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Abstract
Big data has exponentially grown in the last decade; it is expected to grow at a faster rate in the next years as a result
of the advances in the technologies for data generation and ingestion. For instance, in the biomedical domain, a wide
variety of methods are available for data ingestion, e.g., liquid biopsies and medical imaging, and the collected data can be
represented using myriad formats, e.g., FASTQ and Nifti. In order to extract and manage valuable knowledge and insights
from big data, the problem of data integration from structured and unstructured data needs to be effectively solved. In
this paper, we devise a knowledge-driven approach able to transform disparate data into knowledge from which actions
can be taken. The proposed framework resorts to computational extraction methods for mining knowledge from data
sources, e.g., clinical notes, images, or scientific publications. Moreover, controlled vocabularies are utilized to annotate
entities and a unified schema describes the meaning of these entities in a knowledge graph; entity linking methods discover
links to existing knowledge graphs, e.g., DBpedia and Bio2RDF. A federated query engine enables the exploration of the
linked knowledge graphs while knowledge discovery methods allow for uncovering patterns in the knowledge graphs. The
proposed framework is used in the context of the EU H2020 funded project iASiS with the aim of paving the way for
accurate diagnostics and personalized treatments.

1 Introduction

Integrating data-driven digital technologies in conjunction
with smart infrastructures for management and analytics,
increasingly, offer huge opportunities for improving quality
of life [40] and industrial competitiveness [56]. However,
the enormous amount of data generated in scientific and
industrial domains, demands the development of computa-
tional methods for ingestion, integration, and analysis, as
well as for the transformation of big data into knowledge.
The problem of data integration has been extensively ad-
dressed by the Database community [15, 22]. As a result,
a vast amount of integration frameworks [11, 21, 28, 31,
37] have been developed; they implement data integration
systems following the local-as-view (LAV) and global-as-
view (GAV) paradigms[32]. Further, query processing has
also played a relevant role in solving data integration on the
fly. Graph-based traversal [33, 7], and federated query pro-
cessing [1, 16] are representative approaches for enabling
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data integration at query execution time. Although these ap-
proaches have made remarkable contributions, the problem
of scaling up to big data transformation remains unsolved.
The lack of techniques able to manage structured and un-
structured sources (e.g., clinical notes, images, scientific
publications) is the main drawback of existing approaches.

Our Research Goal:Our main objective is to tackle data
integration of structured and unstructured data in a way that
the meaning of integrated data can be described, explored,
and used to uncover relevant insights. We focus on biomed-
ical data sources in the context of the EU H2020 funded
project iASiS1 and show how the problem of data integra-
tion may hinter the prescription of personalized treatments.
Given a collection of data sets (structured and unstructured),
the problem of data integration is to identify if two entities
in the data sets match or do not match the same real-world
entity. Integrating data sets requires the recognition and res-
olution of interoperability conflicts across these data sets, as
well as fusion policies for merging equivalent entities [10].
Considering the wide nature of entities, the state of the
art has focused on integration methods that reduce manual
work and maximize accuracy and precision [11, 18, 19]. To
overcome interoperability conflicts generated by the wide

1 http://project-iasis.eu/.
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A 53-year old  male patient with Non 
Squamous carcinoma of stage III. He 
is a non-smoker and non-positive for 
EGFR, ROS1, and ALK. He suffers 
from high cholesterol and takes 
Simvastatin. No relatives with 
cancer. His father, mother, and older 
brother died from heart attacks. He 
is prescribed with Paclitaxel
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Fig. 1 Motivating Example. Heterogeneous sources of knowledge. a Unstructured data sources, e.g., clinical notes, medical images, and clinical
tests, encode invaluable knowledge about a patient medical condition. b Factors impact on the effectiveness of a treatment; they need to be identified
to increase a patient survival time. c Various biomedical repositories maintain knowledge collected by the scientific community about facts that
can contribute to the prescription of effective treatments. Data sources range from structured (e.g, COSMIC), to unstructured (e.g., PubMed); and
short texts in structured data sources may encode also relevant knowledge (e.g., drug interactions). Heterogeneity problems across sources need to
be solved for extracting the required knowledge. a Electronic health records, b impacts in treatment effectiveness, c biomedical data sources

variety of existing formats–short notes or scientific publica-
tions–several unstructured processing techniques have been
proposed. Natural language processing (NLP) contributes
to integrating structured and textual data by providing lin-
guistic annotation methods at different levels [36, 38, 41],
e.g., syntactic parsing, named entity recognition, word sense
disambiguation, and entity linking. Further, visual analyt-
ics techniques facilitate the extraction and annotation of
entities from non-textual data sources [27, 5]. Annotations
from ontologies and controlled vocabularies extracted from
unstructured data represent the basis for determining relat-
edness among the annotated entities by the mean of simi-
larity measures, as well as for identifying matches between
highly similar entities.

Approach: The main idea of this paper is to present
a knowledge-driven framework that resort to knowledge
extraction, ontologies, and data integration techniques in
order to create a knowledge graph. It comprises data and
the knowledge that describes the main characteristics of the
integrated data. The proposed approach represent a building
block for the support of clinicians during disease diagnosis
and treatment prescription.

Contributions: The principal contributions of this paper
are the presentation of the results of applying the knowl-
edge-driven framework to various biomedical data sources,
as well as the promising outcomes observed by analyzing
the generated knowledge graph. Although the framework as
a whole is not available as open source, the components to
perform entity linking2 and knowledge graph management3

are publicly available. The remainder of this article is struc-
tured as follows: Sect. 2 motivates the data integration prob-
lem over biomedical data sets. Sect. 3 describes our knowl-
edge-driven framework, and Sect. 4 summarizes the prin-

2 https://labs.tib.eu/info/en/project/falcon/.
3 https://github.com/SDM-TIB/KG-Tools.

cipal results of implementing this framework in the iASiS
project. Related work is presented in Sect. 5, and finally,
Sect. 6 concludes and give insights for future work.

2 Motivating Example

We motivate our work with a set of myriad sources of
knowledge about the condition of a lung cancer patient
(Fig. 1), as well as typical integration problems caused as
a result of well-known data complexity issues, e.g., vari-
ety, volume, and veracity. Electronic health records (EHRs)
(Fig. 1a) preserve the knowledge about the conditions of
a patient that need to be considered in order for effective
diagnoses and treatment prescriptions. Albeit informative,
EHRs usually preserve patient information in an unstruc-
tured way, e.g., textual notes, images, or genome sequenc-
ing. Furthermore, EHRs may include incomplete and am-
biguous statements about the whole medical history of a pa-
tient. In consequence, knowledge extraction techniques are
required to mine and curate relevant information for an in-
tegral analysis of a patient, e.g., age, gender, life habits, mu-
tations, diagnostics, treatments, and familial antecedents. In
addition to evaluating information in EHRs, physicians de-
pend on their experience or available sources of knowledge
to predict potential adverse outcomes, e.g., drug interac-
tions, side-effects or resistance (Fig. 1b). Diverse reposito-
ries and databases make available crucial knowledge for the
complete description of a patient condition and the potential
outcome (Fig. 1c). Nevertheless, sources are autonomous
and utilize diverse formats that range from unstructured sci-
entific publications in PubMed4 to dumps of structured data
about cancer related mutations in COSMIC5. To illustrate,

4 https://www.ncbi.nlm.nih.gov/pubmed/.
5 https://cancer.sanger.ac.uk/cosmic.
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Fig. 2 Definition of a Knowledge Graph. a A knowledge graph is presented as the intersection of the formal models able to represent facts
of various types and levels of abstraction using a graph-based formalism. b Knowledge representation models are characterized according to the
represented facts and levels of abstraction. a Knowledge graph, b a spectrum of knowledge representation

the effect of the interactions between two drugs is reported
in DrugBank like short text, e.g., the effect of the interac-
tions between Simvastatin and Paclitaxel. In order to detect
the facts that can impact on the effectiveness of a particular
treatment, e.g., Paclitaxel, the physician will have to search
through these diverse data sources and identify the poten-
tial adverse events and interactions. Data complexity issues
like data volume and diversity impede an efficient integra-
tion of the knowledge required to predict the outcomes of
a treatment.

The proposed knowledge-driven framework resorts to
techniques of knowledge extraction and representation to
create a knowledge graph where data from disparate data
sources is integrated. A knowledge graph represents entities
and their relations, and ontologies and controlled vocabular-
ies are utilized to describe the meaning of relations, as well
as for annotating entities in a uniform way in the knowledge
graph. Unified Medical Language System (UMLS), the Hu-
man Phenotype Ontology (HPO), and the Gene Ontology
(GO) are exemplar ontologies. Furthermore, entity linking
techniques are part of the framework to allow for the linking
of entities in the knowledge graph, e.g., the drug Paclitaxel,
to equivalent entities in existing knowledge graphs, e.g., in
DBpedia6 and in Bio2RDF7. The linked knowledge graphs
composed a federation, and a federated query engine is able
to execute queries against the various knowledge graphs.
Finally, (un)supervised techniques are built on top of the
knowledge graphs for the support of conscientious diagno-
sis and personalized treatments.

6 http://dbpedia.org/resource/Paclitaxel.
7 http://bio2rdf.org/drugbank:DB01229.

3 Our Approach

3.1 Preliminaries

Fig. 2 presents the main characteristics of a knowledge
graph. First, a knowledge graph is depicted as a data struc-
tured that represents data, knowledge, and actionable in-
sights using a graph data model (Fig. 2a). Graph data mod-
els enable for the representation of entities and their rela-
tions, as well as naturally model mono- and multi-valued
attributes, the neighborhoods of an entity, different types
of relations, and relations recursively specified. Moreover,
graph data models naturally extend to a large number of
relations between two entities and enable the traversal and
exploration of these connections. Based on these features of
graph models, they stand for suitable data models for rep-
resenting different types of concepts in a knowledge graph.
We define a knowledge graph as follows:

Definition 1 A Knowledge Graph is a directed graph de-
fined as triple KG=(O,V,E), where:

� O is an ontology that comprises classes and relations, as
well as rules that define the meaning of the relations.

� V is a set of nodes in the knowledge graph; nodes in V
correspond to classes or instances of classes in O.

� E is a set of directed labeled edges in the knowledge
graph that relate nodes in V. Edges are labeled with re-
lations in O.

As stated in the previous definition, nodes in a knowledge
graph can be composed of entities of representing items of
data, abstract concepts, or the combination of both. This
property enables for the characterization of a spectrum of
knowledge graphs as indicated in Fig. 2b. This spectrum
goes from less to more expressive graphs. Data graphs cor-
respond to less expressive knowledge graphs; they com-
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prise nodes representing entities and edges depicting the
relations between them. Semantics of the relations is not
encoded in any way in the graph. Ontologies include ab-
stract concepts or classes—represented as nodes—and pred-
icates representing the relations of these classes—edges in
an ontology; the meaning of the predicates is represented
using rules. Knowledge bases model knowledge about facts
and abstract concepts but not necessarily using a graph
data model; rule based formalisms like Datalog [8] or PSL
[20] have been used to represent knowledge bases. Finally,
knowledge graphs comprise not only facts about entities
and their relations, but also about the classes to which these
entities belong to and the meaning of these relations. Dif-
ferently to knowledge bases, knowledge graphs are repre-
sented using graph data models; thus, they are able to nat-
urally model data—entities—and knowledge—meaning of
relations—as first-class citizens. Additionally, knowledge
graphs can be modeled using diverse knowledge represen-
tation formalisms; the selection of the formalism depends
on the type of statements that will be expressed in a knowl-
edge graph. For example, the Resource Description Frame-
work (RDF) is a metadata data model that resorts to the idea
of making statements about resources in expressions of the
form subject-predicate-object, known as triples. Subjects
are represented as resources in the form of URIs or blank
nodes; predicates define the relation between subject and
object; they are in the form of URIs while objects can be
of any type. RDF Schema is an extension of the basic RDF
that allows for the definition of classes, relations, as well as
hierarchies of classes and relations. Moreover, more expres-
sive formalisms like the Ontology Web Language (OWL),
make available a larger number of operators which enable
the representation not only of classes, relations, and hier-
archies, but also class and property constraints, negative
statements, general equivalence relations, and restrictions
of cardinality. In the knowledge graphs considered in this
paper, operators from RDF, RDFS, and OWL are used. Fur-
ther, some predicates have been also utilized to express
metadata about classes and relations. For example, predi-
cates rdfs:label, rdfs:comment, dcterms:modified, and dc-
terms:creator describe labels, comments, last modification
date, and the creator of classes and properties, respectively.
Data sources depicted in Fig. 1 are characterized by various
conflicts that hinter a scalable solution of the problem of
data integration. Heterogeneity conflicts include:

(i) Structuredness depends on the degree of the sources
being structured.

(ii) Schematic is present whenever various schema are uti-
lized by the data sources.

(iii) Domain occurs if different interpretations of the same
universe of discourse are followed.

(iv) Representation takes place whenever different repre-
sentations are used to model the same concept.

(v) Language exists among two or more data sources
whenever different languages are utilized for modeling
data or metadata.

(vi) Granularity depends on the graininess used to repre-
sent the data in different data sources.

3.2 A Knowledge-driven Framework

We devise a knowledge-driven framework able to transform
and integrate heterogeneous data into knowledge graphs.
Fig. 3 depicts an overview of the framework; it is composed
of four main components: Data Ingestion, Semantic Data
Integration, Exploration and Visualization, and Evaluation
and Knowledge Discovery.

1-Data Ingestion: big data is collected from different
data sources; collected data is mainly characterized by the
three dominant dimensions of the Vs model: volume—very
large data sets; variety—sources in multiple data formats
and models; and veracity—data with potential biases, am-
biguities, and noise. To overcome interoperability issues
caused by data variety, distinct knowledge extraction meth-
ods are part of the framework. Typical extractions methods
include:

(i) Natural language processing to extract facts from un-
structured data sources and represent the extracted
knowledge in the form of triples, i.e., subject, pred-
icates, and objects [41]. Ontologies and controlled
vocabularies are used to guide the extraction process
as well as to annotate the extracted facts with the terms.

(ii) Visual analysis and image processing to extract rele-
vant facts from non-textual material like videos and
images [27, 5].

(iii) Genomic Analysis to identify mutations and genetic
variations from microarrays [30, 53].

Once data is ingested, different techniques are used for
data curation, e.g., statistical methods for completing miss-
ing values [46]–multiple imputation and maximum likeli-
hood estimation, clustering techniques for duplicate detec-
tion [26], and crowdsourcing for data curation [4].

2-Semantic Data Integration: The integration of the
matching entities is performed over the knowledge graph by
exploring concepts, relations, taxonomies, and rules repre-
sented in the knowledge graph. First, collected and curated
big data is modeled using a unified schema and stored in
a knowledge graph. Then, entity recognition and linking
are employed for transforming textual values in the knowl-
edge graph, e.g., descriptions and comments, into structured
facts. Finally, different methods are combined to curate and
complete the represented facts. Knowledge graph creation
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Fig. 3 Knowledge Graph
Overview. Big data sources are
ingested, curated, and integrated
into a knowledge graph. Diverse
knowledge extraction methods
enable to transform unstructured
data and describe the extracted
facts using ontologies. Federated
query processing and visualiza-
tion tools enable the exploration
of the knowledge graph, and
knowledge discovery techniques
facilitate the uncovering of rele-
vant patterns
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relies on mapping-driven algorithms guided by mapping
rules that describe entities using a unified schema. Addi-
tionally, controlled vocabularies and ontologies used by the
knowledge extraction tools are represented as RDF triples
as well; links between these ontologies are also included
in the knowledge graph to enable the identification of enti-
ties in different vocabularies. Similarity-based methods are
performed for entity matching; similarity measures are able
to exploit the knowledge encoded in the knowledge graph.
Hybrid approaches combine reasoning processes on top of
the knowledge graph with the wisdom of experts, and en-
able curation and knowledge completion [2].

3-Exploration and Visualization: SPARQL endpoints
enable the independent access of knowledge graphs; they
are Web services that provide Web interfaces to query RDF
data following the SPARQL protocol. Queries against fed-
erations of SPARQL endpoints are posed through feder-
ated SPARQL query engines; they are devised following
the generic mediator and wrapper architecture [54, 55].
Lightweight wrappers translate SPARQL subqueries into
the required SPARQL endpoint calls and translate endpoint
answers into the query engine internal structures. The me-
diator rewrites original queries into subqueries that can be
executed by the SPARQL endpoints. Furthermore, the me-

diator gathers the results of evaluating subqueries, and com-
bines the results to produce the answer of the query. The
federated query engine is able to exploit the semantics en-
coded in the knowledge graph during the execution of the
tasks of source selection, and query decomposition, opti-
mization, and execution. Visualization tools facilitate the
exploration of patterns in the knowledge graph.

4-Evaluation and Knowledge Discovery: Machine
learning methods are utilized to identify patterns in the
knowledge graph. These methods are enhanced with con-
textual knowledge represented in the knowledge graph with
the aim of identifying accurate predictions whose meaning
can be described.

4 The Knowledge-driven Framework for
Supporting PersonalizedMedicine

iASiS is a 36-month H2020-RIA project that has started
in April 2017. iASiS aims at transforming clinical and
pharmacogenomics big data into actionable knowledge for
the support of personalized medicine in two life-threaten-
ing diseases: lung cancer and dementia. The knowledge-
driven framework depicted in Fig. 3 is applied to integrate
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anonymized clinical data, biological sample analysis, med-
ical images, genomics, medications, and scientific publi-
cations into the iASiS knowledge graph. UMLS and HPO
are used for annotating concept extracted from unstructured
items of data. the instantiation of the framework is as fol-
lows:

1-Data Ingestion: Knowledge extraction methods (de-
veloped by different partners) of the iASiS project are de-
scribed as follows:

(i) Electronic Health Record (EHR) Analysis: NLP meth-
ods (Menasalvas et al. [36]) resort to named entity
recognition to extract relevant entities from unstruc-
tured clinical notes and to annotate the extracted con-
cepts with terms from UMLS. These techniques allow
for the extraction of the 39 properties from 739 lung
cancer patients [50].

(ii) Genomic Analysis: Data mining tools, e.g., catRapid
(Livi et al. [34]), identify protein-RNA associations
with high accuracy. Publicly available datasets, e.g.,
data from GTEx, GEO, and ArrayExpress, are used for
the integration with transcriptomic data; genes are an-
notated with identifiers from different databases, e.g.,
HUGO or Uniprot/SwissProt, as well as with HPO.

(iii) Image Analysis: Several machine learning algorithms
(Ortiz et al. [44]), are applied to learn predictive mod-
els able to classify medical images and detect areas of
interests, e.g., lung cancer tumors or imaging biomark-
ers. Further, image annotation methods semantically
describe these areas of interest using ontologies [12,
47].Open Data Analysis: An NLP pipeline is followed
to extract UMLS terms from scientific publication
in PubMed8 and relations between the extracted terms
(Nentidis et al. [42]). This pipeline resorts toMetaMap9

for UMLS term extraction and SemRep10 for relation
extraction. The NLP pipiline has enabled the collection
of 166,073 UMLS terms from 250,688 publications.

2-Semantic Data Integration. Data collected from
biomedical open data sources and the data sets generated
from the knowledge extraction methods are integrated in
this step. Open data sources include COSMIC11, Drug-
Bank12, SIDER13, and STITCH14. Albeit structured, the
open data sets may contain unstructured fields that encode
valuable knowledge, e.g., the description of the interac-
tions between two drugs from DrugBank or the approved

8 https://www.ncbi.nlm.nih.gov/pubmed/.
9 https://metamap.nlm.nih.gov/.
10 https://semrep.nlm.nih.gov/.
11 https://cancer.sanger.ac.uk/cosmic.
12 https://www.drugbank.ca/.
13 http://sideeffects.embl.de/.
14 http://stitch.embl.de/.

indications of a drug in DBpedia15. Entity and predicate
linking methods (Sakor et al. [51]) are employed to extract
entities and relations and to link them to terms in UMLS
or DBpedia. A unified schema is used to represent the data
in the iASiS knowledge graph. GAV mappings expressed
using the RDF Mapping Language (RML) [14], specify
mapping rules to transform data into RDF triples in the
iASiS knowledge graph. Fig. 4a depicts with an example,
the pipeline followed to create RDF triples and to perform
data integration. EHR analysis [36] is performed to extract
relevant facts from the clinical notes and represent these
facts using UMLS. For simplicity, we just present some of
facts: age, gender, toxic habits, chemotherapy drugs, drugs
for comorbities, familial antecedents, and mutated genes
(EGFR, ALK, ROS1). The execution of the RML map-
pings enable the creation of an RDF graph describing the
patient and its relations. Note that drugs for chemother-
apy and comorbities are annotated with the corresponding
UMLS terms, i.e., C0144576 and C0074554 for Paclitaxel
and Simvastatin, respectively. In addition, entity and predi-
cate liking [51] is performed and effect of the interaction be-
tween Paclitaxel and Simvastatin is represented as an RDF
graph (step 2). Since, this data is extracted from DrugBank,
drugs are identified with a DrugBank identifier. Matching
between the UMLS and DrugBank identifiers are found by
performing string matching between the name of the drugs
in DrugBank and the preferred names in UMLS. Matchings
between UMLS and DrugBank identifiers—represented as
dashed lines—are used for generating an RDF graph that
relates UMLS identifiers of Paclitaxel and Simvastatin with
the effects and impact of the interactions (step 3). Fig. 4
presents the final RDF graph where the patient described
in the clinical notes and the interactions between his treat-
ments are represented in an RDF graph. The same data
integration procedure is performed for associating a patient
with the side-effects of his/her prescribed drugs, the sci-
entific publications in PubMed where his/her conditions,
treatments, and biomarkers are reported; information about
the diseases associated with his/her mutations; and potential
mutations that may impact the effectiveness of his/her treat-
ments. Moreover, the entity and predciate liking techniques
by Sakor et al. [51] are also utilized to link entities in the
iASiS knowledge graph with equivalent entities in DBpedia
and Bio2RDF. Only for drugs, the approach by Sakor et al.
[51] was able to identify 960 correct links to DBpedia out
of 968 Drugs, while DBpedia Spotlight [13], a state-of-the-
art entity linking tool, only identified 929 correct links.

The current version of the iASiS knowledge graph has
1,3 Billion triples, 46 RDF classes, in average 6.98 rela-
tions per entity, and each class is connected in average to
2.87 classes. Classes include Drugs, Publications, Muta-

15 http://dbpedia.org/page/Paclitaxel.
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A 53-year old  male patient with Non Squamous 
carcinoma of stage III. He is a non-smoker and 
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suffers from high cholesterol and takes 
Simvastatin. No relatives with cancer. His father, 
mother, and older brother died from heart 
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Fig. 4 An Example of a Pipeline for Data Integration. a The pipeline receives unstructured data (step 1) and structured data sources (step 2).
EHR Analysis extracts relevant facts and annotate them using UMLS terms, e.g., CO144576 and C0074554 represent Paclitaxel and Simvastatin,
respectively. Entity and Predicate Linking are performed to extract the effect of drug-drug interactions on data collected from DrugBank. Mappings
between identifiers of drugs in UMLS and DrugBank enable the integration of the patient with drug interactions (step 3). b A portion of the RDF
subgraph representing a patient and the interactions of his prescribed drugs. a Data integration pipeline, b a portion of a patient in the KG

tions, lung cancer Patients, Biomarkers, Genes, Side Ef-
fects, Proteins, Enzymes, Transporters, and Annotations.
The class annotation has 69,910,644 instances related to
the rest of the classes in the knowledge graphs. To gener-
ate the iASiS knowledge graph, 103 RML mapping rules
were defined and curated by four knowledge engineers. As
a result of following the semantic data integration pipeline
illustrated in Fig. 4a, the lung cancer patients were linked
to the interactions between their prescribed drugs. Fig. 5
presents the density distribution of pairs of drugs that inter-
act in the lung cancer treatment; almost 50% of the patients
are taking at least one pair of drugs whose interaction has
been registered by DrugBank. In average, the patients in the
iASiS knowledge graph receive treatments with 1.7 reported
interactions. This information is extremely valuable for the
clinicians because by traversing the knowledge graph, they
can easily identify the potential interactions of the drugs
and prescribe more effective and less toxic treatments.

3-Exploration and Visualization. MULDER is a feder-
ated query engine [16] that enables the execution of queries
against the federation composed by the iASiS knowledge
graph, DBpedia, and Bio2RDF. MULDER receives as in-
put, queries in SPARQL and performs the tasks of source
selection, and query decomposition and optimization by
exploiting the meta-data about the classes and the con-
nections of these classes in the knowledge graphs. More-
over, MULDER relies on adaptive physical operators, e.g.,
symmetric join [18] and gjoin [1], and is able to produce
results incrementally as soon as they are collected from
the knowledge graphs. In order to illustrate the features
of MULDER, we report on the results of an experiment
over the complex queries of the LSLOD [25] benchmark.
The state-of-the-art federated query engine ANAPSID[1]
is included in the study. ANAPSID and MULDER resort
to the same set of physical operators. Thus, it is expected
than the differences observed between them is produced as
a consequence of producing efficient plans. LSLOD [25] is
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Fig. 5 Integration of Drug Interactions. Frequency density of pairs
of drugs prescribed to patients in the knowledge graph that have known
interactions (source DrugBank). As observed, there is at least one drug
interaction for almost 50% of the population, and in average there are
1.7 interactions per patient

a benchmark composed of ten knowledge graphs from the
life sciences domain16. They include: ChEBI (the Chemical
Entities of Biological Interest), KEGG (Kyoto Encyclope-
dia of Genes and Genomes), DrugBank, TCGA-A (subset
of The Cancer Genome Atlas), LinkedCT (Linked Clin-
ical Trials), SIDER (Side Effects Resource), Affymetrix,
Diseasome, DailyMed, and Medicare. The goal of the ex-
periment is to evaluate the performance of MULDER in
large data sets from the biomedical domain and in complex
queries. We evaluate the efficiency in terms of the con-
tinuous generation of query answers, and use the measure
dieft@t proposed by Acosta et al. [3]. This metric measures
the continuous efficiency of an engine in the first t time units
of query execution; it is computed as the AUC (area-under-
the-curve) of the answer distribution until time t. Addition-
ally, we report on multiple metrics that evaluate the overall
performance and completeness, i.e., inverse of time for the
first tuple (TFFT−1), inverse of total execution time (ET−1),
number of answers (Comp), and throughput (T); all of them
are “higher is better”. Fig. 6 reports on the results of these

16 The ten knowledge graphs have 133,873,127 RDF triples.

metrics. As observed, in queries CQ2 and CQ8, ANAP-
SID did not produce any results before reaching the time-
out (300 secs.). In the rest of the queries, both MULDER
and ANAPSID are able to produce all the query answers.
With the exception of CQ4 and CQ10, MULDER contin-
uously produces results faster. Surprisingly, MULDER and
ANAPSID generated the same plans for CQ4 and CQ10;
however, the implementation of the physical operators im-
pacts on a faster execution of these plans in ANAPSID.
These results suggest that MULDER plans allow for a con-
tinuous performance during the answer generation process.
In the context of the iASiS framework, this feature is ex-
tremely relevant because users demand to receive answers
fast and continuously.

4-Evaluation and Knowledge Discovery. Knowledge
discovery techniques are used to uncover patterns in the
iASiS knowledge graph. Patterns include common charac-
teristics of patients depending on their toxic habits, familial
antecedents, or comorbities. We define a similarity mea-
sure as a function that quantifies the similarity of two pa-
tients. The patient similarity combines similarity values of
the main characteristics of the two patients: age, gender,
mutated genes, toxic habits, the evolution of a tumor, the
mutations, and the patient performance status (ecog). Sim-
ilarity values between these characteristics are computed
based of different similarity measures:

(i) Lists are compared using Spearman’s rho while the
Jaccard similarity coefficient is utilized for sets;

(ii) similarity between drugs is computed based on the
chemical structure of the drugs (SIMCOMP)17;

(iii) side effects are compared using the Human Phenotype
Ontology similarity (HPOSim)18; and

(iv) The UMLS similarity measure19 is used for UMLS
terms.

The combination of the similarity values is computed
in terms of a triangular norm. Fig. 7a depicts the density
distribution of the similarity values for pairs of lung cancer
patients in the iASiS knowledge graph. We can observe that
a considerably large portion of the population of patients
have relatively high values of similarity, suggesting that
a large number of patients have similar reactions to the pre-
scribed treatments. Further analysis with clinical partners is
required to validate the meaning of observed values of sim-
ilarity. Furthermore, we apply community detection algo-
rithms to discover patterns between patients that share sim-
ilar properties in the iASiS knowledge graph. We resort to
semEP (Semantics Based Edge Partitioning Problem) [45]
for computing communities of patients based on the values

17 http://www.genome.jp/tools/simcomp/.
18 https://sourceforge.net/projects/hposim/.
19 http://www.d.umn.edu/~tpederse/umls-similarity.html.
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Fig. 6 Performance of Federated Query Engines. ANAPSID and MULDER are compared in terms of continuous behavior. Axes correspond

to: inverse of time for the first tuple (TFFT−1), inverse of total execution time (ET−1), number of answers produced (Comp), throughput (T), and
dieft@t. All metrics are ‘higher is better’. Complex queries are from the LSLOD benchmark. ANAPSID produces empty results for CQ2 and CQ8.
MULDER plans exhibit better performance than ANAPSID plans (CQ1, CQ3, CQ5, CQ6, and CQ7). Plans for CQ4 and CQ10 are the same, but
ANAPSID query engine has a better continuous performance than MULDER

of similarity. It creates a minimal partitioning of the input
graph, such that the density of each community is maximal.
The community density represents the degree of similarity
of the entities in a community. Fig. 7b reports on the results
of computing semEP against the iASiS knowledge graph.
Main properties of the patients involve mutations of lung
cancer related genes, e.g., EGFR; demographic attributes,
smoking habits, treatments, and tumor stages. The studied

population is composed of 739 patients. The goal of the
study is to identify the four communities of patients—out
of 13 communities—with characteristics that differed from
the whole population; the Kolmogorov-Smirnov test was
used to rank the communities. Fig. 7b reports on four com-
munities of patients; using a heatmap plot the percentage
of patients in each community or cluster is described in
terms of age, gender, EGFR mutation, and smoking habits.
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Fig. 7 Knowledge Analytics. a A function able to quantify the similarity between two lung cancer patients is described in terms of frequency
density; the function takes into account treatments, and the evolution of the tumors, mutations, and patient performance. The reported results
suggest that a large number of patients react similarly to the treatments. However, more studies are required to validate this observation. b
Communities of lung cancer patients and the summary of the observed features age, toxic habits, and EGFR mutations. Distributions of the
observed features differ from the whole population, enabling the study of patients with unique characteristics. a Density distribution patient
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For example, patients in Cluster-1 are not current smok-
ers and a considerably number of them are non-smokers;
in addition, the biomarker EGFR is negative for many of
them. The results are initial and require further study from
the clinical partners of the project. However, they suggest
that these techniques have the power of uncovering patterns
between the observed features of patients.

5 RelatedWork

The problem of devising data integration frameworks has
extensively treated in the literature [23]. The mediator and
wrapper architecture proposed by Wiederhold [54] and the
data integration system approach presented by Lenzerini
[32], represent the basis for the state of the art [15, 24].
The community of Semantic Web have proposed various
approaches that enable the integration and processing of
Web data. KARMA [31] is a semi-automatic tool able
to generate mapping rules between structured sources in
different formats, e.g., CSV, JSON, and XML, and a uni-
fied schema. Albeit effective during the mapping definition

phase, KARMA does not provide any support for the steps
of data integration, curation, management, and analytics.
DIG [19] and MINTE [10, 11, 18] also enable the cre-
ation of knowledge graphs, but they mainly focus on solv-
ing the problem of entity matching effectively. LDIF [6],
LIMES [43], Sieve [37], Silk [29], and RapidMiner LOD
Extension [49] also tackle the problem of data integration.
However, they resort to similarity measures and link dis-
covery methods to match equivalent entities from different
RDF graphs. With the aim of transforming structured data
in tabular or nested formats like CSV, relational, JSON, and
XML, into RDF knowledge graphs, diverse mapping lan-
guages have been proposed. Exemplary mapping languages
and frameworks include RDF Mapping Language (RML)
[14], R2RDF [52], and R2RML [48]. Additionally, a vast
amount of research has been conducted to propose effective
approaches for ontology alignment [17, 39, 9], as well as
to effectively perform curation of knowledge graphs [2, 35,
4]. Our knowledge-driven framework while generic, facil-
itates the integration of existing components; thus, it can
benefit from these tools to effectively solve the problem of
transforming data into actionable knowledge.
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6 Conclusion and Future Directions

We present a knowledge-driven framework able to integrate
knowledge extraction, semantic data integration, query pro-
cessing, and knowledge analytics for supporting decision
and policy making. We have described the application of
the framework in the biomedical domain and shown the
potential for uncovering patterns that can enable the expla-
nation of treatment interactions and patient characterization.
The framework is part of the iASiS platform, and clinicians
are starting the process of evaluation of outcomes. Although
we focus on the biomedical domain, the general knowledge-
driven framework has also been applied in other domains
[11], e.g., law enforcement, job market application, and
smart manufacturing. Similarly, we observed that the frame-
work is not only easy to configure, but also provides accu-
rate results. We hope that our proposed techniques will help
clinicians and data practitioners in the complex tasks of ex-
tracting valuable knowledge from heterogeneous datasets.
In the future we plan to define a hybrid approach able to
combine the wisdom of the domain experts and users, and
the accuracy of machine learning approaches, to facilitate
the evaluation of the knowledge graph and the uncovered
insights.
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