
Datenbank-Spektrum (2016) 16:17–26
DOI 10.1007/s13222-015-0209-y

S C HW E R P U N KT B E IT RA G

ADAMpro: Database Support for Big Multimedia Retrieval

Ivan Giangreco · Heiko Schuldt

Received: 13 October 2015 / Accepted: 20 December 2015 / Published online: 29 January 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract For supporting retrieval tasks within large multi-
media collections, not only the sheer size of data but also
the complexity of data and their associated metadata pose a
challenge.Applications that have to deal with big multimedia
collections need to manage the volume of data and to effec-
tively and efficiently search within these data. When provid-
ing similarity search, a multimedia retrieval system has to
consider the actual multimedia content, the corresponding
structured metadata (e.g., content author, creation date, etc.)
and—for providing similarity queries—the extracted low-
level features stored as densely populated high-dimensional
feature vectors. In this paper, we present ADAMpro, a com-
bined database and information retrieval system that is partic-
ularly tailored to big multimedia collections. ADAMpro fol-
lows a modular architecture for storing structured metadata,
as well as the extracted feature vectors and it provides various
index structures, i.e., Locality-Sensitive Hashing, Spectral
Hashing, and the VA-File, for a fast retrieval in the context
of a similarity search. Since similarity queries are often long-
running, ADAMpro supports progressive queries that provide
the user with streaming result lists by returning (possibly
imprecise) results as soon as they become available. We pro-
vide the results of an evaluation of ADAMpro on the basis of
several collection sizes up to 50 million entries and feature
vectors with different numbers of dimensions.

Keywords Databases · Multimedia retrieval systems · Big
data

I. Giangreco (�) · H. Schuldt
Department of Mathematics and Computer Science,
University of Basel, Basel, Switzerland
e-mail: ivan.giangreco@unibas.ch

1 Introduction

Multimedia is Big Data, both in terms of their volume and
their heterogeneity. Many applications that have to deal with
such big multimedia collections need support for managing
the sheer volume of data and for effectively and efficiently
searching within these data—based on annotated (structured)
metadata and/or based on intrinsic features of the multimedia
objects. Consider, for instance, the following applications:
a TV station is looking for videos and scenes with some
specific visual content to enrich a news report; a medical
researcher is looking for all mammograms showing a certain
visual characteristic which might indicate a case of breast
cancer; or a user is looking for a piece of music that she
remembers without, however, knowing its name.

Obviously, all these applications have in common that
large multimedia collections need to be searched on the basis
of their content. In the last years, this has successfully spurred
research in the field of machine learning in order to detect
and possibly learn features for characterising the content of
multimedia objects and thus to serve as basis for retrieving
results when comparing the object features to a query (e.g.,
[9, 10]). However, these feature extractors only form one
side of the coin. The other side of the coin is formed by
the organisation and storage of feature data (in general: any
form of metadata on multimedia objects), and the support for
various types of queries using these metadata.

In this paper, we address multimedia queries that combine
Boolean retrieval based on structured metadata (e.g., content
author, creation date, etc.) with the vector space retrieval
model to support similarity queries on the objects’ content.
By this, we consider both the information retrieval and the
database approach: Information retrieval systems tradition-
ally focus on high-dimensional feature spaces and support
nearest neighbour queries (similarity search). Database sys-

18 I. Giangreco, H. Schuldt

tems, on the other hand, traditionally only come with very
limited support for similarity searches and partial matches,
but are very good at organising data and retrieving exact
matches. For multimedia content and its associated meta-
data, the ‘one size fits all’ approach generally does not work.
As a consequence, multimedia retrieval systems often store
feature data in file-based structures. From a database per-
spective, this has various drawbacks: On the one hand, the
absence of physical and logical data independence makes
the organisation of data a difficult and tedious task that is
prone to errors. On the other hand, by letting the retrieval
system take care of storing data, the principle of separation
of concerns is violated in that application logic (i.e., what
feature data to store) and storage logic (i.e., how to organise
and store feature data) are not well separated. The missing
separation of concerns leads to the re-engineering of compo-
nents necessary for the sole task of managing and organising
data.

In this paper, we introduce ADAMpro, a database and in-
formation retrieval system that jointly supports Boolean and
vector space retrieval and that is particularly tailored to very
large multimedia collections. ADAMpro is an extension of the
ADAM system [6, 7] and focuses on storage support for big
multimedia data. It follows a modular architecture: based on
the nature of the data to be managed (structured or unstruc-
tured), individual modules can be replaced to increase the
overall query efficiency and to reduce response time. In ad-
dition, ADAMpro jointly supports various index structures.
By combining index structures that quickly produce (ap-
proximate) results with index structures that take longer to
produce (correct) results, so-called progressive queries can
be supported. In the context of the retrieval process, results
are presented to a user in a streaming fashion as soon as
they become available. The query results will be continu-
ously updated as more (and also more precise) results will
be available. While this is not necessary for small collections,
progressive queries in ADAMpro allow to provide fast query
results especially for big multimedia collections.

The contribution of the paper is threefold:

1. We present the architecture of the ADAMpro system and
the interplay between its components at query time to be
able to efficiently process a query. In this paper, we focus
on the vector space retrieval model in which feature data
reflecting the objects’ content is represented by means of
(high-dimensional) feature vectors and a k nearest neigh-
bour (kNN) search is applied to find the most similar
objects.

2. We introduce the concept of progressive query evaluation
which aims at reducing retrieval time. ADAMpro seam-
lessly combines various index structures, i.e., Locality-
Sensitive Hashing (LSH), Spectral Hashing, and the
Vector Approximation File (VA-File), to answer kNN

searches efficiently; the former two are used to generate
early, albeit pre-mature (approximate) results, while the
latter guarantees exact results, but at the price of higher
retrieval times.

3. We present results of the evaluation of ADAMpro under
varying configurations and particularly address the scal-
ability of ADAMpro. This includes both the sheer size of
collections (no. of objects) as well as the complexity of
the feature data (no. of dimensions of the feature space).

The remainder of the paper is organised as follows: in Sec-
tion 2, we present a sample application. Section 3 discusses
details of the system architecture of ADAMpro and introduces
the concept of progressive queries. Section 4 reports on the
evaluation of ADAMpro. Section 5 discusses related work and
Section 6 concludes.

2 IMOTION: A Sample Application

As an example for the use of ADAMpro, consider IMOTION
(Intelligent Multi-ModalAugmentedVideo Motion Retrieval
System)1, a system for large-scale video retrieval applica-
tions [14]. The objective of IMOTION is to provide a rich
variety of different query paradigms for searching in video
collections. This includes traditional keyword search on the
basis of automatically collected metadata (e.g., content au-
thor, video length, etc.) or manually added tags describing the
content of a video or a shot. In addition, IMOTION also sup-
ports a large variety of similarity search-based queries, e.g.,
Query-by-Sketch (QbS), Query-by-Example (QbE), query-
ing by motion and querying by audio. For the retrieval, this
means that users can specify either an existing image or a
video snippet as a query, or provide the system with a hand-
drawn sketch of the most relevant object(s) (e.g., using a
color sketch as depicted in Fig. 1), or draw motion or record
an audio snippet to search for. All the query options can
be seamlessly combined—either in a pipelined fashion (e.g.,
start with a keyword query and use one of the results as query
object for QbE), or combined in a single query by superim-
posing for instance a sketch and a query image (by adding,
via a sketch, an object that is not visible on the query image).

For supporting retrieval, IMOTION makes use of a large
number of feature extractors [14] which produce compar-
atively high-dimensional dense feature vectors (up to over
several hundred dimensions) that are used at query time for
comparison to the query object. Given the large size of the
video collections, which the IMOTION query engine is sup-
posed to handle, this exceeds the capabilities of current stor-
age systems that are not adapted to the use case at hand (as
will be shown in Sect. 4). In the IMOTION system, ADAMpro

1http://www.imotion-project.eu

ADAMpro: Database Support for Big Multimedia Retrieval 19

Fig. 1 Sketch-based video retrieval in IMOTION (from [14])

Fig. 2 On-line and off-line phase of a retrieval system

takes over the task of storing and organising both the struc-
tured metadata and the extracted feature vectors, and sup-
ports the retrieval logic for retrieving exact or approximate
matches.

3 Architecture

In retrieval systems such as the IMOTION system, two
phases can generally be distinguished: In the off-line phase,
the retrieval engine extracts features from the given multime-
dia objects. The feature extraction phase serves two purposes:
First, it allows the adaption of a (multimedia) document to
the retrieval framework used; second, it reduces the search
complexity, since it avoids the full inspection of objects, but
only considers the extracted features for comparison. In the
on-line phase, i.e., the time-sensitive query phase, on the
other hand, the extracted features are compared to the query
object, and ranked by similarity.

Figure 2 shows ADAMpro in the described setting: in the
off-line phase, ADAMpro takes over the task of storing the
feature vectors as they are inserted into the system. In the
on-line phase, ADAMpro is responsible for a fast and precise
response given a query.

To this end, ADAMpro combines various storage subsys-
tems depending on the data and the queries at hand; the com-

bination of various systems shows the advantage of each
system over the others (and over a monolithic system) in one
specific phase of the retrieval:

• for structured metadata, ADAMpro uses a relational
DBMS, as it allows querying for all attributes in a very el-
egant manner with good performance; these data are used
for a pre-filtering,

• the index structures for a k nearest neighbour (kNN) search
are stored in a file-based format, as it can be well dis-
tributed over multiple workers; these data are used to fur-
ther filter the tuples to retrieve,

• for the feature vector data, we use a key-value store which
allows to retrieve the full feature vectors (using the keys
filtered by the index) quickly and efficiently for further
computation; these data are used for the full distance com-
putation.

The overall architecture of ADAMpro is depicted in Fig. 3:
On the left hand side, the orchestrator is depicted, which
takes care of incoming requests (such as insert operations or
queries) by calling the corresponding components. The meta-
data storage component is responsible for storing and re-
trieving structured metadata in a relational database. The in-
dex storage component builds the index structures and stores
them in index files, separated from the actual content and
metadata. Finally, the feature storage component stores the
full feature vectors.At query time, the metadata storage com-
ponent will filter results based on Boolean predicates (i.e., on
the metadata, for instancedate = 15/03/2015). The re-
sults will then be processed by the index storage component
that further prunes the result list by using the index structures
available for retrieving the k nearest neighbours and perform-
ing a similarity search on the basis of the given query vector.
Finally, the remaining elements are collected from the fea-
ture storage component that retrieves the full feature vectors
and performs the exact computation of distances.

3.1 Schema Definition and Data Insertion

In the data definition step, the user specifies the logi-
cal schema for the data. Given the various data types,
ADAMpro distributes the physical data to different subsys-
tems: ADAMpro stores feature data in a key-value store and
indexes the data using various index structures built into the
system. The metadata, on the other hand, is stored in a rela-
tional DBMS. In this phase, ADAMpro takes care of creating
the appropriate schema in the various systems involved.

3.2 Retrieval

Consider as an example the following query: A user is look-
ing for the top 100 images that were taken on the 15th of

20 I. Giangreco, H. Schuldt

Fig. 3 Architecture of
the ADAMpro system

March 2015 and that are similar to the given query im-
age. This query uses a Boolean predicate (i.e., date =
15/03/2015) and involves a similarity query (i.e., all ob-
jects similar to the query image or all feature vectors similar
to the query vector, respectively). The results should obvi-
ously be ordered by similarity and pruned at 100 results. As
shown in this example, a query in this setting may ask for all
objects similar to the given query object while at the same
time fulfilling all Boolean predicates.

ADAMpro supports both Boolean retrieval and kNN sim-
ilarity search. Retrieval based on Boolean predicates can be
applied on all structured fields (i.e., the structured meta-
data). The similarity search is performed using the feature
vectors. To increase the retrieval performance, various in-
dex structures for high-dimensional data are used (Sect. 3.3)
that prune results from the final result set (as they take
into account the limiting factor k of a kNN search), rather
than only ordering the results. Therefore, it is crucial that
the Boolean retrieval is always performed before the kNN
search, as otherwise results would get lost. Furthermore, by
first performing the (fast) Boolean retrieval, the similarity
search can avoid to consider results that do not adhere to the
Boolean predicate and by that improve the system’s perfor-
mance.

In Fig. 4, we show a high-level execution plan for a query
in the ADAMpro system: (1) If Boolean predicates are avail-
able in the query, the query is first sent to the relational
database that returns a result set fulfilling the Boolean pred-
icates (TID list). (2) Using the built-in index structures, the
query vector and the TID result set from step 1, in the second
step, the nearest result candidates are retrieved. This result
set contains possibly more than k elements and is not yet
sorted. Furthermore, the result elements do not yet contain
the exact distance values. (3) In the last step, using the TID

Fig. 4 General query plan in the ADAMpro system

set of step 2, the full feature vectors are retrieved and the
exact distances are computed. The results are then returned.

3.3 Index Structures

To support efficient k nearest neighbour retrieval, the
ADAMpro system implements Locality-Sensitive Hashing
(LSH) [8], Spectral Hashing (SH) [18] and the Vector
Approximation-File (VA-File) [17]. We detail the imple-
mented index structures in the following.

ADAMpro: Database Support for Big Multimedia Retrieval 21

3.3.1 Locality-Sensitive Hashing

The main idea of Locality-Sensitive Hashing [8] is to hash
each feature vector f using several hash functions and use the
hashes for finding near neighbours. Formally, using a hash
function, a d dimensional vector is mapped onto the space of
integers (ha(f) = R

d �→ N).A family H of hash functions is
called locality-sensitive or more specifically (R, cR, P1, P2)-
sensitive, if for any two feature vectors p, q ∈ R

d :

• if ||p − q|| ≤ R then PH[h(q) = h(p)] ≥ P1

• if ||p − q|| ≥ cR then PH[h(q) = h(p)] ≤ P2

with P1 > P2. Intuitively, if two vectors are close, the proba-
bility that they collide in their hash should be high; vice versa
if two vectors are far apart, the probability that they collide
in their hash should be small.

ADAMpro currently supports the Minkowski distances;
therefore, for LSH, we use the family of hash functions pro-
posed in [4] for lp norms, based on p-stable distributions. For
the hash function, we pick a random projection a ∈ R

d with
entries from a p-stable distribution, chop the line into equi-
width segments (w) and shift by a random value b ∈ [0, w).
Formally, the hashing function is given as ha,b(v) = � av+b

w �.
While LSH can be very efficient, it has to be noted that

the hashing approach yields both false positives (irrelevant
items in the result list) and false negatives (missing relevant
items).

3.3.2 Spectral Hashing

Spectral Hashing [18] belongs also to the family of hash-
based indexing methods, however, falls into the category
of ‘learning to hash’, i.e., the hash functions are generated
based on the data at hand. The idea of Spectral Hashing is
to find a hash function such that similar items are mapped to
similar hash codes, i.e., small distances in the feature space
should result in small Hamming distances between the codes.
The embedding is done using the eigenfunctions computed
along the principal component analysis (PCA) directions. In
essence, the algorithm will

1. find the principal components of the data using PCA
2. compute the Laplacian eigenfunctions with the smallest

eigenvalues along every PCA direction
3. threshold the eigenfunctions at zero to obtain the binary

codes

As with LSH, Spectral Hashing may yield both false positives
and false negatives.

3.3.3 Vector Approximation (VA) File

Behind Vector Approximation-File (VA-File) [17] lies the
idea to build an index that yields exact results and at the same

time is very performant. The authors argue that for increasing
dimensionality, any tree-based index structure degenerates to
a sequential scan. Therefore, the authors suggest to compress
the feature vectors in a quantization step to a short signature
that can quickly be scanned in a sequential manner and which
allows to early prune the result list. This is achieved by using
the signatures to compute at query time upper and lower
bounds to the distance and by that early exclude items that
are too distant. The upper and the lower bound of the distance
can be calculated with very few simple calculations and the
computation is therefore computationally less complex than
a full distant computation on the vectors. Furthermore, by
only reading the signatures less page accesses and therefore
I/O accesses are necessary, which would largely increase
the retrieval time. While the VA-File may degenerate to a
sequential scan, it will always return all true positives.

To create a VA signature, a fixed-length bit string for each
data point is generated. For that purpose, the data space is
divided in 2btot cells, where btot denotes the total length of
the bit signature, and the cells are enumerated in a binary
way. Each dimension d receives bd bits that are finally con-
catenated to create the full bit mask.

3.4 Progressive Query Results

Queries in multimedia retrieval systems are often compara-
bly long-running queries, as they cannot profit from tree-
based index structures that significantly reduce the search
time complexity. The reason for this is that feature vectors,
on which the queries are performed, do not have an abso-
lute ordering, but the ordering of results is only based on the
given query. [17] argues that with increasing dimensionality,
tree-based index structures degenerate to a sequential scan
of the data. Therefore, predicting the query time for indexes
for high-dimensional data is a very difficult task: Traditional
database systems consider for this the number of index and
data pages, the height of the index tree, the length of TID
lists in the leaf nodes of the tree, etc. For the indexes used
in ADAMpro, these parameters are not appropriate predictors
for the retrieval time. Consider, for example, a VA-File in-
dex: The algorithm behind the VA-File will scan all database
elements. However, by decreasing the size of the signature
to be scanned, the number of operations to be performed for
computing the final distance and consequently the number of
data pages to be loaded can be significantly decreased. Nev-
ertheless, using the number of index pages containing the
signature for estimating the retrieval time will actually not
correctly estimate the retrieval time, as in the most degener-
ate case, the VA-File has to consider all vectors stored on the
data pages. In particular, as this is not an inherent property of
the data only, but of the data in combination with the query
at hand, it is a hard task to predict the query time. Finally,

22 I. Giangreco, H. Schuldt

these predictions do not consider whether the indexes will
return exact or only approximate results.

For this reason, ADAMpro supports so-called progressive
querying that results in streamed result lists. Using this ap-
proach, ADAMpro runs at the same time all physical plans
to execute the same logical plan and returns the (possibly
approximate) answer(s) as soon as they become available
to the user. Starting the same query using different query
plans at the same time may decrease the efficiency of the en-
tire system, but it allows to trade computation (which is not
a bottleneck in modern environments) with query response
time. For a user who is waiting a short time for her results,
the results from the database may only be very approximate;
if the user, on the other hand, waits a bit longer, she may get
an answer that is more precise. In any case, she will get the
first possible answer as soon as it is available.

Consider, for clarification, the following example: A
query for the k nearest neighbours is started on all available
indexes: the Spectral Hashing index may return first, due to
its low query complexity, however the result may contain
false positives or lack true positives. Only in the next step,
the exact results from the VA-File index may arrive. On the
other hand, in very degenerate cases, a sequential scan may
return even before the VA-File index, ensuring that the user
gets the results as fast as possible.

3.5 Distribution

In a distributed setting, there is no obvious partitioning
scheme that can be generally applied to the feature data and
that allows to prune nodes at query time from the retrieval
without possibly loosing result elements (this is also a con-
sequence of the fact that tree-based methods do not work
well for feature vector data). While, for instance, text re-
trieval systems can choose to query only specific nodes that
are responsible for a certain keyword appearing in the query,
this approach is not easily adaptable to kNN retrieval in the
multimedia context. As a consequence, for a query, all data
items have to be considered, i.e., a query has to be processed
by all nodes and the sub-results of each node have finally
to be merged. The distribution of the VA-File, for instance,
has already been discussed in [16]. We have implemented
the same ideas for all index structures and we perform the
retrieval in ADAMpro in a map/reduce fashion.At query time,
the index structures are partitioned to be processed by multi-
ple workers (possibly residing on the same node). Each node
takes care of filtering out the k nearest neighbours and sends
the partial result list to the master node that merges the local
result lists to a global result list of nearest neighbours.

4 Performance Evaluation

4.1 Implementation

ADAMpro is implemented in Java/Scala using Apache Spark
1.52. For storing the metadata, we use PostgreSQL3, the
Apache Parquet columnar file format on the Hadoop file sys-
tem (HDFS) for the indexes, and Apache Cassandra 2.14 as
key-value store for storing the feature vectors. ADAMpro can
be accessed via a REST interface. LSH is implemented based
on E2LSH5 and Spectral Hashing is based on the Matlab code
provided by the authors6.

4.2 Experimental Setup

We have evaluated ADAMpro using artificially generated data
at various numbers of dimensions and collection sizes. The
evaluation setup involves the following parameters:

• collection size: 10K, 50K, 100K, 500K, 1M, 5M, 10M,
20M, 50M

• dimensions: 10, 50, 100, 200, 500
• execution plans: sequential scan, LSH scan, Spectral

Hashing scan, VA-File scan

The vectors added to the collection and the query vectors are
composed of uniformly distributed float values ∈ (0, 1). To
avoid anomalies in the results, we have run each experimental
setting five times and average over the different runs for the
same parameter setting. We run ADAMpro (and the systems
to compare it to) on Microsoft Windows Azure using one
DS13 instance running Ubuntu 14.04 with 8 cores and 56 GB
memory. For all experiments, the parameters for generating
the index (number of bits for signature, etc.) have been set
beforehand to a general value independent of the given data.

As a baseline, we use PostgreSQL 9.47 and MongoDB
3.08. In PostgreSQL, we use a custom function to compute
the distance between two float arrays and useORDER BY and
LIMIT to model a k nearest neighbour search. In MongoDB,
on the other hand, we make use of a server-based script that
computes in a map/reduce fashion the distance between a
query array and the vectors stored in the collection: the map
function emits the distance between the query vector and the
vector from the collection, whereas the reduce function sorts
and slices the results. Both baselines do not make use of any
index structure that could improve the kNN retrieval.

2http://spark.apache.org
3http://www.postgresql.org
4http://cassandra.apache.org
5http://www.mit.edu/∼andoni/LSH
6http://www.cs.huji.ac.il/∼yweiss/SpectralHashing
7http://www.postgresql.org
8http://www.mongodb.com

ADAMpro: Database Support for Big Multimedia Retrieval 23

Fig. 5 Performance evaluation showing the retrieval time at varying collection sizes for the various methods implemented in ADAMpro with
dimensionality of the feature vectors at 100. As a baseline, both PostgreSQL and MongoDB have been added to the plot. The experimental runs
are summarised by the mean time for each method. The plot is cut at 300 s; for all values above 300 s only the mean time is displayed

4.3 Evaluation of Single Execution Plans

We first consider the results of the evaluation for every sin-
gle execution plan: Fig. 5 shows a box plot that compares
the retrieval time at varying collection sizes with a fixed di-
mension of 100 for the feature vectors. Note that the plot
has been cut at 300 s and for all values above this threshold,
only the mean time is displayed. It can be seen that when
increasing the number of items, Locality Sensitive Hashing
and Spectral Hashing retrieve the results faster than the other
scanning methods (i.e., than theVA-File scan and the sequen-
tial scan). Furthermore, it can be seen that in our experiments
the VA-File always performs better than the sequential scan.
This means that given the data and the queries used in the
evaluation, we never get into the degenerate case in which a
sequential scan is truly necessary.

This behaviour is as expected, as LSH and SH allow for a
simple lookup, whereas theVA-File has to scan all signatures;
however, in exchange, theVA-File returns precise results. For
increasing collection size, in particular for collections that
contain more than 50K elements, our system performs in any
case better than performing a sequential scan in MongoDB
or PostgreSQL, the baseline to our evaluation.

As can be seen from Fig. 5, the retrieval time is obviously
dependent on the collection size. Moreover, as it can be seen
from Fig. 6, it also depends on the dimensionality. Figure 6
shows the retrieval time for increasing numbers of dimen-
sions of the feature vectors (at a fixed collection size of 1M

elements). As can be seen, the retrieval time increases with
the dimensionality of the feature vector.

4.4 Evaluation of Progressive Querying

Given these observations, we evaluate the behaviour of pro-
gressive querying. In particular, we show the results ex-
emplified at collection sizes of 100K (Fig. 7a) and 1M
(Fig. 7b) elements, respectively. In Fig. 7, we show at which
time after starting the query ADAMpro presents its results
to the user. In the original ADAMpro implementation, the
query execution is normally cancelled as soon as exact re-
sults (i.e., results from the sequential scan or from VA-File)
are retrieved; for this evaluation, to be able to show the times
of the various scans, we have adjusted the implementation
not to abort the execution (nevertheless, we have marked the
time at which ADAMpro would stop the further execution in
its normal setup with a red line). This means that even after
finding the final and exact results, we continue to execute the
query and measure the query time for the remaining execu-
tion plans.

In Fig. 7, it can be seen that predicting the query time
for the various index structures is a difficult task: it can-
not be clearly stated which index structure performs better
under which conditions. Particularly for small dimensional-
ities, it is not obvious whether LSH, Spectral Hashing or the
VA-File will return its results first. With increasing dimen-
sionality, both hashing based methods perform clearly better
than the VA-File and the sequential scan. Particularly for in-

24 I. Giangreco, H. Schuldt

Fig. 6 Performance evaluation showing the retrieval time at varying number of dimensions of the feature vectors stored in ADAMpro using the
various methods implemented at a collection size of 1M elements. The plot is again cut at 120 s and for all values above this threshold only the
mean time is displayed

Fig. 7 Timeline displaying the mean time at which the results using the various scans become available when using progressive querying for
various dimensions at a collection size of 1M. The red line denotes when ADAMpro would stop the further execution of the retrieval, as precise
results have been found

creasing dimensionality (and collection size), the progressive
querying approach becomes more and more important: If, in
a collection of 1M elements and feature vectors with a di-
mensionality of 200 elements, a user realises that the results
received after about 20 s are good enough or not worthy to
consider further, she may as well abort the further execution
of the query; on the other hand, she may wait to get precise
results after about 60 s.As expected, in all runs, the sequential
scan is the last execution plan that returns its query results.
Since our query handler is aware of the fact that VA-File

returns precise results, it would abort the further execution
after VA-File has answered.

5 Related Work

One of the earliest works attempting to integrate an informa-
tion retrieval system and a database management system can
be found in [15]. In this early work from 1980, the authors
note especially the lack of support for information retrieval

ADAMpro: Database Support for Big Multimedia Retrieval 25

queries in the query language and in the internal indexing
techniques of a database management system (DBMS). The
authors motivate the integration of the two systems into a
database management and information retrieval system (DB-
MIRS) by the need for queries supporting both formatted
(structured) and unformatted (unstructured) data retrieval.

An early integration of multimedia data in databases can
be found in the IBM project Garlic [3]. In here, the authors in-
tegrate multiple federated databases (some of those from the
IBM project QBIC) into one distributed system for multime-
dia data. The system is based on an object-oriented database
model. For query formulation, the authors extend the object-
oriented query language (OQL).

Similarly, [12] introduces Chabot, an information re-
trieval system using an underlying PostgreSQL database for
storing extracted features. The authors implement complex
types, user-defined indexes and user-defined functions into
the database to support information retrieval data types and
queries. Chabot not only supports text-based queries, but also
allows to improve results by providing content-based queries
(e.g., “images with some orange in it”). Both Garlic and
Chabot support Boolean predicates rather than similarity-
based queries.

[5] presents Mirror, a database supporting content-based
multimedia retrieval. The authors describe the engineering
factors for creating a distributed multimedia IR-DBMS that
uses Moa, a new relational algebraic framework based on the
non-first normal form (NF2). Mirror is implemented on top
of the object-relational DBMS Monet [2].

Further, DISIMA DBMS [13] is a DBMS that allows to
store syntactic features, i.e., color, shape, texture, and se-
mantic features, i.e., real world objects or concepts, in an
object-oriented data model. The system supports content-
based searches and searches on image semantics. The au-
thors implement an extended version of OQL for multimedia
objects (MOQL) and VisualMOQL, a visual counterpart to
MOQL. To increase the performance of the system, the au-
thors use three-dimensional extendible hashing (3DEH) that
allows to pre-filter images based, for instance, on the average
color.

[1] introduces a system that combines low-level (syntac-
tic) features with semantic features in a commercial object-
relational database. The database is extended by several User
Defined Types following the MPEG-7 standard descriptors,
and operations implemented in PL/SQL, e.g., to evaluate sim-
ilarity measures.

In [11], the authors make use of the map/reduce paradigm
for querying large sets of image data in a cloud environment.
The authors use an indexing method called extended Cluster
Pruning (eCP) for indexing the feature data and port it to
map/reduce on the Hadoop platform.

6 Conclusion

In this paper, we have presented ADAMpro, a modular sys-
tem that manages large multimedia collections. ADAMpro

flexibly supports various storage systems and indexing struc-
tures (LSH, Spectral Hashing, VA-File) to increase the over-
all query efficiency and reduce response time. Furthermore,
with ADAMpro, we have presented the concept of progressive
queries that embraces the idea of returning a result stream to
the user: depending on how long the user waits, the system
will refine the results and produce correct instead of only
approximate results.

In our future work, we plan to consider different distribu-
tion scenarios for ADAMpro and we plan to further increase
the collection size and dimensionality.

Acknowledgments This work was partly supported by the Swiss Na-
tional Science Foundation in the context of the CHIST-ERA project
IMOTION, contract no. 20CH21_151571. Furthermore, the authors
would like to thank the reviewers for their time in reviewing our
manuscript and for their helpful comments to improve this paper.

References

1. Alvez CE, Vecchietti AR (2010) Combining Semantic and Con-
tent Based Image Retrieval in ORDBMS. In: Rossitza Setchi, Ivan
Jordanov, Robert J. Howlett and Lakhmi C. Jain (eds) Knowledge-
Based and intelligent information and engineering Systems, 14th
International Conference, KES 2010, Cardiff, UK, September 8–
10, 2010, Proceedings, Part II, volume 6277 of Lecture notes in
computer science. Springer, Berlin, pp 43–55

2. Boncz PA, Kersten ML (1994) Monet. An impressionist sketch of
an advanced database system. In: In Proc. IEEE BIWIT workshop,
San Sebastian, Spain

3. Carey MJ, Haas LM, Schwarz PM, Arya M, Cody WF, Fagin R,
Flickner M, Luniewski A, Niblack W, Petkovic D, Thomas J II,
Williams JH, Wimmers EL (1995) Towards heterogeneous multi-
media information systems: The Garlic Approach. In: RIDEDOM
1995: International workshop on research issues in data engineer-
ing - Distributed object management. Taipei, Taiwan, pp 124–131

4. Datar M, Immorlica N, Indyk P, Mirrokni VS (2004) Locality-
sensitive hashing scheme based on p-stable distributions. In: Pro-
ceedings of the 20th ACM Symposium on Computational Geome-
try, Brooklyn, NewYork, USA, June 8-11, 2004, SCG ’04, pp 253–
262

5. de Vries AP, Blanken HM (1998) Database technology and the
management of multimedia data in the mirror project. In: Proc.
SPIE. International Society for Optics and Photonics, vol 3527,
pp 443–453

6. Giangreco I, Al Kabary I, Schuldt H (2014) ADAM - A database
and information retrieval system for big multimedia collections.
In: Proceedings of the 2014 IEEE International Congress on Big
Data, Anchorage, AK, USA, June/July 2014. IEEE, pp 406–413

7. Giangreco I, Al Kabary I, Schuldt H (2014) ADAM : a system for
jointly providing IR and database queries in large-scale multimedia
retrieval. In: Proceedings of the 37th International ACM Confer-
ence on Research and Development in Information Retrieval (SI-
GIR’14), Gold Coast, Australia, July 2014. ACM, pp 1257–1258

26 I. Giangreco, H. Schuldt

8. Indyk P, Motwani R (1998) Approximate nearest neighbors: to-
wards removing the curse of dimensionality. In: Proceedings of
the 13th Annual ACM Symposium on the Theory of Computing,
Dallas, Texas, USA, pp 604–613

9. Karpathy A, Li F-F (2014) Deep visual-semantic alignments for
generating image descriptions. CoRR, abs/1412.2306

10. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classifica-
tion with deep convolutional neural networks. In: Pereira F, Burges
CJC, Bottou L, Weinberger KQ (eds) Advances in neural informa-
tion processing systems 25. Curran Associates, Inc., pp 1097–1105

11. Moise D, Shestakov D, Gudmundsson GT, Amsaleg L (2013) In-
dexing and searching 100 m images with map-reduce. In: Interna-
tional Conference on multimedia retrieval, ICMR’13, Dallas, TX,
USA, April 16–19, 2013, pp 17–24

12. Ogle V, Stonebraker M (1995) Chabot: Retrieval from a relational
database of images. Computer 28(9):40–48

13. Oria V, Tamer Özsu M, Iglinski P (2001) Querying images in the
DISIMA DBMS. In: MIS 2001: workshop on multimedia infor-
mation systems, Capri, Italy, pp 89–98

14. Rossetto L, Giangreco I, Schuldt H, Dupont S, Seddati O, Sez-
gin M, Sahillioğlu Y (2015) IMOTION - a content-based video
retrieval engine. In: Proceedings of the 21st International Confer-
ence on multimedia modeling (MMM’15), Part II, Springer, Syd-
ney, Australia, January 2015, pp 255–260

15. Schek H-J (1980) Methods for the administration of textual data
in database systems. In: Oddy RN, Robertson SE, van Rijsbergen
CJ, Williams PW (eds) SIGIR 1980: International Conference on
Research and development in information retrieval, Cambridge,
England. Butterworth & Co, pp 218–235

16. Weber R, Böhm K, Schek H-J (2000) Interactive-time similarity
search for large image collections using parallel VA-files. In: Re-
search and advanced technology for digital libraries, 4th Euro-
pean Conference, ECDL 2000, Lisbon, Portugal, September 18–
20, 2000, Proceedings, pp 83–92

17. Weber R, Schek H-J, Blott S (1998)A quantitative analysis and per-
formance study for similarity-search methods in high-dimensional
spaces. In: VLDB 1998: International Conference on very large
data bases, New York, USA, pp 194–205

18. Weiss Y, Torralba A, Fergus R (2008) Spectral hashing. In: Ad-
vances in neural information processing systems 21, Proceedings
of the Twenty-Second Annual Conference on neural information
processing systems, Vancouver, British Columbia, Canada, De-
cember 8–11 , pp 1753–1760

	ADAMpro: Database Support for Big Multimedia Retrieval
	1 Introduction
	2 IMOTION: A Sample Application
	3 Architecture
	3.1 Schema Definition and Data Insertion
	3.2 Retrieval
	3.3 Index Structures
	3.3.1 Locality-Sensitive Hashing
	3.3.2 Spectral Hashing
	3.3.3 Vector Approximation (VA) File

	3.4 Progressive Query Results
	3.5 Distribution

	4 Performance Evaluation
	4.1 Implementation
	4.2 Experimental Setup
	4.3 Evaluation of Single Execution Plans
	4.4 Evaluation of Progressive Querying

	5 Related Work
	6 Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (Coated FOGRA27 \050ISO 12647-2:2004\051)
 /PDFXOutputConditionIdentifier (FOGRA27)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[SpringerOnline_1003_Acro8]'] Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (Coated FOGRA27 \(ISO 12647-2:2004\))
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

