galanis L, Buranawatanachoke S, Papadomanolakis
S, Wang Y (2009) Oracle database replay. Proc VLDB Endow
2(2):1542–1545

17. Cooper BF, Silberstein A, Tam E, Ramakrishnan R, Sears R (2010)
Benchmarking cloud serving systems with YCSB. In: SoCC. ACM,
pp 143–154

18. Daly D (2021a) Creating a virtuous cycle in performance testing at
MongoDB. In: Proceedings of the ACM/SPEC International Con-
ference on Performance Engineering, Association for Computing
Machinery, New York, NY, USA, ICPE ’21, pp 33–41 https://doi.
org/10.1145/3427921.3450234

19. Daly D (2021b) Performance engineering and database develop-
ment at MongoDB. In: Companion of the ACM/SPEC International
Conference on Performance Engineering, Association for Comput-
ing Machinery, New York, NY, USA, ICPE ’21, p 129 https://doi.
org/10.1145/3447545.3451199

20. Danial A (2022) cloc: v1.93 https://doi.org/10.5281/zenodo.
5760077

21. Dann J, Ritter D, Fröning H (2020) Non-relational databases on
FPGAs: Survey, design decisions, challenges. CoRR abs/2007.
07595. https://doi.org/10.48550/arXiv.2007.07595

22. Deming WE (2000) Out of the crisis. MIT Press
23. Dijkstra EW (1972) Notes on structured programming. Academic

Press, New York, Boston, London, Oxford, pp 1–82
24. Heckmann D (2019) An analysis of flaky tests in SAP HANA (Mas-

ter’s Thesis). Master’s thesis, Heidelberg University, Heidelberg
25. Eck M, Palomba F, Castelluccio M, Bacchelli A (2019) Under-

standing flaky tests: The developers perspective. In: Proceedings of
the 2019 27th ACM Joint Meeting on European Software Enginee-
ring Conference and Symposium on the Foundations of Software
Engineering, Association for Computing Machinery, New York,
NY, USA, ESEC/FSE 2019, pp 830–840 https://doi.org/10.1145/
3338906.3338945

26. Engblom J (2012) A review of reverse debugging. In: Proceedings
of the 2012 System, Software, SoC and Silicon Debug Conference,
IEEE, IEEE Computer Society, Washington, DC, USA, pp 1–6

27. Erling O, Averbuch A, Larriba-Pey JL, Chafi H, Gubichev A, Prat-
Pérez A, Pham M, Boncz PA (2015) The LDBC social network
benchmark: Interactive workload. In: Sellis TK, Davidson SB, Ives
ZG (eds) Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, Melbourne, Victoria, Aus-
tralia, May 31 - June 4, 2015, ACM, pp 619–630 https://doi.org/
10.1145/2723372.2742786

28. Färber F, Cha SK, Primsch J, Bornhövd C, Sigg S, Lehner W
(2012a) SAP HANA database: Data management for modern busi-
ness applications. SIGMOD Rec 40(4):45–51. https://doi.org/10.
1145/2094114.2094126

29. Färber F, May N, Lehner W, Große P, Müller I, Rauhe H, Dees J
(2012b) The SAP HANA database – An architecture overview. Bull
Tech Comm Data Eng 35(1):28–33

30. Felderer M, Schieferdecker I (2014) A taxonomy of risk-based test-
ing. Int J Softw Tools Technol Transf 16(5):559–568

31. Galanis L, Buranawatanachoke S, Colle R, Dageville B, Dias K,
Klein J, Papadomanolakis S, Tan LL, Venkataramani V, Wang Y
et al (2008) Oracle database replay. In: Proceedings of the 2008
ACM SIGMOD international conference on Management of data,
pp 1159–1170

32. Git contributors (2022) Git distributed version control system.
Archived by Internet Archive at https://web.archive.org/web/
20220520221539/, https://git-scm.com/ from https://git-scm.com/.
Accessed 21.05.2022

33. Google Benchmark contributors (2022) Google benchmark – a mi-
crobenchmark support library. Archived by Internet Archive at
https://web.archive.org/web/20220509170729/, https://github.com/
google/benchmark from https://github.com/google/benchmark. Ac-
cessed: 09.05.2022

34. Greg Law SB (2018) Capturing bugs in extreme stress testing: Im-
proving software quality in SAP HANAwith Undo. In: Proceedings

K

https://web.archive.org/web/20220514124832/
https://web.archive.org/web/20220514124832/
https://news.ycombinator.com/item?id=18442941
https://news.ycombinator.com/item?id=18442941
https://news.ycombinator.com/item?id=18442941
https://news.ycombinator.com/item?id=18442941
https://archiv.ub.uni-heidelberg.de/volltextserver/31757/
https://archiv.ub.uni-heidelberg.de/volltextserver/31757/
https://doi.org/10.1109/ESEM.2017.44
https://doi.org/10.1109/ESEM.2017.44
https://doi.org/10.1109/ICSTW.2018.00076
https://doi.org/10.1109/ICSTW.2018.00076
https://doi.org/10.1109/ICSE-Companion.2019.00093
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.1007/978-3-319-04936-6_5
https://doi.org/10.48550/arXiv.2007.11112
https://doi.org/10.48550/arXiv.2007.11112
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1137/1.9781611972740.43
https://doi.org/10.1145/3427921.3450234
https://doi.org/10.1145/3427921.3450234
https://doi.org/10.1145/3447545.3451199
https://doi.org/10.1145/3447545.3451199
https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.5281/zenodo.5760077
https://doi.org/10.48550/arXiv.2007.07595
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/3338906.3338945
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/2094114.2094126
https://doi.org/10.1145/2094114.2094126
https://web.archive.org/web/20220520221539/
https://web.archive.org/web/20220520221539/
https://git-scm.com/
https://git-scm.com/
https://web.archive.org/web/20220509170729/
https://github.com/google/benchmark
https://github.com/google/benchmark
https://github.com/google/benchmark


Datenbank Spektrum (2022) 22:195–215 213

of the 7th International Workshop on Testing Database Systems,
DBTestSIGMOD 2018, ACM

35. Gruber M, Fraser G (2022) A survey on how test flakiness affects
developers and what support they need to address it https://doi.org/
10.48550/arXiv.2203.00483 (Tech. Rep. arXiv:2203.00483)

36. Henderson F (2017) Software engineering at Google. CoRR
abs/1702.01715. https://doi.org/10.48550/arXiv.1702.01715

37. Herbold S, Trautsch A, Ledel B, Aghamohammadi A, Ghaleb TA,
Chahal KK, Bossenmaier T, Nagaria B, Makedonski P, Ahmad-
abadi MN, Szabados K, Spieker H, Madeja M, Hoy N, Lenar-
duzzi V, Wang S, Rodríguez-Pérez G, Colomo-Palacios R, Verdec-
chia R, Singh P, Qin Y, Chakroborti D, Davis W, Walunj V, Wu H,
Marcilio D, Alam O, Aldaeej A, Amit I, Turhan B, Eismann S,
Wickert AK, Malavolta I, Sulir M, Fard F, Henley AZ, Kourtzani-
dis S, Tuzun E, Treude C, Shamasbi SM, Pashchenko I, Wyrich M,
Davis J, Serebrenik A, Albrecht E, Aktas EU, Strüber D, Erbel J
(2021) A fine-grained data set and analysis of tangling in bug fixing
commits. https://doi.org/10.48550/arXiv.2011.06244

38. Hightower K, Burns B, Beda J (2017) Kubernetes: Up and running
dive into the future of infrastructure, 1st edn. O’Reilly Media

39. Hipp R et al (2022) SQLite. Archived by Internet Archive at
https://web.archive.org/web/20220517192940/, https://www.sqlite.
org. Accessed: 18.05.2022

40. Huckle T, Neckel T (2019) Bits and bugs: A scientific and historical
review of software failures in computational science. Society for
Industrial and Applied Mathematics, Philadelphia https://doi.org/
10.1137/1.9781611975567

41. Ingo H, Daly D (2020) Automated system performance testing at
MongoDB. In: DBTestSIGMOD, pp 3:1–3:6

42. Inozemtseva L, Holmes R (2014) Coverage is not strongly cor-
related with test suite effectiveness. In: Proceedings of the 36th
International Conference on Software Engineering, ACM, New
York, NY, USA, ICSE 2014, pp 435–445 https://doi.org/10.1145/
2568225.2568271

43. ISO (2011a) Systems and software engineering – systems and soft-
ware quality requirements and evaluation (SQuaRE) – system and
software quality models. Tech. Rep. ISO/IEC 25010:2011. Interna-
tional Organization for Standardization, Geneva

44. ISO (2011b) Systems and software engineering – vocabulary. Tech.
Rep. ISO/IEC/IEEE 24765:2017. International Organization for
Standardization, Geneva

45. ISO (2015) Quality management systems – fundamentals and vo-
cabulary. Tech. Rep. ISO 9000:2015. International Organization for
Standardization, Geneva

46. Ivanković M, Petrović G, Just R, Fraser G (2019) Code coverage at
Google. In: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Association for Computing
Machinery, New York, NY, USA, ESEC/FSE 2019, pp 955–963
https://doi.org/10.1145/3338906.3340459

47. Jambigi N, Bach T, Schabernack F, Felderer M (2022) Automatic
error classification and root cause determination while replaying
recorded workload data at SAP HANA. In: Proceedings of the 14th
IEEE Conference on Software Testing, Verification and Validation
(ICST 2022) https://doi.org/10.48550/ARXIV.2205.08029

48. Kamsky A (2019) Adapting TPC-C benchmark to measure perfor-
mance of multi-document transactions in MongoDB. Proc VLDB
Endow 12(12):2254–2262

49. Kudrjavets G, Nagappan N, Rastogi A (2022) Do small code
changes merge faster? A multi-language empirical investigation
https://doi.org/10.48550/ARXIV.2203.05045

50. Kukunas J (2015) Power and performance: Software analysis and
optimization. Morgan Kaufmann

51. Lenz L, Felderer M, Schwedes S, Müller K (2020) Explainable pri-
ority assessment of software-defects using categorical features at
SAP HANA. In: Proceedings of the Evaluation and Assessment in

Software Engineering, Association for Computing Machinery, New
York, NY, USA, EASE ’20, pp 366–367 https://doi.org/10.1145/
3383219.3383268

52. Leskovec J, Sosic R (2016) SNAP: A general-purpose network
analysis and graph-mining library. ACM Trans Intell Syst Technol
8(1):1:1–1:20. https://doi.org/10.1145/2898361

53. Liu ZH, Lu J, Gawlick D, Helskyaho H, Pogossiants G, Wu Z
(2019) Multi-model database management systems - a look for-
ward. In: Gadepally V, Mattson T, Stonebraker M, Wang F, Luo
G, Teodoro G (eds) Heterogeneous data management, polystores,
and analytics for healthcare. Springer, Cham, pp 16–29

54. Machalica M, Samylkin A, Porth M, Chandra S (2019) Predictive
test selection. In: Proceedings of the 41st International Conference
on Software Engineering: Software Engineering in Practice, IEEE
Press, Piscataway, NJ, USA, ICSE-SEIP 2019, pp 91–100 https://
doi.org/10.1109/ICSE-SEIP.2019.00018

55. Marson RL, Jankowski E (2016) Build management with CMake.
In: Introduction to scientific and technical computing, pp 119–132

56. May N, Böhm A, Lehner W (2017) SAP HANA – the evolution of
an in-memory DBMS from pure OLAP processing towards mixed
workloads. In: Datenbanksysteme für Business, Technologie und
Web, Gesellschaft für Informatik, Bonn, Germany, BTW 2017, pp
545–563

57. Memon A, Nguyen B, Nickell E, Micco J, Dhanda S, Siemborski R,
Gao Z (2017) Taming Google-scale continuous testing. In: Proceed-
ings of the 39th International Conference on Software Engineering:
Software Engineering in Practice Track, IEEE Press, Washington,
DC, USA, ICSE-SEIP 2017, pp 233–242 https://doi.org/10.1109/
ICSE-SEIP.2017.16

58. MySQL contributors (2022) The MySQL test framework. Archived
by Internet Archive at https://web.archive.org/web/20220521164527/,
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_
TEST_RUN.html from https://dev.mysql.com/doc/dev/mysql-
server/latest/PAGE_MYSQL_TEST_RUN.html. Accessed: 21.05.
2022

59. Nethercote N, Seward J (2007) Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In: Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design
and Implementation, Association for Computing Machinery, New
York, NY, USA, PLDI ’07, pp 89–100 https://doi.org/10.1145/
1250734.1250746

60. OpenStreetMap contributors (2017) Planet dump retrieved from
https://planet.osm.org. https://www.openstreetmap.org. Accessed:
2017 and 2022

61. Orso A, Kennedy B (2005) Selective capture and replay of program
executions. Acm SIGSOFT Softw Eng Notes 30(4):1–7

62. Orso A, Rothermel G (2014) Software testing: A research travel-
ogue (2000–2014). In: Future of Software Engineering Proceed-
ings, Association for Computing Machinery, New York, NY, USA,
FOSE 2014, pp 117–132 https://doi.org/10.1145/2593882.2593885

63. Oukid I, Booss D, Lespinasse A, Lehner W, Willhalm T, Gomes G
(2017) Memory management techniques for large-scale persistent-
main-memory systems. Proc VLDB Endow 10(11):1166–1177

64. Paradies M, Kinder C, Bross J, Fischer T, Kasperovics R, Gildhoff
H (2017) Graphscript: Implementing complex graph algorithms
in SAP HANA. In: Rompf T, Alexandrov A (eds) Proceedings
of The 16th International Symposium on Database Programming
Languages, DBPL 2017, Munich, Germany, September 1, 2017,
ACM, pp 13:1–13:4 https://doi.org/10.1145/3122831.3122841

65. Park K, Jeong T, Jeong C, Lee J, Lee DH, Lee YK (2020) Proc-
Analyzer: Effective code analyzer for tuning imperative programs
in SAP HANA. In: Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, Association for
Computing Machinery, New York, NY, USA, SIGMOD ’20, pp
2709–2712 https://doi.org/10.1145/3318464.3384686

K

https://doi.org/10.48550/arXiv.2203.00483
https://doi.org/10.48550/arXiv.2203.00483
https://doi.org/10.48550/arXiv.1702.01715
https://doi.org/10.48550/arXiv.2011.06244
https://web.archive.org/web/20220517192940/
https://www.sqlite.org
https://www.sqlite.org
https://doi.org/10.1137/1.9781611975567
https://doi.org/10.1137/1.9781611975567
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/3338906.3340459
https://doi.org/10.48550/ARXIV.2205.08029
https://doi.org/10.48550/ARXIV.2203.05045
https://doi.org/10.1145/3383219.3383268
https://doi.org/10.1145/3383219.3383268
https://doi.org/10.1145/2898361
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1109/ICSE-SEIP.2019.00018
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://doi.org/10.1109/ICSE-SEIP.2017.16
https://web.archive.org/web/20220521164527/
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_MYSQL_TEST_RUN.html
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://planet.osm.org
https://www.openstreetmap.org
https://doi.org/10.1145/2593882.2593885
https://doi.org/10.1145/3122831.3122841
https://doi.org/10.1145/3318464.3384686


214 Datenbank Spektrum (2022) 22:195–215

66. Parry O, Kapfhammer GM, Hilton M, McMinn P (2021) A survey
of flaky tests. ACM Trans Softw Eng Methodol 31(1):17:1–17:74.
https://doi.org/10.1145/3476105

67. Patel B, Palekar A, Shiralkar S (2010) A practical guide to SAP
netweaver business warehouse (BW) 7.0. Galileo

68. PostgreSQL 14 contributors (2022) PostgreSQL 14 regression
tests. Archived by Internet Archive at https://web.archive.org/
web/20220521163923/, https://www.postgresql.org/docs/current/
regress.html from https://www.postgresql.org/docs/current/regress.
html. Accessed: 21.05.2022

69. Ramanathan MK, Clapp L, Barik R, Sridharan M (2020) Piranha:
Reducing feature flag debt at uber. In: 2020 IEEE/ACM 42nd Inter-
national Conference on Software Engineering: Software Enginee-
ring in Practice (ICSE-SEIP), pp 221–230

70. Rehmann KT, Folkerts E (2018) Performance of containerized da-
tabase management systems. In: Proceedings of the Workshop on
Testing Database Systems, Association for Computing Machinery,
New York, NY, USA, DBTest’18 https://doi.org/10.1145/3209950.
3209953

71. Rehmann KT, Seo C, Hwang D, Truong BT, Boehm A, Lee DH
(2016) Performance monitoring in SAP HANA’s continuous inte-
gration process. SIGMETRICS Perform Eval Rev 43(4):43–52

72. Reinders J (2005) VTune performance analyzer essentials vol 9.
Intel, Santa Clara

73. SAP employees and others (2022) Scientific publications and activ-
ities of the SAP HANA database. Archived by Internet Archive
at https://web.archive.org/web/20220521194026/, https://wiki.
scn.sap.com/wiki/pages/viewpage.action?pageId=448477861 from
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=
448477861. Accessed: 21.05.2022

74. Scheuer T, May N, Böhm A, Scheibli D (2016) JexLog: A sonar for
the abyss. Proc VLDB Endow 9(13):1493–1496. https://doi.org/10.
14778/3007263.3007292

75. Seltenreich A, Bo T, Mullender S, SQLsmith contributors (2022)
SQLsmith. Archived by Internet Archive at https://web.archive.org/
web/20220522152342/, https://github.com/anse1/sqlsmith from
https://github.com/anse1/sqlsmith. Accessed: 22.05.2022

76. Serebryany K, Iskhodzhanov T (2009) ThreadSanitizer: Data race
detection in practice. In: Proceedings of the Workshop on Binary
Instrumentation and Applications, Association for Computing Ma-
chinery, New York, NY, USA, WBIA ’09, pp 62–71 https://doi.org/
10.1145/1791194.1791203

77. Serebryany K, Bruening D, Potapenko A, Vyukov D (2012) Ad-
dressSanitizer: A fast address sanity checker. In: Proceedings of
the 2012 USENIX Conference on Annual Technical Conference,
USENIX Association, USA, USENIX ATC’12, p 28

78. Sherkat R, Florendo C, Andrei M, Blanco R, Dragusanu A, Pathak
A, Khadilkar P, Kulkarni N, Lemke C, Seifert S, Iyer S, Gottapu S,

Schulze R, Gottipati C, Basak N,Wang Y, Kandiyanallur V, Pendap
S, Gala D, Almeida R, Ghosh P (2019) Native store extension for
SAP HANA. Proc VLDB Endow 12(12):2047–2058

79. Smart JF (2011) Jenkins: the definitive guide. O’Reilly Media
80. Smith L (2001) Shift-left testing. Dr Dobb’s J 26(9):56
81. Society IC, Bourque P, Fairley RE (2014) Guide to the software

engineering body of knowledge (SWEBOK), 3rd edn. IEEE Com-
puter Society, Los Alamitos

82. Sprenkle S, Gibson E, Sampath S, Pollock L (2005) Automated re-
play and failure detection for web applications. In: Proceedings of
the 20th IEEE/ACM international conference on automated soft-
ware engineering, pp 253–262

83. Stepanov E, Serebryany K (2015) MemorySanitizer: Fast detector
of uninitialized memory use in C++. In: 2015 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO),
pp 46–55 https://doi.org/10.1109/CGO.2015.7054186

84. Undo (2020) UndoDB – an interactive reverse debugger for
C/C++. Archived by Internet Archive at https://web.archive.
org/web/20200110153106/, https://undo.io/solutions/products/
live-recorder/ from https://undo.io/products/undodb/. Accessed:
10.01.2021

85. Wang Y, Buranawatanachoke S, Colle R, Dias K, Galanis L, Pa-
padomanolakis S, Shaft U (2009) Real application testing with da-
tabase replay. In: Proceedings of the Second International Work-
shop on Testing Database Systems, pp 1–6

86. Winslett M, Braganholo V (2019) Richard Hipp speaks out
on SQLite. SIGMOD Rec 48(2):39–46. https://doi.org/10.1145/
3377330.3377338

87. Winters T, Manshreck T, Wright H (2020) Software engineering
at Google: Lessons learned from programming over time. O’Reilly
media

88. Wuensche T, Andrzejak A, Schwedes S (2020) Detecting higher-or-
der merge conflicts in large software projects. In: 2020 IEEE 13th
International Conference on Software Testing, Validation and Veri-
fication (ICST), IEEE, pp 353–363

89. xUnit XML Format contributors (2022) xUnit.net v2 XML for-
mat. Archived by Internet Archive at https://web.archive.org/
web/20220522165035/, https://xunit.net/docs/format-xml-v2 from
https://xunit.net/docs/format-xml-v2. Accessed: 22.05.2022

90. Yan J, Jin Q, Jain S, Viglas SD, Lee A (2018) Snowtrail: Testing
with production queries on a cloud database. In: Proceedings of the
Workshop on Testing Database Systems, pp 1–6

91. Yoo H, Hong J, Bader L, Hwang DW, Hong S (2021) Improv-
ing configurability of unit-level continuous fuzzing: An industrial
case study with SAP HANA. In: 2021 36th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE), pp
1101–1105 https://doi.org/10.1109/ASE51524.2021.9678685

K

https://doi.org/10.1145/3476105
https://web.archive.org/web/20220521163923/
https://web.archive.org/web/20220521163923/
https://www.postgresql.org/docs/current/regress.html
https://www.postgresql.org/docs/current/regress.html
https://www.postgresql.org/docs/current/regress.html
https://www.postgresql.org/docs/current/regress.html
https://doi.org/10.1145/3209950.3209953
https://doi.org/10.1145/3209950.3209953
https://web.archive.org/web/20220521194026/
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=448477861
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=448477861
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=448477861
https://wiki.scn.sap.com/wiki/pages/viewpage.action?pageId=448477861
https://doi.org/10.14778/3007263.3007292
https://doi.org/10.14778/3007263.3007292
https://web.archive.org/web/20220522152342/
https://web.archive.org/web/20220522152342/
https://github.com/anse1/sqlsmith
https://github.com/anse1/sqlsmith
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1145/1791194.1791203
https://doi.org/10.1109/CGO.2015.7054186
https://web.archive.org/web/20200110153106/
https://web.archive.org/web/20200110153106/
https://undo.io/solutions/products/live-recorder/
https://undo.io/solutions/products/live-recorder/
https://undo.io/products/undodb/
https://doi.org/10.1145/3377330.3377338
https://doi.org/10.1145/3377330.3377338
https://web.archive.org/web/20220522165035/
https://web.archive.org/web/20220522165035/
https://xunit.net/docs/format-xml-v2
https://xunit.net/docs/format-xml-v2
https://doi.org/10.1109/ASE51524.2021.9678685


Datenbank Spektrum (2022) 22:195–215 215

Affiliations

Thomas Bach1,2 · Artur Andrzejak2 · Changyun Seo1 · Christian Bierstedt1 · Christian Lemke1 · Daniel Ritter1 ·
DongWon Hwang1 · Erda Sheshi1 · Felix Schabernack1 · Frank Renkes1 · Gordon Gaumnitz1 · Jakob Martens1 ·
Lars Hoemke1 · Michael Felderer3 · Michael Rudolf1 · Neetha Jambigi3 · Norman May1 · Robin Joy1 ·
Ruben Scheja1 · Sascha Schwedes1 · Sebastian Seibel1 · Sebastian Seifert1 · Stefan Haas1 · Stephan Kraft1 ·
Thomas Kroll1 · Tobias Scheuer1 · Wolfgang Lehner4

Artur Andrzejak
artur.andrzejak@uni-heidelberg.de

Changyun Seo
changyun.seo@sap.com

Christian Bierstedt
christian.bierstedt@sap.com

Christian Lemke
christian.lemke@sap.com

Daniel Ritter
daniel.ritter@sap.com

Dong Won Hwang
dong.won.hwang@sap.com

Erda Sheshi
erda.sheshi@sap.com

Felix Schabernack
felix.schabernack@sap.com

Frank Renkes
frank.renkes@sap.com

Gordon Gaumnitz
gordon.gaumnitz@sap.com

Jakob Martens
jakob.martens@sap.com

Lars Hoemke
lars.hoemke@sap.com

Michael Felderer
michael.felderer@uibk.ac.at

Michael Rudolf
michael.rudolf01@sap.com

Neetha Jambigi
neetha.jambigi@student.uibk.ac.at

Norman May
norman.may@sap.com

Robin Joy
robin.joy@sap.com

Ruben Scheja
ruben.scheja@sap.com

Sascha Schwedes
sascha.schwedes@sap.com

Sebastian Seibel
sebastian.seibel@sap.com

Sebastian Seifert
sebastian.seifert@sap.com

Stefan Haas
stefan.haas@sap.com

Stephan Kraft
stephan.kraft@sap.com

Thomas Kroll
thomas.kroll@sap.com

Tobias Scheuer
tobias.scheuer@sap.com

Wolfgang Lehner
wolfgang.lehner@tu-dresden.de

1 SAP, Walldorf, Germany

2 Heidelberg University, Heidelberg, Germany

3 University of Innsbruck, Innsbruck, Austria

4 TU Dresden, Dresden, Germany

K

http://orcid.org/0000-0002-9993-2814

	Testing Very Large Database Management Systems: The Case of SAP HANA
	Abstract
	Introduction
	Overview
	The Size of a Very Large Project
	Historical Development
	Quality
	Test Dimensions
	Bug Handling
	Risk-Based Quality Assurance

	People Perspective
	Quality Culture
	Developer
	Architect
	Manager

	Pre‑/Post-Submit Testing
	Pre-Submit Testing
	Post-Submit Testing

	Continuous Test Activities
	CI Tooling
	Code Coverage
	Customer Scenario Testing
	Logs, Traces, and Debugging
	Malfunction Testing
	Qualification of Internal Systems
	Performance Testing
	Multi-Modal Testing
	Randomized Testing
	Security Testing

	SAP HANA Cloud
	Infrastructure Test Strategy
	Feature Toggles
	SAP HANA Stages

	Challenges
	Overview
	Test Costs
	Flaky Tests

	Conclusion
	References


