
KURZ ERKLÄRT

DOI 10.1007/s13222-016-0229-2
Datenbank Spektrum (2016) 16:247–251

Skyline Queries

Katja Hose1

Received: 16 May 2016 / Accepted: 22 June 2016 / Published online: 6 July 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Many applications face the problem that users
are overwhelmed by the large amount of available data. In
some cases an objective ranking function can be used to
order data items by their relevance – similar to the top 10
results displayed by a Web search engine. Other applica-
tions, however, aim at considering more diverse preferences
and multiple criteria to help users find good results. Such
applications can benefit from skyline queries.

The best known example use case for a skyline query is a
hotel booking scenario where users are looking for hotels.
Assume many hotels are available and the user wants to
find one based on two criteria: distance to the beach and
price per night. Further assume that the user is unable to
say which of these criteria is more important. So, we need
to look for hotels representing a good combination of both
criteria. The skyline consists of all hotels that represent a
“good” combinations of both criteria. For each of the other
hotels, there is always at least one hotel in the skyline that is
better with respect to the two criteria. So, being presented
the skyline, the user gets an overview of the available hotels
and can make the final decision with respect to her personal
preferences for the two criteria. No matter how the user will
eventually weigh her personal preferences, she will find her
favorite hotel in the skyline.

This article gives a short introduction to skyline queries,
their main characteristics, and basic ways of processing
them.

� Katja Hose
khose@cs.aau.dk

1 Aalborg University, Aalborg, Denmark

1 Introduction

Many applications face the problem that users are over-
whelmed by the large amount of available data. In some
cases an objective ranking function can be used to order
data items by their relevance – similar to the top 10 re-
sults displayed by a Web search engine. Other applications,
however, aim at considering more diverse preferences and
multiple criteria to help users find good results. Such ap-
plications can benefit from skyline queries.

The best known example use case for a skyline query is a
hotel booking scenario where users are looking for hotels.
Assume many hotels are available and the user wants to
find one based on two criteria: distance to the beach and
price per night. Further assume that the user is unable
to say which of these criteria is more important. So, we
need to look for hotels representing a good combination
of both criteria – if the user was able to provide weights
for both criteria, it might be possible to define a single
ranking function and use a top-k query instead. Figure 1
shows the available hotels; each hotel is represented as a
circle, the x-axis corresponds to the distance to the beach
and the y-axis to the price. The hotels highlighted in red
are part of the skyline and represent the complete set of
“good” combinations of both criteria. For each of the other
hotels, there is always at least one hotel in the skyline that
is better with respect to the two criteria. Being presented
the skyline, the user gets an overview of the available hotels
and can make the final decision with respect to her personal
preferences for the two criteria. No matter how the user will
eventually weigh her personal preferences, she will find her
favorite hotel in the skyline.

The problem of computing skyline queries is also known
as the Pareto optimum or the maximum vector prob-
lem [5]. The term skyline query, however, was introduced

K

http://crossmark.crossref.org/dialog/?doi=10.1007/s13222-016-0229-2&domain=pdf
http://orcid.org/0000-0001-7025-8099


248 Datenbank Spektrum (2016) 16:247–251

distance to the beach

pr
ic

e 
pe

r 
ni

gh
t

Fig. 1 Example Skyline

Fig. 2 Skyline of Singapore

by S. Börzsönyi, D. Kossmann, and K. Stocker in 2001 [1].
Skyline queries were proposed as a tool for multi-criteria
decision making by using multiple ranking functions to
find relevant data items for a user. Figure 2 shows the sky-
line of Singapore to illustrate why the term skyline query
was chosen. In such a skyline, we can only see buildings
that are very high or close, more precisely: we can only
see buildings representing good combinations of the two
criteria distance and height – roughly corresponding to
distance and price in the hotel example. The term skyline
was chosen because of its graphical representation.

In the following, we first present the main characteris-
tics of a skyline and then discuss several types of skyline
queries that have been proposed in the past 15 years. Af-

distance to the beach

pr
ic

e 
pe

r 
ni

gh
t

Fig. 3 Dominance

terwards, we will briefly sketch the basics of skyline query
computation and recent trends.

2 Characteristics

Formally, a skyline query is defined on dimensions repre-
senting the criteria that the user is interested in. The hotel
example, for instance, has two dimensions: price and dis-
tance to the beach. A skyline can of course be defined
on more dimensions. However, skyline queries are defined
on at least two dimensions as having only one dimension
would, for instance, correspond to simply finding the cheap-
est hotel.

For each dimension of a skyline, the user needs to spec-
ify whether small values (MIN) or big values (MAX) are
desired. The original skyline paper [1] also proposed DIFF;
indicating that it is sufficient to have a different value rather
than a “better” value (smaller for MIN, greater for MAX).
In the hotel example, MIN is used for both dimensions: the
distance to the beach and the price. Combinations of MIN
and MAX for different dimensions are of course possible.

One of the main principles that a skyline is defined on
is the dominance relation: all data items in the skyline
are not dominated by any other data item in the dataset.
A data item dominates another one if it is as good as or
better (with respect to MIN/MAX) in all dimensions and
better in at least one dimension. Or in other words, a data
item dominates another one if it is better in at least one
dimension and not worse in all the other dimensions.

K



Datenbank Spektrum (2016) 16:247–251 249

Fig. 4 Additivity of Skyline
Computation

distance to the beach

pr
ic

e 
pe

r 
ni

gh
t

distance to the beach

pr
ic

e 
pe

r 
ni

gh
t

distance to the beach

pr
ic

e 
pe

r 
ni

gh
t

Figure 3 illustrates the concept of dominance; all data
items contained in the gray shaded area are dominated by
the data item in the bottom left corner – note that the dom-
inating data item is located at the bottom left corner in our
example because MIN is used for both dimensions. In-
tuitively, all hotels contained in the dominated region are
worse than the hotel in the bottom left corner because they
are more expensive or further away from the beach – most
of them are both and clearly irrelevant to the user. There is
one hotel with the same distance to the beach as the hotel
in the skyline but it is more expensive. Hence, the hotel in
the skyline is still the better choice because it is as good as
or better in all dimensions (price and distance to the beach)
and better in at least one dimension (price).

Another important characteristic is the additivity of the
skyline operator, which results from the transitivity of the
dominance relation, i.e., if a data item a dominates an item
b and b dominates c, then a also dominates c. This charac-
teristic is the basis for many efficient algorithms for com-
puting skylines as it allows computing partial results and
combining them later without having the check against the

complete dataset. Given several datasets, the same result
can be obtained by either (i) computing the skyline over the
union of the datasets or (ii) computing the skyline first over
each dataset in separate and then once more over the union
of the initial skylines. The latter is illustrated in Fig. 4: the
lower part shows two datasets and their skylines (the data
items in the skyline are highlighted in red and blue). In the
next step, the data items in the computed skylines are com-
bined and the skyline is evaluated over the union of these
two initial skylines (upper part of Fig. 4). Note that the data
items highlighted in blue were only part of the initial sky-
lines and were removed in the final step because they were
dominated by data items in the other dataset. Still, all data
items that have been pruned by the data items highlighted
in blue could safely be pruned because of the transitivity of
the dominance relation. The final skyline is the same as in
Fig. 1, where the skyline has been computed over the union
of the two initial datasets.

The result of a skyline query is most useful if the result
set is relatively small. The size of the result set, however,
strongly depends on the data distribution of the input. The

K



250 Datenbank Spektrum (2016) 16:247–251

distance to the beach

pr
ic

e 
pe

r 
ni

gh
t

Fig. 5 Skyline over an Anti-Correlated Dataset

most problematic type of data for skyline queries is an
anti-correlated dataset, i.e., if a data item is better in one
dimension it is worse in the other so that (in the worst case)
all data items are part of the skyline because no data item
dominates another one. Figure 5 illustrates an example of
such an extreme dataset and its skyline. Because of the big
result size, such datasets are not only expensive to compute
but the result is also less useful to the user.

A similar effect is caused by the number of dimensions,
i.e., the more dimensions a skyline query is defined on, the
more data items are in the skyline and the less useful the
skyline is to the user. The reason for this effect is that a
space with many dimensions is usually sparse. As there are
only a few data items distributed in a relatively big space, it
is more difficult to find data items that dominate each other,
which results in a big result set.

3 Types of Skyline Queries

Throughout the years, many different types of skyline
queries have been proposed. One of them is the subspace
skyline. Such a skyline is not defined on all available
dimensions (attributes of a data item) but only on a subset
of them. The difference sounds very subtle but has a huge
impact on computing skylines as the skyline on a subset of
dimensions might contain totally different data items than
the skyline on the full set of dimensions.

A skyline can be defined on derived and non-derived
dimensions. A derived dimension implies that some com-
putation is necessary to the attributes of a data item whereas

for a non-derived dimension the values used for the skyline
are naturally given. A skyline defined on derived dimen-
sions is often referred to as a dynamic skyline. In our hotel
example, both distance to the beach and price are non-de-
rived dimensions as these values are given as attributes for
each data item. However, if we assume that the user is
not interested in the distance to the beach but in the dis-
tance to her current location, then the distances have to be
computed on-the-fly and the resulting skyline represents a
dynamic skyline.

Another way in which skylines differ is whether the user
defines additional constraints. A user might, for instance,
only be interested in hotels with a rating of 3 to 5 stars.
Hence, the skyline should only be computed over the subset
of the available data items that fulfill the user’s constraints.
This is commonly referred to as a constrained skyline.

In dependence on the available data and the application
scenario, a user might wish to reduce the number of data
items that she is being displayed as the result of a skyline
query. Hence, approximate skylines have been proposed.
The basic principle is to display data items representing a
group of similar data items instead of showing or computing
all of them. On the other hand, there are skyline query
variations that display additional data items to the user. For
instance, k-skyband queries compute all data items that are
dominated by at most k data items.

Another very interesting type of skylines are reverse sky-
lines. They are based on the concept of dynamic skylines
but consider the problem the other way round. Instead of
helping users find interesting data items, reverse skylines
help companies find interested users. Assuming that the
data items represent the preferences of users, then a com-
pany might define a hypothetical query object representing
a potential offer. The reverse skyline then contains all user
data items whose dynamic skylines contain the query ob-
ject. In our hotel example, this could be used for a market
analysis to find out how many users might be interested in
a new offer. If there are too few interested users, the price
of the hotel might be lowered to become more attractive to
a broader range of potential guests.

The literature proposes many additional types of skyline
queries and adapted versions of dominance to accommo-
date the special characteristics of different types of data,
environments, and applications. Skylines have for instance
been considered in the context of sensor data streams, in-
complete and uncertain data, spatial data, etc.

4 Main Principles of Processing Skyline Queries

The most intuitive and basic way to compute a skyline is
to compare each possible pair of data items to each other
and check for mutual dominance. This naive algorithm

K



Datenbank Spektrum (2016) 16:247–251 251

works but is obviously very expensive. But it can be op-
timized, e.g., by maintaining a window of current skyline
data items in main memory and considering the data items
sequentially. When a data item p is read, it is checked for
dominance against each data item in the current window.
If p is dominated by any data item in the window, p is
pruned and not considered any further. Otherwise, if p is
not dominated, it is added to the window. If p dominates
data items in the current window, the dominated data items
are removed. Because of the pruning, this Block-Nested-
Loops algorithm is more efficient. Extensions are neces-
sary if the window is too small to host all necessary data
items and further optimization is possible in combination
with sorting.

Another basic processing technique makes use of the di-
vide and conquer principle and exploits the transitivity of
the dominance relation. At first, the dataset is divided into
partitions, e.g., by computing the (approximate) median in
the input dataset. Then, the skyline is computed by recur-
sively applying the partitioning until there are only a few
data items per partition, which are then checked for mutual
dominance. The final skyline is then computed by merging
the partial skylines. Throughout the years different alterna-
tives to define these subsets as well as other optimizations
have been proposed.

Indexes, e.g., B-trees and R-trees, can also be used to
speed up skyline query computation. An R-tree, for in-
stance, can be used to determine the nearest neighbor to
the best possible data item (the origin in the two-dimen-
sional space in our hotel example). The nearest neighbor is
guaranteed to be a part of the final skyline as there cannot
exist any data item that is better [4, 6]. Hence, all data
items contained in the region that is dominated by the near-
est neighbor cannot be part of the final skyline and do not
have to be processed. The final skyline can be computed
by iteratively computing nearest neighbors in the non-dom-
inated regions. As soon as the nearest neighbors are found,
they can be output to the user because they are guaranteed
to be part of the final skyline.

5 Recent Trends

Since their introduction in 2001, many different variants of
skylines have been proposed, see [2, 3] for recent surveys.
Most of them have been developed for centralized environ-
ments, where the complete dataset is available at and pro-
cessed by a single machine. But skyline query computation
has also been studied in distributed environments, such as
P2P systems and cluster architectures, where efficient al-
gorithms have to consider the additional communication
overhead. In the context of cloud platforms, algorithms for
efficient computation of skylines using MapReduce have
been proposed. Moreover, skyline query computation has
also been studied in the context of modern hardware, such
as GPUs and FPGAs. The basic principle for all these al-
gorithms is to exploit the types of computations that these
hardware architectures are good at to speed up the compu-
tation of skylines.

The initial skyline paper [1] has inspired researchers to
propose not only numerous types and variations of skyline
queries but also to apply them in very different application
scenarios and combine them with recent trends, e.g., sky-
line computation using crowdsourcing. It is therefore very
likely that we will continue seeing novel research involving
skylines in the future.

References

1. Börzsöny S, Kossmann D, Stocker K (2001) The Skyline Operator.
In: ICDE’01, pp 421–430

2. Chomicki J, Ciaccia P, Meneghetti N (2013) Skyline Queries, Front
and Back. Sigmod Rec 42(3):6–18

3. Hose K, Vlachou A (2012) A survey of skyline processing in highly
distributed environments. Vldb J 21(3):359–384

4. Kossmann D, Ramsak F, Rost S (2002) Shooting Stars in the Sky:
An Online Algorithm for Skyline Queries. In: VLDB’02, pp
275–286

5. Kung HT, Luccio F, Preparata FP (1975) On Finding the Maxima
of a Set of Vectors. J Acm 22(4):469–476

6. Papadias D, Tao Y, Fu G, Seeger B (2005) Progressive skyline
computation in database systems. Acm Trans Database Syst (tods)
30(1):41–82

K


	Skyline Queries
	Abstract
	Introduction
	Characteristics
	Types of Skyline Queries
	Main Principles of Processing Skyline Queries
	Recent Trends
	References


