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Abstract Nowadays, the performance of processors is pri-
marily bound by a fixed energy budget, the power wall. This
forces hardware vendors to optimize processors for specific
tasks, which leads to an increasingly heterogeneous hardware
landscape. Although efficient algorithms for modern proces-
sors such as GPUs are heavily investigated, we also need to
prepare the database optimizer to handle computations on
heterogeneous processors. GPUs are an interesting base for
case studies, because they already offer many difficulties we
will face tomorrow.

In this paper, we present CoGaDB, a main-memory
DBMS with built-in GPU acceleration, which is optimized
for OLAP workloads. CoGaDB uses the self-tuning opti-
mizer framework HyPE to build a hardware-oblivious opti-
mizer, which learns cost models for database operators and
efficiently distributes a workload on available processors.
Furthermore, CoGaDB implements efficient algorithms on
CPU and GPU and efficiently supports star joins. We show
in this paper, how these novel techniques interact with each
other in a single system. Our evaluation shows that CoGaDB
quickly adapts to the underlying hardware by increasing the
accuracy of its cost models at runtime.
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1 Introduction

For the past years, modern processors are no longer primarily
bound by transistor density but by a fixed energy budget, the
power wall [8]. Thus, hardware vendors are forced to create
specialized processing devices, which are optimized for a
certain application field to further increase the performance
of applications. Therefore, the hardware landscape becomes
more heterogeneous, a trend that is expected to continue in
the future [8]. We can already observe this trend today: Every
desktop machine has a Graphics Processing Unit (GPU),
a specialized co-processor for compute-intensive rendering
tasks, which is also capable of general purpose processing.
Therefore, GPUs are the pioneers of co-processing, followed
by many alternative processor designs, such as Multiple In-
tegrated Cores (MICs) or Field Programmable Gate Arrays
(FPGAs).

In order to prepare database systems for tomorrows hete-
rogeneous hardware landscape, many approaches were de-
veloped to efficiently execute database operators on GPUs.
However, existing approaches and database systems making
use of GPU acceleration have a common problem: They
need to decide for each database operator, on which hete-
rogeneous processor it should be executed. Typically, each
system has a set of analytical cost models, which model the
performance behavior of an operator on a particular proces-
sor (e.g., CPUs [25] or GPUs [17]). With an increasingly
heterogeneous hardware landscape, this approach becomes
more and more complex. Additionally, the database optimi-
zer needs to take into account query plans with different
operator placements, which increases the size of the optimi-
zation space. Some heterogeneous processors have their own
dedicated device memory, which requires manual data place-
ment and careful consideration, under which circumstances
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data transfers will pay off. Since GPUs already offer these
difficulties today, we argue that they are a suitable platform
to study the problems every database system will face in the
future.

However, we need to develop solutions that will scale also
for future hardware. Thus, we need to address three basic
problems:

1. Development of efficient algorithms for a set of hetero-
geneous processors.

2. Estimating the cost to execute a certain database operator
on a certain processor, without detailed knowledge of the
underlying hardware.

3. Efficiently balance a workload between all processors,
where each heterogeneous processor performs the task it
is most suited for.

In this paper, we present our system CoGaDB1, a column-
oriented, GPU-accelerated DBMS, which puts together our
existing work in a high-performance OLAP engine that ma-
kes efficient use of GPUs to accelerate analytical query pro-
cessing. Furthermore, we contribute a discussion of our de-
sign decisions, provide insights in CoGaDB’s parallel query
processor and CoGaDB’s Hybrid Query Processing Engine
(HyPE), which learns cost models for heterogeneous proces-
sor environments and optimizes query plans under conside-
ration of special properties of GPUs. Thus, CoGaDB is the
first DBMS that addresses problem 2 and problem 3. Problem
1 is the main focus of another system: Ocelot [19].

The remainder of the paper is structured as follows. We
discuss background information on main-memory DBMSs
and GPUs in Sect. 2. In Sect. 3, we will provide an overview
of CoGaDB and discuss implementation details of the query
processor in Sect. 4. Then, in Sect. 5, we present our optimi-
zer HyPE, followed by a performance evaluation in Sect. 6.
Afterwards, we outline our future development in Sect. 7,
present related work in Sect. 8, and conclude in Sect. 9.

2 Background

In this section, we provide background information on main-
memory DBMSs and GPUs.

2.1 Main-Memory DBMSs

With increasing capacity of main memory, it is possible to
keep a large fraction of a database in memory. Thus, the per-
formance bottleneck shifts from disk access to main-memory
access, the memory wall [24]. For main-memory DBMSs,
the architecture was heavily revised from a tuple-at-a-time

1http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/

volcano-style query processor to operator-at-a-time bulk pro-
cessing and from a row-oriented data layout to columnar sto-
rage.2 This increases the useful work per CPU cycle [7] and
makes more efficient use of caches [24]. Furthermore, most
systems compress data using light-weight compression tech-
niques (e.g., dictionary encoding) to reduce the data volume
and the required memory bandwidth for an operator [3].

2.2 GPUs

GPUs are specialized co-processors that are optimized for
compute-intensive tasks. Thus, they spend most of their tran-
sistors on light-weight cores to allow for massive parallelism.
Additionally, multiple cores are grouped in symmetric multi-
processors, which share the same instruction decoder. Thus,
each multiprocessor natively implements the Single Instruc-
tion Multiple Data (SIMD) approach. In order to provide
enough memory bandwidth to the multiprocessors, GPUs
typically have a dedicated, high-bandwidth memory, which
reduces the impact of the memory wall on the system.3 Ho-
wever, GPUs with dedicated memory have a relatively small
capacity compared to the CPUs main memory to keep rea-
sonable monetary costs for a GPU. Thus, we can not cache
the entire database in the GPUs memory but have to rely on
a data placement strategy to transfer data between CPUs and
GPUs. Data placement is especially important, because data
transfers between CPU and GPU is the major performance
bottleneck [16].

3 CoGaDB: A GPU-accelerated DBMS

In this section, we provide an overview of CoGaDB’s ar-
chitecture, including details on storage manager, processing
and operator model, and GPU memory management. We il-
lustrate CoGaDB’s architecture in Fig. 1.

3.1 System Overview

CoGaDB’s primary goal is to proof that we can optimize que-
ries for heterogeneous processor machines without knowing
the details of database algorithms and processors. Thus, we
can build a query optimizer that scales with the increasing
number of heterogeneous processors in today’s and future
machines without increasing maintenance effort. Since GPU
acceleration is most beneficial for warehousing workloads,
we designed CoGaDB as relational GPU-accelerated OLAP

2Many main-memory OLTP systems use a row-oriented data layout.
3We are aware of Accelerated Processing Units (APUs) from AMD,
which integrate a CPU and a GPU on a single chip. However, APUs
increase only the raw processing power of the machine, not memory
bandwidth.

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/gpu/cogadb/


The Design and Implementation of CoGaDB 201

Fig. 1 CoGaDB’s Architecture

engine. In order to quickly build a working prototype, we sup-
port currently only three data types: 32-Bit integers, 32-Bit
floats, and variable-length strings. However, these data types
are already sufficient to support the Star Schema Benchmark
(SSBM), a popular OLAP benchmark [38].

In order to provide efficient data processing capabili-
ties, CoGaDB makes use of parallel libraries, such as In-
tel’s Threading Building Blocks (TBB) library4 on the CPU
and the Thrust library5 on the GPU. As GPGPU framework,
we decided to use NVIDIA’s CUDA framework, because it
has the most mature development toolkit and we expect a
vendor-specific framework to deliver the best performance.

3.2 Storage Manager

As in every DBMS, the backbone of CoGaDB is its storage
manager. Since we primarily target OLAP workloads, we
choose a columnar data layout, because storing data column-
wise allows for more efficient use of the memory hierarchy
and higher compression rates. The work of He and others
showed that GPU acceleration is not beneficial in case we
have to fetch the data from disk [17]. Thus, another important
consideration is that GPU acceleration is only beneficial in
case we have all required data to answer a query cached in
main memory. Therefore, CoGaDB’s storage manager is an
in-memory column store. In case the database fits not entirely
into main memory, CoGaDB relies on the operating systems
virtual memory management to swap cold data to disk.

3.3 Processing and Operator Model

As already mentioned, CoGaDB should be able to use all
available processors to improve the performance of query
processing. Therefore, we need a work unit on which we can
build our operator placement. At the query level, a single
processor is generally not suited for all operations contained
in a query. Thus, we choose the operator level as granularity,

4https://www.threadingbuildingblocks.org.
5http://thrust.github.io.

because we can place operators to a processor suitable for
that operator type.

There are basically two ways how to process queries: Pi-
pelining, where each operator requests the next block of rows
and bulk processing, where each operator consumes its input
and materializes its output. In a heterogeneous processor ma-
chine, where we want to avoid data transfers between proces-
sors, we need to ensure that we assign each processor enough
work in order to use the system efficiently (intra-operator par-
allelism). Furthermore, we can achieve parallelism between
operators (inter-operator parallelism) if we construct bushy
query plans and process independent sub-plans in parallel.
In summary, CoGaDB uses the operator-at-a-time proces-
sing model and combines it with operator-based scheduling
to distribute a set of queries on all available processing re-
sources.

3.4 GPU Memory Management

A processor with dedicated memory requires a data place-
ment strategy that moves data to the memory where it is
needed. In CoGaDB, this is handled by the central GPU buf-
fer manager. All GPU operators request their input columns
from the buffer manager. If a column is not dormant in the
GPUs memory, it is transferred to the GPU. The same prin-
ciple is used for additional access structures, such as join
indexes.

3.4.1 Memory Allocation Policy

Each GPU operator needs additional memory for data pro-
cessing, such as memory for the result buffer and temporary
data structures. There are two basic memory allocation strate-
gies GPU operators can use. First, allocate the complete me-
mory it needs to complete the computation (pre-allocation).
Second, allocate memory as late as possible (allocate as nee-
ded). The first strategy avoids GPU operator abortions due
to out-of-memory conditions during processing, whereas the
allocate-as-needed strategy uses the GPU memory more eco-
nomical, allowing for concurrently executed GPU operators
or a larger GPU buffer for recently used columns. Additio-
nally, the pre-allocation strategy is hard to implement be-
cause it is difficult to accurately estimate the result size of an
operator. Thus, CoGaDB uses an allocate-as-needed strategy
for memory allocation.

3.4.2 Memory Deallocation Policy

Since the memory capacity of a GPU is limited compared
to the CPUs memory, it is likely that a GPU operator using
the allocate-as-needed strategy will run out of memory while
processing an operator, especially in workloads with parallel
queries. In this case, cached data has to be removed from

https://www.threadingbuildingblocks.org
http://thrust.github.io
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the GPU memory. CoGaDB first removes cached columns,
because it is relatively cheap to copy them again to the GPU
compared to join indexes. In case the removal of columns
did not free enough memory, the cached join indexes are
removed from the GPU memory.

3.4.3 Fault Tolerance

In case the GPU operator still has insufficient GPU memory
after the memory cleanup, it has two options. First, it can wait
until enough memory is available for allocation. Second, it
can abort, discarding the work it has done so far and starting
a fall-back handler that processes the operator on the CPU.
With the first option, however, we can run into a similar
situation as two transactions waiting for two locks: A cyclic
dependency may occur, which causes a deadlock. Consider
two GPU operators O1 and O2. Operator O1 and O2 allocate
memory for their first processing step. Then, for a second
processing step, both operators try to allocate more memory,
but both fail, because O1 and O2 have already allocated GPU
memory in the first processing step.

Thus, CoGaDB uses the second strategy, aborting a GPU
operator and restarting the operator on the CPU. This strat-
egy is similar to timestamp ordering of transactions, because
the operator that comes to late (runs out of memory) is abor-
ted. However, depending on the workload, the costs due to
operator abortions can be significant.

4 Query Processor

In this section, we present details on CoGaDB’s query pro-
cessor, including operators, materialization strategy, operator
parallelism, and parallel star joins.

4.1 Operators

We now elaborate details on the relational operators imple-
mented in CoGaDB.

4.1.1 Selection

On the CPU, we use a parallel version of the predicated SIMD
scan from Zhou and Ross [40]. Each thread scans its own par-
tition of the input column and writes its matching TIDs to
a local output buffer. However, CoGaDB requires that se-
lection operators return a sorted continuous array of TIDs,
so we need to combine the local results. Since each thread
counts its number of matches, we can use this information
to compute the size of the complete result and the memory
region, where each thread has to copy their results into. The
last step is also done in parallel.

Fig. 2 Parallel selection on GPUs for predicate val < 5

On the GPU, CoGaDB uses the parallel selection of He
and others [17], which we illustrate in Fig. 2. First, the ope-
rator performs a first scan of the column to compute a flag
array, where a flag is one, if and only if the predicate mat-
ched the row. Second, a prefix sum is computed from the flag
array to obtain the result size and the write positions of every
thread in the output buffer. Finally, the input column is read
again but this time each thread knows the position where it
has to write its result.

CoGaDB also supports string columns on the GPU by
applying dictionary compression, which allows CoGaDB to
work on compressed values. Since the dictionary is not sor-
ted, we can currently evaluate only is-equal and is-unequal
predicates.

4.1.2 Complex Selection

Many real world queries do not filter one column only but
define complex predicates.

Heimel and others identify three strategies for evalua-
ting complex predicates [20]: chaining operators, complex
predicate interpretation, and dynamic code generation and
compilation. The chaining operators strategy builds a query
plan where each predicate is evaluated independently, fol-
lowed by operators that merge the result (e.g., combining
bitmaps or lists of TIDs). Complex predicate interpretation
stores the predicates in an abstract syntax tree and evaluates
all predicates directly with a single pass over a table. Dy-
namic code generation and compilation creates a kernel that
directly evaluates all predicates. Similar to complex predi-
cate interpretation, the query compilation technique needs
only a single pass over the data. However, query compilation
suffers from high upfront costs of compiling a kernel, whe-
reas complex predicate interpretation requires a large kernel
with several conditional statements, which leads to branch
divergence and, hence, inefficiency on GPUs.
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In contrast, the chaining operators strategy allows Co-
GaDB to use very efficient GPU kernels to evaluate single
predicates and to perform the result combination. Scans on
different columns can be evaluated on separate processors
in parallel to hide the costs of multiple passes over the data.
Since CoGaDB’s selection operators return sorted lists of
TIDs, we use union and intersection operators to compute
disjunctions and conjunctions, respectively. We use as set
operators the parallel GPU algorithms of the Thrust library.

4.1.3 Join

The most time-intensive operator during relational OLAP is
the computation of joins between the fact table and a di-
mension table. Thus, it is crucial to support efficient join
implementations. CoGaDB offers three different join types:
a generic join, a primary-key/foreign-key join (PK-FK join),
and a fetch join.The generic join makes no assumptions about
the input tables and is always applicable. However, generic
joins can degenerate to cross joins, which produce very large
output results that do not fit in GPU memory. Since this join
type is typically not used in CoGaDB, we implemented only
a generic CPU hash join.

The most common join type in OLAP workloads is the
PK-FK join. Since we know that for PK-FK joins the number
of result rows is the number of foreign keys in the foreign
key table, we use an optimized version of the indexed-nested-
loop join of He and others [17] for the GPU. The algorithm
first sorts the primary-key column and, second, assigns all
threads a number of foreign keys, which are looked up in the
sorted primary key column using binary search. Therefore,
we skip the phase where each thread first counts their mat-
ching result tuples. On the CPU, we use a hash join, where we
build the hash table serially, and perform the pruning phase
in parallel.

For OLAP queries, it is often more efficient to pre-filter a
dimension table, before performing a join with the fact table.
However, in this case, CoGaDB cannot use a PK-FK join,
because the PK-FK relationship may be broken. However,
we can pre-compute a join index, and use the matching TIDs
of the dimension table to extract the matching TIDs from
the fact table. This optimization proved to be very efficient,
on the CPU and the GPU. Since a fetch join is basically a
modified version of the merge step from a sort-merge join,
we adapted the merging algorithm of He and others [17].

In case more than one join is involved in a query, Co-
GaDB checks whether the join can be combined in a star
join [31], where n dimension tables are joined with a fact
table. We provide more details on CoGaDB’s star join in
Sect. 4.4.

Fig. 3 Packing values of multiple columns to group a table by columns
A and B with a single sorting step

4.1.4 Sorting

Sorting is an important building block of many operators,
such as joins. CoGaDB uses the parallel sort primitive of In-
tel’s TBB library on the CPU and the Thrust library on the
GPU. For order by statements, CoGaDB needs to sort a table
by multiple columns. For this, we start sorting a group of co-
lumns A1, . . ., An first by An, then we retrieve the resulting
TID list and fetch the values An−1 to obtain the reordered
version of A

′
n−1. We continue this until we sorted A1, which

results in the final TID list that is the correct sorting order of
all groups. Note that this requires a stable sorting algorithm.
This approach may seem inefficient, but note that this primi-
tive is used for the final table sort specified in SQL’s order-by
clause, which typically does not exceed several hundred tup-
les. Furthermore, we can perform the sorting on the CPU and
the GPU.

4.1.5 Group By

CoGaDB uses sorting based grouping algorithms, one ge-
neric and one specialized algorithm. The generic algorithm
uses the multi-column sort algorithm. A typical optimization
is to pack a group of columns in a single 32-Bit integer (or
another bank size) [22, 33]. Since we sort by the group keys
and need the corresponding TID list, we need another 32 Bit
as payload. Then, a 32-Bit group key is stored in the upper
32 Bit of a 64-Bit integer and the payload is stored in the
lower 32 Bit. We illustrate this principle in Fig. 3. Then, we
sort the array of 64-Bit values, extract the lower 32 Bit as
result TID list, and obtain a correct grouping with a single
sort operation, either on the CPU or the GPU.
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4.1.6 Aggregation and Arithmetic Operations

Based on an input grouping, an aggregation combines data
from a column using an aggregation function. CoGaDB sup-
ports as aggregation function SUM, COUNT, MIN, and
MAX. For the CPU, we use a serial reduction function, whe-
reas we use a parallel reduction function from the Thrust
library on the GPU. Since many queries do not just apply an
aggregation function, but also perform column algebra ope-
rations, we need to efficiently express complex aggregation
functions (e.g., select sum(A+B/C) . . . ). Similar to other
column stores (e.g., MonetDB [21]), CoGaDB has separate
operators for column arithmetic and constructs for an algebra
expression an operator tree that computes the result.

4.2 Materialization Strategy

In every column store, there is a time where the internal
columnar representation has to be transformed to a row-wise
representation. There are two basic options: Reconstructing
tuples as early as possible (early materialization) or as late as
possible (late materialization). Manegold and others [26] and
Abadi and others [1] found that late materialization is more
efficient than early materialization in case queries contain
highly selective predicates, and the data is aggregated by
a query [1], which is typically the case for OLAP queries.
Thus, CoGaDB uses late materialization by transforming the
result table in a row-oriented table.

4.3 Operator Parallelism

In a bulk processor, each operator can use intra-operator par-
allelism to increase its efficiency.Another form of parallelism
is building bushy query execution plans, where independent
sub-plans can be processed in parallel. CoGaDB exploits
both types of parallelism, but, in our implementation, we
gave priority to inter-operator parallelism, because high par-
allelism inside operators can lead to over-utilization of pro-
cessors in case we have large bushy query plans. We expect
that advanced approaches such as morsel-driven parallelism
[23] or the admission control mechanism of DB2 BLU [34]
can avoid over-utilization more efficiently.

While parallel execution of threads is a zero-effort solu-
tion on CPUs, we have to add another mechanism on GPUs.
CUDA uses the concept of streams to structure parallelism
between kernels. Two kernels can be executed in parallel, if
and only if they are queued in two different CUDA streams
and no kernel is assigned to the default stream 0 [30]. The
same principle goes for interleaving copy operations with
kernel executions, another important optimization for GPU-
accelerated DBMSs.

We achieve inter-operator parallelism on GPUs by crea-
ting n CUDA streams managed by a stream manager. Each

Fig. 4 Query plan for star join for SSBM query 2.1

GPU operator requests a stream, and the stream manager
assigns a stream from a fixed set of streams using the round-
robin strategy.

4.4 Parallel Star Joins

In case a query contains multiple joins between the fact table
and the dimension tables, the joins can be rewritten into a
star join, which can process each join between the fact ta-
ble and a dimension table in parallel [31]. Abadi and others
proposed the invisible join [2], an extension of O‘Neil’s ap-
proach [31]. The invisible join is a late materialized join,
which reduces the number of expensive random accesses on
dimension tables (e.g., with an unsorted position list) [1].

The invisible join works in three phases. First, the predi-
cates of the query are applied to the dimension tables. For
each dimension table, we get a list of dimension table keys
and insert them into a hash table. In the second step, the cor-
responding foreign key in the fact table are pruned in the hash
table of the corresponding dimension and produces a bitmap
indicating the matching rows of the fact table for one dimen-
sion. Then, the bitmaps of all dimensions are combined using
a bitwise AND operation. In the third phase, the matching
rows in the fact tables are looked up in the dimension tables
to construct the result of the star join.

CoGaDB implements a variant of the invisible join, where
the building of the hash table and pruning of the fact table is
replaced by a fetch join from a join index. This significantly
improved the performance, especially for large dimension
tables. The extracted keys from the join index are converted
in a bitmap and combined by a bitwise AND operation. The
resulting bitmap is converted back to a position list, which is
the output format expected by CoGaDB’s query processor.
In a final step, the result table of the star join is computed
by joining the filtered fact table with the filtered dimension
tables. CoGaDB’s query processor can perform any step from
phase one and two of the invisible join on the CPU or the
GPU. We illustrate the first two steps in Fig. 4.
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Fig. 5 Architecture of HyPE, taken from [11]

Since query plans for the star join operators are very large,
bushy trees, CoGaDB’s query optimizer executes different
parts of the invisible join on the CPU and the GPU, which
leads to inter-device parallelism.

5 Hybrid Query Optimizer

Up to now, we discussed how CoGaDB’s query processor
executes queries. In a heterogeneous processor system, it is
crucial that the processed plan makes efficient use of the com-
putational resources and available memory bandwidth on all
processors. In order to achieve this goal, CoGaDB uses our
Hybrid Query Processing Engine (HyPE) [9, 11] for the phy-
sical optimization and operator placement. HyPE consists of
three components: the estimation component, the algorithm
selector, and the hybrid query optimizer (cf. Fig. 5).

5.1 Estimation Component

HyPE aims to be hardware- and algorithm-oblivious, which
means that it requires minimal knowledge of the underlying
processors or the implementation details of database ope-
rators. To achieve this goal, the estimation component uses
simple regression models (e.g., least squares) to approximate
the performance behavior of database algorithms on diffe-
rent hardware w.r.t. properties of the input data (e.g., data
size or selectivity). The algorithm runtimes of the first que-
ries executed by CoGaDB serve as training data, and HyPE
continuously monitors algorithm runtimes of queries and re-
fines cost models at runtime to improve the model’s accuracy.
Since CoGaDB uses a bulk processor, the overhead of this
continuous monitoring and adaption is minimal, because it
is done once for each operator invocation.

5.2 Processor Allocation and Algorithm Selection

Based on the cost estimator, the optimizer needs to decide for
each operator in a query plan, on which processor it should

execute the operator, and which algorithm should be used
[10]. For each operation, the available algorithms are fetched
from a pool of algorithms. Then, an estimation component
computes for each algorithm an estimated execution time. Fi-
nally, a decision component selects an algorithm according
to a user-specified optimization heuristic.After the algorithm
finished execution, it returns its execution time to the esti-
mation component in order to refine future estimations. We
summarize HyPE’s decision model in Fig. 6. Thus, HyPE
solves the processor allocation and the algorithm-selection
problem in a single step, because it decides for a certain al-
gorithm, which is specific to a certain processor type (e.g.,
CPU or GPU). In case of multiple devices, HyPE assigns un-
ique identifiers to each algorithm that allows us to pin-point
which processor belongs to which algorithm. The optimal
algorithm is selected according to an optimization strategy.
By default, HyPE uses Waiting Time Aware Response Time
(WTAR) [12], a scheduling strategy that considers the load
on each processor and the estimated execution times of all al-
gorithms for a certain operator. HyPE keeps track, on which
operator was assigned to which processor, and uses the ac-
cumulated estimated execution times of all operators inside
a ready queue as measure for the load condition on a proces-
sor, as illustrated by Fig. 7. The processor that is expected
to have the minimal response time is used to execute the
operator [12]. This allows us to automatically balance the
operators in a query plan on available processors.

5.3 Hybrid Query Optimization

The query optimizer assigns for each operator in a query plan
a suitable target processor and algorithm. HyPE supports two
query optimization modes. In the first mode, HyPE traverses
the query plan and requests operator placements from the
algorithm selector [9]. Although this is a greedy strategy, it
does consider the load on the processors, in case the WTAR
optimization strategy is used. Interestingly, the greedy stra-
tegy coupled with WTAR schedules queries in a way that
independent sub-plans are evaluated in parallel on different
processors, which can lead to significant performance gains.
In the second mode, HyPE creates a set of candidate plans
and performs a classical cost-based optimization, where the
costs are not cardinalities, but (estimated) execution times.
This approach often suffers from poor cardinality estimates,
but this problem is not specific to CoGaDB, it is inherent in
all DBMSs.

6 Performance Evaluation

After describing the architectural design considerations and
implementation details, we now conduct a performance eva-
luation in order to show the efficiency of CoGaDB.
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Fig. 6 HyPE’s underlying
decision model, taken from [10]

Fig. 7 Load Tracking with Ready Queues, taken from [12]

6.1 Evaluation Setup

We conduct our experiments on a machine with an Intel®

Core™i7-4770 CPU having 4 cores (@3.40 GHz) with
24-GB of main memory and a GeForce® GTX 660 GPU
(@980 MHz) with 1.5-GB device memory.6 Since CoGaDB
is optimized for OLAP benchmarks, we use the Star Schema
Benchmark [32], which is a popular OLAP benchmark fre-
quently used for performance evaluations [23, 38]. For all
experiments, we use one database with scale factor 15. The-
refore, the complete database does not fit into the GPUs me-
mory.

Fig. 8 Response times of CoGaDB for the SSBM with scale factor 15

6Hyper-threading was enabled during our experiments.

6.2 Experiments

In our experiments, we want to answer two questions:

1. Can GPU acceleration significantly improve the perfor-
mance of query processing, even if the database does not
fit in the GPU memory?

2. Can we achieve stable performance in a GPU-accelerated
DBMS, in case we use a learning-based optimizer with no
detailed information about the processors of a machine?

6.2.1 Performance Gain of GPU Acceleration

We executed a workload containing all SSBM queries 100
times and executed first all queries of the benchmark. Then,
we repeated this process until we executed all queries 100
times. Note that the first run of the SSBM workload was used
as warm-up queries, where performance is not considered.
We computed the average of the remaining 99 measurements
and show the performance of CoGaDB for each query of the
SSBM in Fig. 8 in CPU-only mode and with GPU accele-
ration. As baseline, we included the results of MonetDB, a
highly optimized main-memory DBMS [21].

We observe that CoGaDB’s performance is significantly
improved by GPU acceleration, where query 3.3 benefits the
most from the GPU (by factor 1.8), whereas query 1.1 has
the least benefit from GPU acceleration (by factor 1.15). Fur-
thermore, we compare the performance of CoGaDB with
MonetDB. For the experiments with MonetDB, we used Mo-
netDB 11.17.13 and optimized it for performance as follows.
First, we configured MonetDB to be compiled with optimi-
zation and without debugging. Second, we set the database
to read-only mode. This allows MonetDB to use more effi-
cient MAL plans. Finally, we set the OID size to 32 Bit to be
comparable with the 32-Bit TID size of CoGaDB.

We can see that CoGaDB’s performance is in the same
order of magnitude as that of MonetDB. Hence, CoGaDB
is a suitable evaluation platform for query optimization and
load balancing in heterogeneous processor systems. Howe-
ver, MonetDB is still significantly faster for some queries
(e.g., Q1.1, Q2.1, Q3.1-Q3.3, and Q4.2) even if we enable
GPU acceleration in CoGaDB. This is because MonetDB is
a highly optimized system that contains many heavily tuned
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algorithms. If these optimizations would be included in Co-
GaDB, we could expect CoGaDB to be as fast as (or even
outperform) MonetDB. There are two more major reasons
for the difference in performance. The first is in the way the
two engines parallelize queries, and the second is the data
transfer bottleneck.

Parallelization Strategies. MonetDB uses a technique called
mitosis, where the query plan is replicated and each thread
processes its own plan, which is pinned to a fraction (hori-
zontal partition) of the input BATs. CoGaDB evaluates each
child in parallel and, therefore, the performance is bound by
the longest path in the query plan. Hence, during query exe-
cution, CoGaDB does typically not (yet) utilize all cores to
100 %, because not all CPU operators have a parallel version
(yet). We discuss possible extensions to improve CoGaDB’s
performance in Sect. 7.

Data Transfer Bottleneck. CoGaDB is not generally faster
than MonetDB, even though it uses an additional processor
with significantly higher raw processing power than a CPU.
Compared to MonetDB, which uses the CPU only, this seems
like a poor result. However, the performance of query proces-
sing on GPUs does not simply scale with the number of cores
of a GPU. The main problem is the data transfer between the
CPU and the GPU [16].

Since CoGaDB makes heavy use of join indexes (similar
to MonetDB or MonetDB’s OpenCL Extension Ocelot [19]),
it also suffers a performance penalty in case we need to copy
the index first (but if it is cached in the GPUs memory, the
speedup is significant).

On our test machine for the used scale factor of 15, a join
index needs a memory capacity of 686 MB. Since CoGaDB
uses half of the GPU’s memory for buffering (≈ 750 MB) to
leave enough free memory for temporary data structures and
results of GPU operators, only one join index fits in the GPU
buffer at a time, which limits the benefit of the GPU: With
more device memory, the performance of CoGaDB would
increase as well. It is part of our ongoing research to reduce
this negative impact of the data transfer bottleneck.

The data transfer bottleneck is bidirectional, so CoGaDB’s
performance suffers also from large intermediate results,
which need to be transferred back to the CPU. For all queries
were CoGaDB performs poorly compared to MonetDB, the
query selectivity is relatively small. For the invisible join,
this means that larger position lists have to be intersected,
which leads to higher intersection costs and depending on
the query plan, higher data transfer costs.

6.2.2 Benefit of Adaptive Physical Query Optimizer

We now conduct experiments to answer research question 2.
We executed the same workload from the previous experi-

Fig. 9 Response times of selected SSBM queries in CoGaDB over 100
executions

ment, but, this time, we visualize the query execution times
of queries Q1.1, Q2.1, Q3.1, and Q4.1 over time in Fig. 9.
For the first ten executions, the execution times of queries
have a high variance. After this initial phase, the execution
times remain stable. During the unstable phase, CoGaDB
has no cost models for all processors, and assigns processors
to operators using a round-robin strategy. After performance
models become available, CoGaDB chooses the processor
(and algorithm) that are optimal according to the learned
cost models. Therefore, the performance gradually improves
over time and remains stable.

7 Future Development

In this section, we describe future developments on Co-
GaDB: efficient algorithms, support of the CUBE operator
and other co-processors, and alternative query processing
and cardinality estimation approaches.

Efficient Algorithms Although we invested much time
in tuning CoGaDB’s database algorithms on the CPU and
the GPU, the primary focus was still in exploiting the hete-
rogeneous nature of the modern hardware landscape and,
thus, on cost estimation and load-aware processor allo-
cation. However, for future work, we will adapt approa-
ches for efficient joins [5, 6] and aggregations [37]. Here,
we have two implementation choices: Using hardware-
oblivious operators written in a processor-independent
language (e.g., OpenCL [19]) or tailoring algorithms for
every processor type [13, 14].
CUBE Operator The CUBE operator [15] is a compute-
intensive operator, which is frequently used in OLAP sce-
narios. Hence, it would be beneficial to investigate the
potential performance gains by offloading parts of the
computation to GPUs.
Support for Other Co-Processors Aside GPUs,
other architectures have merged for co-processors such as
Multiple Integrated Cores MICs (e.g., Intel Xeon Phi). It
would be interesting to investigate the performance pro-
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perties of MICs for DBMSs to identify the optimal (co-)
processor for a certain task or workload.
Query Processing Strategies Aside from tuple-at-a-
time volcano-style and operator-at-a-time bulk proces-
sing, there are alternative query processing strategies such
as query compilation [29] or vectorized execution [7]. It
is not yet clear which strategy is optimal for heteroge-
neous processor environments. For a fair comparison, all
strategies should be implemented in a single system.
Cardinality Estimation Our query optimizer relies on
accurate cardinality estimates, which still poses major
problems. Markl and others developed progressive op-
timization, a technique where checkpoints are inserted in
the query plan [27]. In case the cardinality estimates are
too inaccurate at a checkpoint, a re-optimization is trig-
gered. Stillger and others proposed LEO, DB2’s learning
optimizer, which continuously monitors cardinality esti-
mations and iteratively corrects statistics and cardinality
estimations [35]. Heimel and Markl offloaded selectivity
estimation to the GPU, which allows them to use more
compute-intensive approaches to increase estimation ac-
curacy [18].

8 Related Work and Systems

In this section, we will discuss related systems. Yuan and
others study the performance behavior of OLAP queries on
GPUs with their system GPUDB [38] that compiles queries
to driver programs, which call pre-implemented GPU ope-
rators. Thus, GPUDB performs only dispatcher and post-
processing tasks on the CPU. Wang and others developed
MultiQx-GPU [36], an extension of GPUDB that can pro-
cess several queries in parallel on GPUs.

He and others develop GPUQP, the first DBMS accelera-
ted by GPUs [17]. Similar to CoGaDB, GPUQP can execute
each operator on the CPU or the GPU. However, GPUQP
uses analytical cost models to decide on an operator place-
ment, whereas CoGaDB relies on learned cost models and
runtime refinement. Based on GPUQP, Zhang and others de-
velop OmniDB [39], where the main focus is to exploit all
heterogeneous processors while keeping a maintainable code
base. They use an architecture based on adapters to decouple
the database kernel from the operators.

The same goal is addressed by Ocelot [19], a hardware-
oblivious database engine that extends MonetDB by a set
of OpenCL operators, which can be dynamically compiled
to any OpenCL-compliant device, such as CPUs, GPUs, or
Xeon Phis. Thus, Ocelot leaves the handling of heteroge-
neity to the hardware vendors, while maintaining high per-
formance.

Bakkum and Chakradhar developed Virginian, whose
main focus is high efficiency of database queries on GPUs

[4]. Therefore, it implements the opcode model, where each
operator is associated with a unique id and called from a ma-
nagement GPU kernel. This allows Virginian to execute any
query with a single GPU kernel. Mühlbauer and others de-
veloped a heterogeneity-conscious job-to-core mapping ap-
proach [28], similar to the scheduler in HyPE [9, 12].

9 Conclusion

The power wall forces hardware vendors to specialize pro-
cessors for certain tasks, which increases the heterogeneity
of the hardware landscape. This, in turn, means that database
vendors have to adjust their architectures to such heteroge-
neous environments.

In this paper, we presented CoGaDB, a system designed
to target the hardware heterogeneity on the query optimizer
level. We outlined design decisions and implementation de-
tails of CoGaDB and discussed how we combine a modern,
GPU-accelerated DBMS with a hardware-oblivious query
optimizer.

Our evaluation shows that the design, where an optimi-
zer has no detailed knowledge of the hardware, is feasible.
Furthermore, we showed that such a system can be compe-
titive to highly optimized main-memory databases such as
MonetDB.
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