
SCHWERPUNKTBEITRAG

https://doi.org/10.1007/s13222-019-00329-4
Datenbank Spektrum (2019) 19:209–218

Lock-free Data Structures for Data Stream Processing

A Closer Look

Alexander Baumstark1 · Constantin Pohl1

Received: 30 May 2019 / Accepted: 4 October 2019 / Published online: 27 October 2019
© Gesellschaft für Informatik e.V. and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Processing data in real-time instead of storing and reading from tables has led to a specialization of DBMS into the
so-called data stream processing paradigm. While high throughput and low latency are key requirements to keep up
with varying stream behavior and to allow fast reaction to incoming events, there are many possibilities how to achieve
them. In combination with modern hardware, like server CPUs with tens of cores, the parallelization of stream queries for
multithreading and vectorization is a common schema. High degrees of parallelism, however, need efficient synchronization
mechanisms to allow good scaling with threads for shared memory access.In this work, we identify the most time-consuming
operations for stream processing exemplarily for our own stream processing engine PipeFabric. In addition, we present
different design principles of lock-free data structures which are suited to overcome those bottlenecks. We will finally
demonstrate how lock-freedom greatly improves performance for join processing and tuple exchange between operators
under different workloads. Nevertheless, the efficient usage of lock-free data structures comes with additional efforts and
pitfalls, which we also discuss in this paper.
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1 Introduction

The data stream processing paradigm is in the ascendant
today since more and more applications require online and
real-time processing of their data. Examples are Internet-of-
Things devices communicating with each other, the analy-
sis of social media networks, or autonomous stock trading.
Stream processing engines (SPEs) like Apache Flink [1],
Apache Spark Streaming [24], or StreamBox [14] deal with
those applications by providing operators as well as an in-
terface to write queries. The efficient utilization of hardware
during query execution is usually hidden from the user.
An optimizing component scales out operations and rear-
ranges operators for better performance. The parallelization
of operators is mostly realized by multi-threading, where
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threads share their work to compute query results. Some
data structures are inevitably shared between them, for ex-
ample, a hash table of a join operation or a queue for win-
dow semantics. The usage of locks is a common way to
deal with simultaneous access to data structures. But even
for lightweight locking, where, e.g., a bucket is locked in-
stead of the whole hash table, locks suffer from problems
like deadlocks, livelocks, or priority inversion. This lim-
its the degree of parallelism and thus, the scalability of
a query [23].

An alternative to locks are lock-free synchroniza-
tion mechanisms for threads. Lock-free synchronization
guarantees that at least one thread makes progress, with
a more fine-grained classification of algorithms into lock-
free, wait-free, and obstruction-free synchronization. This
paradigm shines in cases where thread contention is low,
but even for higher contention, lock-free algorithms provide
reliable performance at the expense of additional program-
ming complexity. Modern DBMS already utilize lock-
free algorithms, like MemSQL [13] or RethinkDB [18].
Available libraries of lock-free data structures also pro-
vide a broad range of algorithms and data structures with
properties that fit perfectly to the area of stream processing.
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In this paper, we focus on the main bottleneck for paral-
lel stream processing, namely joins of data streams and the
tuple exchange between threads. In our SPE PipeFabric1,
this exchange is realized by a queue operation that acts as
a buffer. The current implementation uses locks for syn-
chronized accesses like reads and writes. Locks are also
used for the stream join operation, namely the Symmetric
Hash Join (SHJ), where the hash tables are locked for syn-
chronization. The goal of this work is to examine whether
or not the benefits of lock-free synchronization can be ob-
tained for stream queries. Therefore, we implement and
explore different lock-free data structures in PipeFabric,
showing worst-case and average-case performance. Further-
more, this work proposes a lock-free data structure design,
equivalent to the hashmap currently used for the SHJ al-
gorithm. The resulting algorithm is compared with another
lock-based implementation, using an optimized data struc-
ture for shared memory access. Since Pipefabric is based
on state-of-the-art algorithms and data streaming concepts,
these results can also be transferred to other SPEs.

To summarize, this work provides the following contri-
butions:

1. An improved tuple exchange algorithm for PipeFabric
with lock-free synchronization.

2. A lock-free hash map design that supports multiple ele-
ments having an equivalent key (called multimap).

3. An improvement of scalability and performance for the
SHJ algorithm with lock-free synchronization.

4. An experimental evaluation and demonstration of the
proposed structures and algorithms.

2 Data StreamProcessing

Data streams are infinite flows of data in form of tuples.
Storing them for later processing is often, therefore, no real
option. A common way to deal with infinite streams are
window operators that keep track of recently received tu-
ples, to delete them when they get outdated after a while.
There are different window semantics, like sliding windows
or tumbling windows, and also eviction strategies, e.g., in-
validating tuples by time or number. Aggregates are then
calculated only on tuples inside of that window instead of
the whole tuple sequence, saving memory and instructions.
For the later experiments in this paper, we use a tuple-
based sliding window. Stream queries are often realized as
a directed dataflow graph, where operators are connected to
their predecessor and successor. An operator then receives
tuples from the previous operator, applies its function on
it, and forwards the result to the next operator. Most of the

1 Open-source, https://github.com/dbis-ilm/pipefabric.

Fig. 1 SHJ algorithm

SPEs use asynchronous pipelines, distributed over differ-
ent threads, to execute operations. To pass tuples from one
thread to another, explicit tuple exchange is needed. Com-
mon approaches use single-producer and single-consumer
queues to realize this operation.

A commonly used join algorithm in data stream process-
ing is the SHJ which is also available on relational database
systems. The SHJ algorithm generates results continuously
while tuples arrive from the input streams. Figure 1 sketches
the algorithm with two data streams sliced into windows
and joined, finally, into a single, consistent stream.

The SHJ algorithm processes two input streams denoted
as left and right input. After each arrival of a tuple, either
on the left or the right input, it is inserted in the corre-
sponding table, realized as a hash map. In the next step, the
currently inserted element is probed for a match against the
elements from the other hash map. The matches are joined
as new tuples and forwarded to the following operator after
the SHJ. If a tuple becomes outdated due to the window se-
mantics, it is deleted from the hash map accordingly. Two
hash maps are mandatory in the SHJ for the left and right
stream. A further requirement is that the data structure must
support duplicate keys. Therefore, the buckets of the hash
map must be able to hold multiple elements and the prob-
ing also has to iterate through all available elements in the
bucket.

2.1 PipeFabric

Since this paper uses PipeFabric as SPE for our measure-
ments, we give a short overview of its design decisions.
It is an open-source SPE, written in C++ by the Database
and Information Systems Group at the TU Ilmenau. It sup-
ports different network protocols like ZeroMQ, MQTT, or
AMQP, and can get tuples from Apache Kafka servers or
RabbitMQ. To support multi-core CPUs, a partition opera-
tor can split the data stream in such a way that each parti-
tioned stream can be processed by individual threads con-
currently. Partitions can then be merged into a single stream
again. Elements of data streams are represented in PipeFab-
ric as a tuple data structure with low-overhead pointers on
them. These tuples can be processed by several operations,
like selections and projections, joins, groupings, or aggre-
gations. Another component of PipeFabric is the topology,
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an interface for the data stream processing pipelines, similar
to the implementation from Apache Spark.

In this work, we focus on the queue and SHJ opera-
tor, since both have a high potential for performance ad-
vantages through lock-free data structures. Currently, the
queue operation for tuple exchange between threads en-
sures thread-safety and consistency with locks on each ac-
cess. The queue data structure follows the implementation
of the queue from the C++ standard library (STL). The hash
tables for the SHJ use the unordered multimap implemen-
tation from STL, which contains key-value pairs similar to
unordered maps, but with the addition of duplicate keys.
Internally, the structure of the multimap is a hash map,
supporting iterator forwarding with average constant-time
complexity. Thread-safety in a concurrent execution is guar-
anteed with mutual exclusions, where each operation on the
data structure is protected with a lock.

2.2 Related Work for Stream Processing

The SHJ algorithm belongs to the first published join al-
gorithms in stream processing [22]. A disadvantage in the
conventional concurrent implementation is that the whole
hash map or every single bucket has to be locked to obtain
consistency. Synchronization of database operations under
high contention by using a many-core CPU has gained re-
search interest in recent years. Cheng et al. [2] investigated
the state of the art hash join algorithms for main memory
databases and their performance on the Xeon Phi Knights
Landing (KNL) architecture. Makreshanski et al. [12] cre-
ated a method for sharing joins for highly concurrent work-
loads and their performance impact when executing in main
memory. In contrast, the present work is focussed on opti-
mizing the concurrency and algorithmic aspects of stream
processing algorithms, especially on the tuple exchange and
SHJ. Main memory and instruction-level optimization is
not part of this work. The paper from Zeuch et al. [25]
looked into the current state-of-the-art of SPEs and the re-
sulting performance on modern hardware. They evaluated
also lock-free data structures for tuple exchanging, but with
the goal of bottleneck identification in different SPEs. Con-
trarily, this paper is focussed on the SPE PipeFabric and
adapts lock-free design principles not only to the tuple ex-
change algorithm but also to the SHJ algorithm.

3 Lock-free Data Structures

A data structure is a collection of data, providing efficient
mechanisms to add, modify, read, or delete entries. The
linked list is a linear collection of elements, organized as
nodes, and is useful for storing data dynamically. Each node
points to its successor and possibly to its predecessor, de-

pending on the actual implementation (singly or doubly
linked list). Additionally, a linked list manages pointers to
the first and last node. A lookup for an element can be
made by simply traversing through the next pointers. To in-
sert a new element, a new node must be allocated. This new
node can be either added to the end of the list (by adding it
to the next pointer of the last element) or added to the begin-
ning of the list (by adding the current first node to the next
pointer of the new node). First-node and last-node pointers
of the linked list must be refreshed. This scheme can also
be applied to the delete operation. Additional pointers (also
called express lanes) to other parts of the list can be im-
plemented for fast access, leading to the concept of a skip
list.

The queue data structure can be implemented like
a linked list described previously, with the difference
that elements are always added (pushed) to the end of the
list. The pop operation is called to retrieve and delete an el-
ement, which returns the oldest element in the queue being
removed afterward (first-in, first-out principle). Circular
arrays (ring buffers) can also be used to implement queues.
The successor of the last index element is the first element
of the array. A pointer indicates the current position of
the top element. The disadvantage of a circular buffer is
the limitation in size, whereas the linked list can grow
dynamically.

Another data structure next to queues used in this work
is the hash map. The hash map is an array structure that
maps keys to values. To enable fast access to its values,
a hash function is used. The hash function computes the
index element for a key to a specific bucket that contains
a value. If duplicate keys are allowed, the structure is called
a multimap, like the unordered multimap in the C++ STL.
Each key is ideally mapped into a unique index element
in the array. A collision occurs when the hash function
computes the same index for multiple different keys. There
exist several strategies for handling a hash collision. The
used hash map implementation avoids collision by adding
multiple keys with the same hash value to the same list.

3.1 Design Principles of Lock-free Data Structures

The conventional way to synchronize data structures is to
use locks and mutual exclusions. Lock-free synchroniza-
tion takes another approach and uses atomic operations,
memory barriers, and fences to synchronize and guarantee
consistency. Atomic operations are indivisible and uninter-
ruptible instructions [8]. These operations can be compared
with transactions from a DBMS. Transactions follow the
ACID property [6], which can be adapted to atomic oper-
ations. With respect to this property, a thread can not ob-
serve another thread during an atomic operation, only the
state before or after its execution. These instructions are the
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Listing 1 A lock-free pop operation

points where the action of operation takes place, also called
linearization points. An example is given in Listing 1 for
a pop operation on a stack.

The actual pop operation takes places in line 6. Due to
these properties, synchronization can be done without the
usage of locks. There are two classes of atomic operations:
The first is the class of atomic read and write operations.
The other class is for complex atomic read-modify-write op-
erations, like compare-and-swap (CAS) or fetch-and-add.
An equivalent instruction (pair) to CAS for Load/Store ar-
chitectures is load-linked/store-conditional (LL/SC). The
consensus number of the CAS operation is unbounded with
the consequence that CAS can implement all other atomic
operations [9]. CAS takes three arguments: a memory loca-
tion, the expected value of the memory location, and a new
value. Only if the value of the memory location matches the
expected value, the new value will be stored in that mem-
ory location. If CAS is successfully executed, it returns true,
otherwise false. The failure of a CAS operation indicates
that a thread changed the value in the interim, leading to
a mismatch of the expected value compared to the value at
the memory location. As a consequence, the CAS operation
must be restarted to obtain progress and finish the task.

3.2 Common Pitfalls

A common technique is to execute the CAS operation (with
refreshed expected values) within a loop until it is success-
ful [20], as seen in Listing 1. Additional consistency checks
before an atomic operation can reduce the number of failed
operations. For instance, it is useful to check if the current
object on which a CAS should be executed is valid (or null)
before executing the CAS operation. If it is not valid, the
operation can be restarted before the CAS is tried. Similar
to the back-off strategies of network protocols that serve to
limit the rate of retransmission, back-off strategies can be
used to limit the rate of failed CAS operations. The reason
for using a back-off strategy is that a high rate of succes-
sively failed CAS operations causes unnecessary CPU time,
which could be used by other threads to achieve progress.

This effect can be observed while executing lock-free al-
gorithms with high numbers of threads. Consequently, the
use of a suitable back-off strategy, for instance, a simple
waiting strategy, can increase the performance [11].

Another problem in the context of CAS and lock-free
synchronization is known as the ABA problem. It is de-
fined as a false-positive execution of a CAS-based opera-
tion through an unobserved change of a memory location in
the interim [3]. A CAS operation cannot consider a change
from the value A to B and back to A. Therefore, the CAS
operation falsely executes its swap and returns true. Con-
sider a lock-free stack with pop operations implemented
with CAS, as in Listing 1, and the initial values (starting
with the top pointer) A, B, C. Thread 1 tries to pop an
element from the stack and gets interrupted by thread 2
just before the execution of CAS (line 6). Thread number
2 pops the top element A and also the following top ele-
ment B. After that, thread 2 pushes an element A back to
the stack. The stack now contains the elements A and C.
When thread 1 resumes its work, the CAS operation will
be successful, despite the change in the interim. Applying
the ABA problem to stream processing, this behavior can
lead to inconsistency and wrong results. An efficient and
simple solution is to use tagged pointers [17]. After each
successful CAS operation, the tag of the pointer is incre-
mented. Thus, each modification is visible and is tracked
automatically. Other approaches use reference counters [20]
or hazard pointers [16].

3.3 Related Work for Lock-free Data Structures

One of the lock-free data structures proposed at first is
known as Treibers stack [19]. This design uses the CAS
operation to implement concurrent stack operations and
is the fundament for almost all subsequently proposed
lock-free data structures. Another classical lock-free de-
sign implemented in a variety of libraries and systems is
known as the (multi-producer, multi-consumer) Michael-
and-Scott queue [17]. Single-producer and single-consumer
queues are also widely implemented in multi-threading li-
braries, for example, by Threading Building Blocks from
Intel (TBB)2, Facebook Folly3, or by C++ Boost libraries4.
These implementations are based on lock-free ring buffer
data structures and achieve fast execution performance.
In the next section, they are used for the tuple exchange
algorithm. Join operations in stream processing use hash
maps to probe their entries against others to find a match.
Several lock-free designs exist for hash maps, like the hash
map by Feldman et al. [4] based on multi-level arrays or by

2 https://www.threadingbuildingblocks.org/.
3 https://github.com/facebook/folly.
4 https://www.boost.org.
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Fig. 2 Structure of the proposed lock-free unordered multimap. The hash map consists of an array of lock-free linked lists. Elements with the
same hash value are appended as node (called hash node) to the appropriate list. For instance, the keys 5, 15 and 20 are mapped to the same bucket.
Each hash node contains a pointer to a further linked list (the actual bucket) that contains the elements with the same key as the hash node

Michael [15] based on linked lists. Some ideas from these
lock-free hash maps flow in the design of the proposed
approach of this paper.

4 Lock-free Data StreamProcessing

This section describes our approach to add lock-free data
structures to our SPE PipeFabric, with a focus on the queue
and SHJ operator.

4.1 The QueueOperator

As already described, the queue acts as a buffer between
threads running operators of a stream query. The publisher
thread pushes the results of its subquery into the queue
and notifies the subscriber, which takes them out of the
queue for further computations. The switch from a lock-
based queue to one of the lock-free implementations can
be done by adapting the queue access interface correspond-
ingly. For later experiments, we use lock-free queue imple-
mentations from Intel TBB, the Boost library, and Facebook
Folly, as mentioned in previous Sect. 3.3.

4.2 The SHJ Operator

The lock-free SHJ provides more challenges to solve. This
is based on the fact that the bucket structure allows duplicate
keys. A lock-free hash map with this bucket property needs
a combination of data structures for the hash map itself and
its bucket structure. The following lock-free hash map and
bucket implementations are based on the lock-free linked
list structure from Harris [7]. A reason for using linked
lists to implement a hash map is the avoidance of complex
collision handling algorithms that reduces the throughput
(for instance, due to multiple hashing).

Lock-free Hash Map. The hash map itself is an array
of n lists, where n is the size of the hash map with the hash

function h.x/ = x mod n. Consistency and thread-safety of
the array structure are guaranteed with pre-initialization of
each field with the linked list structure.

Lock-free Linked Lists. Each node of the list consists of
a key, a value, and a pointer to the next node. A key makes it
possible to distinguish between entries located at the same
index reference. To insert a new element, the insert opera-
tion computes the hash of the key to find the corresponding
list within the array. Then, the new element is inserted into
the bucket structure of the node with the corresponding key.
Find hashes the key, iterates through the corresponding list,
compares each key, and returns a pointer to the bucket if
the key is found successfully.

The lock-free insert operation of the linked list works
as follows. First, a new node is allocated with the key and
value. Then, the operation searches for the particular ap-
propriate predecessor and successor node (the new key is
inserted between two other keys), which are not logically
marked for deletion yet. A deletion with CAS can be done
by connecting the predecessor node to the successor node,
handled by the next pointer references. The marked node is
now disconnected from the list. To find the predecessor, the
search operation starts iterating from the head until a key
is found that is greater than the searched key. The succes-
sor is the next node of the found predecessor. If the tail
is reached, the new node can be inserted to the end of the
list, executing a CAS operation on the next pointer of the
last node (expecting the returned tail pointer of the search
operation). Otherwise, the operations continue to check if
the two found nodes are adjacent. The operation is tried
again if they are not adjacent, which means that another
thread inserted a new node in the meantime during this
search. Otherwise, the left and right nodes are returned to
the insert operation. Then, the new node is inserted between
the returned nodes. When the CAS operation fails (mean-
ing another thread inserted or deleted a node) the operation
must be started again from the beginning. The bucket struc-
ture is based on the same lock-free linked list structure, but
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Fig. 3 Tuple exchange algo-
rithm based on blocking and
lock-free queues with maximum
(unbounded) and fixed size of
1024 tuples (bounded)

with the addition of an atomic size counter that increments
on each insertion with an atomic fetch-and-add operation.
A new element is inserted into the list with the current
value of the size counter as its key (see Fig. 2). The gen-
eral behavior of this lock-free design (referred to as LF-
LL for the experiments) corresponds to the STL unordered
multimap structure. Equivalent implementations based on
lock-free skip lists by Herlihy and Shavit [10] (named LF-
SL) and a blocking implementation based on the unordered
multimap from Intel TBB (named FL-UM) are used for
a comparison in performance.

5 Experimental Evaluation

In this section, we evaluate our proposed approach with
lock-free data structures. We will first specify the hardware
and software used. Afterward, we describe our test cases
to measure the tuple exchange mechanisms as well as the
SHJ performance. We show the impact of different key
distributions as well as time spent in different join phases,
concluding with a discussion of our results.

5.1 Setup

For the measurements done in this section, an Intel Xeon
Phi KNL 7210 processor is used. It has 64 cores with four
threads per core due to hyperthreading, limiting threads run-
ning in parallel to 256. The base frequency of the KNL runs
on 1.3 GHz and can be boosted up to 1.5 GHz (turbo). Each
core owns an L1 cache of 32 kB and shares an L2 cache
of 1 MB with one other core. This hardware setup allows
running experiments for high scalability and concurrency
at the same time. The Intel compiler version 17.0.6 is used
because it offers better results in our scenario compared
with the GNU compiler. Additionally, the code is com-
piled with the supported AVX-512 instruction set enabled
(auto-vectorization), but without further code optimizations

with vector intrinsics. The SPE is the previously described
PipeFabric.

5.2 Tuple Exchange

In the first experiment, the current queue data structure in
PipeFabric with locks for tuple exchange is compared to
equivalent lock-free variants from the C++ Boost libraries,
Intel TBB, and Facebook Folly. For the first scenario, the
producer and consumer thread have to process and ex-
change five million tuples to simulate an unbounded sit-
uation.

Unbounded in this context means that the queue size is
set to the maximum possible size. In the second scenario,
the size of the lock-free queues is reduced to 1024 elements
to show worst-case results for a slow consumer. A naïve
waiting back-off strategy is used in case of a full or empty
queue. The results in Fig. 3 show that the non-blocking
queues outperform the current lock-based implementation
from PipeFabric. Each thread in the blocking data struc-
ture is executing its operation alternately in a way that no
real parallel execution is possible. The amount of time that
a thread has to wait for an unlock of the critical section re-
mains unused. The non-blocking implementations use fast
atomic load and store instructions, the Boost and Facebook
Folly implementations are even wait-free. The fine-grained
lock queue from Intel TBB is in the medium performance
range in this experiment. A slow consumer can decrease the
overall performance but is still faster than the blocking ap-
proach. This experiment clearly shows that lock-free queues
improve the tuple exchanging procedure significantly.

5.3 The SHJ

This experiment compares the blocking and non-blocking
approaches for the SHJ. For this purpose, two tuple gen-
erators publish tuples into the left and right stream. An
SHJ operation is performed with sliding windows on both
streams. The experiment measures the execution time of
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Fig. 4 SHJ experiment with different key distributions. The linear key distribution sends keys in an ascending order to the stream. The random
key distribution includes 50% equal keys. The random same-key distribution includes 90% equal keys

the concurrent SHJ (with up to 256 threads) with uniformly
distributed tuples. Additionally, this experiment is repeated
with different key distributions to analyze the best case (lin-
ear same-keys), worst-case (randomized same-keys) behav-
ior and a tradeoff between these two (randomized key). The
experiments will be carried out with the following blocking
and non-blocking data structures for the SHJ:

1. ML-UM: Mutex Locking based on the Unordered
Multimap of C++ STL.

2. LF-LL: Lock-Free hash map based on Linked Lists
3. FL-UM: Fine-Grained locking based on Intel TBB

UnorderedMultimap.
4. LF-SL: Lock-Free hash map based on Skip Lists.

The results of the measurements found in Fig. 4 clearly
show that all approaches differ in performance. When ap-
plying the execution with a lower thread number (up to 16
threads), the blocking multimap (ML-UM) is slightly faster
than the lock-free structures, except for the random same-
key distribution.

Fig. 5 In-depth experiment with the lock-free and fine-grained locking SHJ and different key distributions

The reason for this lies in the implementation of the lock-
free hash maps. A lock-free insert operation needs, in gen-
eral, more instructions than an equivalent lock-based imple-
mentation, because it operates within a loop with a CAS. An
insert operation needs possibly more attempts (perhaps mul-
tiple restarts of the whole operation, dropping the achieved
progress) to add an element into the lists, because CAS may
fail, unlike the lock-based approach. However, with the in-
creasing number of threads, the execution time of the block-
ing approach (ML-UM) rises, whereas the execution time
of the linked list based implementation (LF-LL) remains on
a constant level. The LF-LL implementation can guarantee
that at least one thread makes progress, resulting in a higher
degree of parallelism and throughput. A performance drop
can be observed in the random same-key distribution. In
this key distribution, the hash maps must handle more con-
flicts than in other key distributions (growing linked lists,
in case of the lock-free approaches). The execution time
increases for the Pipefabric blocking approach, due to the
reason that only one thread can handle a collision, whereas
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the execution time drops with higher thread numbers for
the lock-free and fine-grained implementation.

The reason for the poor performance of the skip-list-
based structure (LF-SL) lies in the probabilistic behavior:
higher levels (express lanes) are created randomly. Conse-
quently, the threads can not take full advantage of these.
At higher numbers of threads, this implementation scales
similar to the linked list structure, because these additional
layers are created by multiple threads. This approach is not
recommended for practical usage due to additional over-
head for higher layers and is just shown for comparison.

Another observation is that an optimized solution with
fine-grained locks achieves the same or even better perfor-
mance results than a lock-free implementation (see Fig. 5).
Due to the reason that this design uses short critical sections,
it achieves a similar degree of parallelism and throughput.

5.3.1 Fine-grained Locking

Comparing the lock-free and fine-grained locking approach
in more depth in Fig. 5 shows that the fine-grained solution
is slightly faster for the linear and random key distribu-
tion. For the random same-key distribution and for thread
numbers above 192, both approaches show the same per-
formance. The difference comes with the more non-deter-
ministic execution of lock-free algorithms. In some cases,
one execution needs more retries due to conflicts with other
threads while executing an atomic operation. With a higher
thread number, the waiting time for threads in the fine-
grained solution also increases. Therefore, the lock-free ap-
proach gets slightly faster at a higher number of threads. It
should be mentioned that the lock-free implementations are
not further optimized. With additional lock-free techniques,
back-off strategies, and other optimizations even better re-
sults are possible.

Fig. 6 Execution time proportions of the SHJ phases

5.3.2 Key distribution

The blocking approach is the slowest for the linear key
distribution (keys in ascending order) and for the random
same-key distribution (randomized keys, multiple occur-
rences of some keys). This time difference can be explained
with the internal structure of the STL unordered multimap
and the three phases of the SHJ algorithm. In the first phase,
new elements are inserted into the multimap. With a block-
ing approach, the whole multimap is locked during the join
procedure so that only one thread can execute its instruc-
tions and other threads are blocked. Internally the STL mul-
timap uses an iterable unordered structure.

The second phase probes the entries of one multimap
with the entries of the other. This is implemented by iterat-
ing over each item to find matches and gives a large part to
the total execution time of the blocking approach because
the threads can only execute its work in succession. Fig. 6
compares the execution time proportions of the SHJ phases
for both approaches directly. The blocking approach needs
more time for the insert and probe phase due to the block-
ing and slow iteration through the structure. In the lock-free
approach (LF-LL), the insert and join phases need most of
the time, while the probe phase has only a small fraction
of the total execution time. This behavior can be observed
for all key distributions. As already mentioned, lock-free
algorithms are accompanied by a guarantee for progress
for at least one thread. Therefore, inserts are executed with
a higher degree of parallelism, which is observable in exe-
cution time and scalability.

5.3.3 Hash map size

As mentioned before, the lock-free design needs a pre-ini-
tialized array of linked lists for consistency and thread-
safety. The array size is the actual size of the hash map.
Using a smaller hash map size leads consequently to longer
linked lists. The find operation (used in the probe phase
of the SHJ) iterates through all nodes of the linked list to
find the bucket list of the corresponding key. It is obvious
that this parameter affects the performance. A downside of
a large hash map is the memory usage due to the prereq-
uisite of a pre-initialized array. This means that the size
of the hash map is a trade-off between memory usage and
performance.

Figure 7 shows the execution time of the SHJ with dif-
ferent hash map sizes using the LF-LL structure. In this
experiment, the keys are generated randomly. The first ob-
servation is the jagged curve for the smallest hash map
size (16). This can be explained by the (increased) non-
deterministic behavior of lock-free algorithms and cache
thrashing. Cache thrashing can decrease performance when
accessing the data structures with high numbers of threads.
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Fig. 7 SHJ with LF-UM. The
LF-UM structure is pre-ini-
tialized with different sizes.
The used hash function is
h.x/ = x mod n where n is
the map size

This effect can also be seen in Figs. 4 and 5 in the random
same-key distribution, where the execution time drops for
a certain thread number and rises for another (for a thread
number between 2 and 32). In case of a small hash map
size, the linked lists of each hash key grow fast. Conse-
quently, more time is needed to iterate through the lists and
probe the entries in the appropriate phase of the SHJ. For
larger hash map sizes, the lists are small, so the find oper-
ation needs only to iterate through a few nodes. Therefore,
a higher hash map size boosts the performance and reduces
the latency, due to fewer iteration through the lists.

Comparing the memory footprints of the current PipeFab-
ric implementation ML-UM to LF-LL shows that the lock-
free approach creates a memory footprint up to 70% higher
than the blocking approach. As already mentioned, the
memory usage of the lock-free data structures can be
further optimized. There exist several lock-free memory
management strategies that can be applied to these struc-
tures to improve the memory usage, e.g., interval-based
memory reclamation [21] or hazard pointers [16].

6 Conclusion

Comparing the execution time for each approach shows
exactly the difference of lock-free and lock-based synchro-
nization. Furthermore, the results of the shown experiments
reveal that lock-free implementations can achieve similar
results and, at higher thread numbers, even better re-
sults than the lock-based implementations. PipeFabric uses
a blocking implementation of a concurrent queue to ex-
change tuples between threads. Every modification on that
queue can only be executed by one thread at a time, which
is the major disadvantage of blocking implementations. An
equivalent lock-free implementation allows simultaneous
thread accesses for the data structures. This can boost the
tuple exchanging process up to ten times compared to the
blocking variant, in cases where the consumer is as fast as

the producer. In case of a slow consumer, where the queue
is frequently full, the lock-free implementations are still
significantly faster. Stream processing benefits from the
higher degree of parallelism in tuple exchanging. It leads
to higher throughput for stream operations and reduces the
overall latency. Another significant performance boost can
be achieved with a lock-free SHJ algorithm. Our results
have shown that the lock-free implementations are slower
at low thread numbers, but are faster and scale very well
at high numbers of threads. Reasons for the results with
fewer threads are the behavior of the CAS operation, which
must be executed multiple times in a loop in order to
guarantee consistency for concurrent executions. The ideas
of the implemented lock-free data structures can also be
used for other stream processing operations, what may be
the aim of future work, for example, a lock-free scale join
algorithm [5], or window operations.

Lock-free designs can improve the performance of con-
current operations and deliver scalable and robust results
for algorithms, which are free from problems like dead-
locks and priority inversion. Thanks to these properties, it
is possible to achieve reliable latency and throughput in data
stream processing by exceeding the performance of block-
ing designs. However, another observation is that optimized
fine-grained locking methods achieve better results at lower
thread numbers, due to short critical sections and, conse-
quently, more parallelism. Hence, lock-free synchronization
is not the so-called silver bullet in thread synchronization.
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