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Abstract Despite the fast growth and increasing popularity,
the broad field of RDF and Graph database systems lacks
an independent authority for developing benchmarks, and
for neutrally assessing benchmark results through industry-
strength auditing which would allow to quantify and com-
pare the performance of existing and emerging systems.

Inspired by the impact of the Transaction Process-
ing Performance Council (TPC) Benchmarks on relational
databases, the LDBC consortium formed by University and
Industry researchers and practitioners has recently launched
a European Commision sponsored project that will offer
the first comprehensive set of open and vendor-independent
benchmarks for RDF and Graph technologies. The consor-
tium will incorporate the Linked Data Benchmark Council
(LDBC) which will survive the project and will supervise
the process of obtaining and reporting results as well as
fostering the creation and maintenance of new and exist-
ing benchmarks. This paper describes the state-of-the-art
benchmarks in RDF and Graph databases and overviews the
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technical challenges that should be addressed in the develop-
ment of such benchmarks. With this paper we would like to
invite the readers to participate in the LDBC effort towards
the development of Linked Data Benchmarks, both from
the user prospective (by sharing available usage scenarios,
datasets, query workloads) and the vendor perspective (by
reporting the results of systems and research prototypes).

Keywords Linked data · Benchmarking

1 Introduction

Non-relational data management is emerging as a broad
field that deals with complexly structured and heteroge-
neous data. The main examples of the fast-growing non-
relational research domains are Semantic Web, noSQL and
graph databases. Both semantic repositories (RDF databases
with reasoners) and graph databases share a graph data
model and pattern- and path-oriented query languages. De-
spite their increasing popularity in the research community
and the growing interest of the industry, at present there
is no comprehensive suite of benchmarks and no indepen-
dent authority for verifying the results in the RDF/Graph
world. Without commonly accepted, technically challenging
benchmarks, the future development and adoption of these
technologies is endangered by not giving to the industry the
clear user-driven targets for performance and functionality.
An example of such a benchmarking suite in the relational
database world is the TPC benchmark family which boosted
the progress of relational database management systems.

The aims of good benchmarks are (i) to help users choose
the right system by demonstrating the systems’ behavior in
different tasks, and (ii) to motivate industry to improve ex-
isting systems by posing a set of difficult (but solvable) tech-
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nical challenges. Designing a benchmark therefore includes
the following activities:

– analysis of the technical challenges that can only be
overcome by innovation (we call such challenges choke
points). The Linked Data domain encompasses challenges
in different technology areas like core data management
(query processing and optimization, transactions), graph
analysis, data integration and reasoning;

– design of domain-specific use cases and engagement with
the user community to obtain real-life scenarios, exam-
ples, datasets and query workloads.

In this paper, we present the recently started Linked Data
Benchmark Council Project and invite the readers to par-
ticipate in this community effort towards benchmarking in
the RDF/Graph data management fields, both by sharing
their experiences (datasets, typical workloads) and by test-
ing their prototypes and systems on suggested benchmarks.

The rest of the paper is organized as follows. First we un-
derline the goals of the benchmarking initiative in Sect. 2.
Section 3 briefly surveys existing benchmarks in relational
and RDF/Graph domains. Then in Sect. 4 we go through the
technical issues which will be addressed by the future set of
benchmarks, including dataset generation, query optimiza-
tion, reasoning and data integration tasks. In Sect. 5 we con-
sider two vertical domains (publishing and social networks)
and describe workloads in these domains that are meaning-
ful to users. Section 6 gives an overview of the Council that
will supervise benchmarking for RDF and Graph data man-
agement systems.

2 Goals of LDBC

The goal of the Linked Data Benchmark Council (LDBC)
project is to create the first comprehensive suite of open, fair
and vendor-neutral benchmarks for RDF/graph databases to-
gether with the LDBC Foundation which will define pro-
cesses for obtaining, auditing and publishing results.

From the technical perspective, the project has the fol-
lowing important issues that will configure the process of
creating benchmarks both for RDF and Graph databases,
and that will survive it through the creation of the Linked
Data Benchmark Council:

– Methodology. The project will create a set of guidelines
on how to define, extract, support and analyse bench-
marks coming from various use case scenarios and focus-
ing on different features of the databases.

– Use cases/benchmarks. The use case scenarios will evolve
towards a benchmark and will be decided thanks to the
collaboration of the Technical User Community (TUC),
that will put their needs through in regular meetings orga-
nized by the consortium. TUC members will be informed

about the progress of design and implementation of the
benchmarks, and asked for feedback and ideas regarding
their needs and opinions of the benchmarks under devel-
opment.

– Metrics. LDBC will define fair metrics to measure a bino-
mial hardware/software on a benchmark, assuring quanti-
tative values of performance and performance-cost.

– Task Forces. The creation of each benchmark will be
pushed forward through a Task Force. This will create the
synergies between the different members of the Consor-
tium/Council to decide on specific use cases based on the
needs of users and the input of software and hardware
vendors. Based on the use case, the Task Force will cre-
ate the necessary datasets, queries and specific technology
difficulties to obtain applicable and scalable benchmarks.

– Choke Points. These are related to the difficulties of the
different technologies for a given benchmark. Within each
Task Force, it will be necessary to understand how to push
technology by including queries that are difficult to solve,
but not impossible, pushing the technologies to improve
over the years, and those difficulties will be decided upon
the choke point analysis of the use cases.

– Data sets. Open Data sets and/or open source data set gen-
erators will be created for each benchmark. These will be
provided to the RDF and graph communities, technolo-
gists and users, to allow them to use the data for their own
tests.

– Auditing. When a benchmark is eventually launched,
companies will be able to run it on their binomial com-
puter/software. In order to make the benchmark execu-
tions fair and vendor-neutral, it will be necessary to train
people who will audit them.

3 Related Work

3.1 Relational Database Benchmarking

For relational databases benchmarks are well established,
in particular the well-known TPC1 benchmarks. Although
relational databases are different from the RDF/Graph us-
age scenario, these relational benchmarks introduced several
best practice techniques that should be kept for benchmark-
ing core database functionalities in LDBC.

The TPC benchmarks are extremely influential because
they have introduced what now is considered important prin-
ciples of benchmark design. One of their original key ideas
was to offer an objective benchmark specification, and to ask
vendors for full disclosure reports, including all hardware

1Transaction Processing Performance Council: http://www.tpc.org/.
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and software configuration details. This allows for repeat-
able experiments, and offers much more meaningful com-
parisons of benchmark results. These strictness and disclo-
sure requirements were tightened even more over time by
introducing external auditors that verified the way experi-
ments were conducted and their results.

Besides these formal requirements, the TPC bench-
marks take measures to produce meaningful and com-
parable benchmark numbers. The analytical benchmarks
(TPC-H/R/D) for example use both queries-per-hour-at-size
(QphH@Size), and costs-per-performance ($/QphH@Size)
metrics, which are both important concepts. The first,
QphH@Size, allows for comparing the performance at dif-
ferent scale factors, as some architectures might be supe-
rior for very large data sets and others might aim at smaller
data sizes. The second metric, $/QphH@Size, normalizes
the performance by costs. These costs are specified in the
respective benchmarks, and they include, for example, hard-
ware, software licenses, and maintenance for a certain pe-
riod of time.

Despite being highly influential, the TPC benchmarks
have their limitations. One particular weakness of the most
commonly used TPC benchmarks (TPC-H and TPC-C) is
that the generated data is uniformly distributed and uncor-
related. While this simplifies the setup, it also ignores very
challenging real-world problems. The TPC-DS benchmark
was designed to explicitly test for data skew, and also to test
for more complex queries.

3.2 RDF Database Benchmarking

A number of RDF benchmarks that use real datasets have
been proposed over the last years. The University of Leipzig
developed a DBPedia benchmark [19] derived from the ac-
tual DBPedia query logs. Unfortunately due to its simple
nature, the benchmark’s query workload consists of mostly
simple lookups that are not representative of either infer-
ence or decision support queries. The YAGO dataset [26]
with its accompanying queries is another example of an
RDF benchmark. YAGO is a vast knowledge base that in-
tegrates statements from Wikipedia, Wordnet, WordNet Do-
mains, Universal WordNet and GeoNames and the queries
were initially defined to benchmark the RDF-3X engine
[20]. The Barton Library dataset2 is obtained by convert-
ing the Machine-Readable Catalogue (MARC) of the MIT
Libraries to RDF and the set of queries defined in Abadi
et. al. [2]. The UniProt Knowledge Base (UniProtKB) [24]
is a high-quality resource of protein sequence and one of
the central datasets in the bio-medical subset of the Linked
Open Data initiative, expressed in RDF and was used to

2http://simile.mit.edu/wiki/Dataset:_Barton.

test the scalability of query processing using mainly sim-
ple lookup queries. The Linked Sensor Dataset [21] con-
tains expressive descriptions of approximately twenty thou-
sand weather stations in the United States in RDF but does
not come with a representative set of queries. The biologi-
cal datasets are benchmarked in [18] with both online and
analytical queries.

Another line of work includes synthetic benchmarks for
RDF databases, typically consisting of a data generator
and a set of queries. The Lehigh University Benchmark
(LUBM)3 is intended to evaluate the performance of Se-
mantic Web repositories over a large data set that adheres to
a university domain ontology expressed in OWL [17], cus-
tomizable and repeatable synthetic data, a set of test queries,
and several performance metrics. As the generated LUBM
data is regular, and in fact can be represented using the
relational model, the benchmark does not explore any of
RDF’s distinguishing properties and thus the data can be
represented easily using relational tables. In addition, the
nature of the generated graph makes it harder for testing
the performance of join algorithms in the query engine. The
LUBM query workload consists of fourteen mainly exten-
sional lookup and join queries, that do not consider com-
plex SPARQL operators or complex reasoning. UOBM [16]
extends the LUBM in order to tackle (a) complex infer-
ence, and (b) scalability issues. In contrast with LUBM,
UOBM uses both OWL Lite and OWL DL ontologies cov-
ering most of the constructs of these two sublanguages of
OWL. UOBM queries are designed based on two princi-
ples (a) queries should consider multiple lookups and com-
plex joins and (b) each query should support at least a dif-
ferent type of OWL inference covering a larger spectrum
than its predecessor. SP2Bench [25] is one of the most com-
monly used benchmarks for evaluating the performance of
RDF engines. The benchmark comprises of a data-generator
that produces arbitrarily large documents, which builds upon
DBLP [1] bibliographic schema. The benchmark consists of
fourteen queries that are designed to test different aspects of
SPARQL query optimization.

The Berlin SPARQL benchmark (BSBM) [5] is built
around an e-commerce use case where the schema mod-
els the relationships between products and product re-
views. It was designed to test the mapping of relational
databases to RDF requiring only relational database storage.
BSBM comes with a set of fourteen queries (mainly simple
lookups). The BSBM BI Benchmark4 is the business intel-
ligence workload of BSBM that although it addresses basic
SPARQL 1.1. [12] features in the queries (e.g., aggregation

3http://swat.cse.lehigh.edu/projects/lubm.
4http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/
spec/BusinessIntelligenceUseCase/.
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and subqueries), is still primitive in comparison with com-
parable relational benchmarks like TPC-H and TPC-DS.

The Social Intelligence Benchmark (SIB) [22] simulates
an RDF backend of a social network site (such as Face-
book), in which users and their interactions form a graph
of social activities such as writing posts, posting comments,
creating/managing groups, etc. SIB comes with a data gen-
erator, a set of analytical and update queries and a set of
metrics. The Social Intelligence Benchmark is the first at-
tempt to create a synthetic social graph with realistic data
correlation.

An interesting approach towards workload generation is
presented in [11]. There, the dataset is the Billion Triple
Challenge dataset, and the queries are systematically con-
structed from path and star patterns with parameters. Such
an approach, however, only covers SPARQL 1.0 capabili-
ties.

Clearly, the existing RDF database benchmarks do not
fully cover important RDF and SPARQL capabilities. Data
remains relational at heart, it is sparsely interrelated, speci-
fied using inexpressive ontology languages and does not ex-
hibit traits specific to RDF or graph workloads. In addition,
the majority of the queries are either simple lookups (as dic-
tated by the data) or simple joins, and do not include any ad-
vanced features such as optional, aggregation, negation and
inference. Moreover, the effects of updates at the schema
and at the instance level, are completely ignored.

3.3 Graph Database Benchmarking

As we have seen, the mainstream benchmarks cover the re-
lational model workloads that are typical for an enterprise
use case. However, as graph databases are designed with
different types of queries in mind, these relational bench-
marks are largely inadequate here. There has been a study
[9] about the characteristics that a Graph database bench-
mark should include. Among those, the use cases to be con-
sidered, the operations that they give rise to, and the exper-
imental settings are the most important for designing such
benchmarks. Thus, Social Network management can be con-
sidered a representative use case, and graph queries like
neighborhood extraction (within n steps or even unbounded
neighborhoods), and structural similarity (like similarity be-
tween subgraphs or different small graphs in the data set) are
good examples for such use case. All these operations do not
exist in the RDBMS, and as a consequence not benchmarked
there. On the other hand, the object oriented databases are
quite similar to the graph databases (the objects and rela-
tions can be modeled with nodes and edges), and there are
early proposals to benchmark them. One of them, the OO1
benchmark [8], generates the data representing one type of
objects (nodes) with a fixed number of outgoing edges. The
resulting graph is therefore very regular. The benchmark

also includes three types of queries: (i) lookup of an object
with a given identifier, (ii) traversal operation from a random
node within a fixed number of hops, (iii) insertion of nodes
and edges into the database. Another benchmark, coined the
OO7 [7], describes three types of objects, organizing them
as a tree of depth 7. Since object-nodes have a fixed number
of edge-relations, the generated graph is also very regular
as with the OO1 benchmark. However, the set of queries of
OO7 is richer: they include the traversal operation and the
selection queries that extract objects with specified attributes

The recent HPC Scalable Graph Analysis Benchmark
[10], introduced by the website graphanalysis.org, gener-
ates a graph according to the power-law distribution. It is
equipped with four different queries, including bulk insert
of nodes and edges, retrieval of the heaviest edge, k-hops
operation, and calculating betweenness centrality. The per-
formance of the last query is measured with edges traversed
per second.

There are also some individual proposals for graph
database benchmarking, but they lack universal acceptance
or generality.

3.4 Instance Matching and ETL Benchmarking

Finding the matching instances (also referred to as record
linkage, duplicate detection, entity resolution [4]) is a cru-
cial and computationally expensive task in the Semantic
Web domain. The existing benchmarks mainly address eval-
uation of these techniques for XML and relational databases
[14, 15]. As in the case of RDF benchmarks, the core fea-
tures of RDF and ontologies (such as schema-free data, rea-
soning capabilities) are not covered. The Ontology Align-
ment Initiative (OAEI)5 has proposed the most popular
framework for ontology matching testing.

The Instance Matching Track of OAEI focuses on the
evaluation of different instance matching techniques and
tools for RDF and OWL datasets using a set of different
benchmarks. The ARS, TDS and IIMB benchmarks were
used for the OAEI IM track in 2009.6 ARS is a benchmark
that draws its data from the domain of scientific publica-
tions, TDS includes three datasets covering several topics
and structured according to different ontologies. Finally, the
IIMB7 benchmark is generated using the ISLab Instance
Matching Benchmark whose reference ontology is modi-
fied by applying a number of value, structural and logical
transformations. The purpose of the benchmark focused on
two main goals: (i) to provide an evaluation dataset for var-
ious kinds of data trasformations and (ii) to cover a wide

5http://oaei.ontologymatching.org/.
6http://oaei.ontologymatching.org/2009/.
7http://islab.dico.unimi.it/iimb/.

http://oaei.ontologymatching.org/
http://oaei.ontologymatching.org/2009/
http://islab.dico.unimi.it/iimb/


Datenbank Spektrum (2013) 13:121–129 125

spectrum of possible techniques and tools. The OAEI In-
stance Matching Track in 2010 proposed the Data Interlink-
ing Task that was introduce to test the ability of systems
to produce links in the Linked Open Data cloud and address
the scalability dimension of instance matching systems. ON-
TOBI [27] is one of the most recent instance matching
benchmarks and that take into account simple and complex
transformations extending the ones proposed in IIMB for
both schema and instance data. However, these modifica-
tions are done manually, and are not automated, as a large-
scale benchmark would require.

Last, the STBenchmark [3] is a benchmark that takes
as input a reference ontology, and applies several transfor-
mations to get the modified reference ontology. It consists
of two components: (a) a basic set of mapping scenarios
and (b) a generator for mapping scenarios and source in-
stances. The mapping scenarios refer to the different types
of transformations and the generator for the mapping sce-
narios takes as input parameters related to the characteristics
of the reference ontology, and produces the set of transfor-
mations that will be applied to the reference ontology. The
main benchmark for relational ETL processes is TPC-ETL.8

It has been proposed for comparing the performance of ETL
systems, and provides a scalable workload that considers a
wide range of dataset sizes, methodologies and metrics to
compare different aspects of ETL systems. To the best of
our knowledge, ETL benchmarks for RDF systems do not
exist.

4 Main Technical Challenges

As benchmarks consist of datasets and tasks on the data, in
this section we consider the technical challenges in these
two big areas that LDBC benchmarks will encompass. The
goal of LDBC here is to challenge the existing systems with
problems which they cannot (yet) handle efficiently, and
whose solution is possible but would require technical inno-
vation. We will not present the concrete contests, but rather
concentrate on the insights behind the design of good bench-
marks.

4.1 Datasets

Most of the state-of-the-art benchmarks in RDF and Graph
processing require the data to be small enough to fit into the
main memory. Moreover, current solutions typically only
work fast on simple queries and without efficient reason-
ing or support for data integration tasks. To raise the bar
in the technology and to push systems to handle very large

8http://www.tpc.org/reports/status/default.asp.

datasets, we will present benchmarks that consider large-
scale datasets and workloads that include complex queries.

The datasets typically used for benchmarking are either
synthetic or coming from real-world data. For the query
benchmarking purposes (as well as for transactional bench-
marking) using generated datasets (with properties modeled
after existing datasets) is beneficial since data generators al-
low to control the size and statistical properties of the data,
thus making clear the technical challenges for systems.

The tasks of data integration, on the contrary, require
using real world data, since such scenarios typically are
focused on “dirty”, highly irregular data, and cleaning up
the data (i.e., removing duplicates, using a standard for-
mat) is part of the benchmarking task. Moreover the datasets
should also consider dissimilarities not only at the instance
but also at the schema level. The real datasets will be ob-
tained in three ways: (i) collecting the publicly available
ones, (ii) crawling the Web and (iii) as a result of the user
provision.

In the initial stage of the project, LDBC plans to work
with the publicly available datasets like the BBC publish-
ing data, the Sindice Web Crawl, Billion Triple Challenge
datasets, and with the synthetic dataset of the Social Intelli-
gence Benchmark (SIB). More specifically, we plan to use
both the data generator of the SIB for generating a social net-
work structure with millions of user profiles, and the crawled
datasets. The latter will be used to enrich the content of the
generated social network by assigning interests to people,
topics and location tags to their posts, comments and pho-
tos etc. The scale of the datasets will follow the one of the
TPC datasets with the major difference that RDF is typically
more verbose than similar relational data, so a small RDF
dataset will be for instance 12 billion triples (100 GB TPC-H
data), and the large one will be 1.2 trillion triples (10 TB
TPC-H data). Although the real data harvested from the Web
will be much smaller than large-scale synthetic LDBC data
(according to the latest diagram of the Linked Open Data
cloud, there is more than 50 billion triples currently pub-
lished online), the corresponding problems are already quite
computationally expensive, such as schema alignment trans-
formations or instance matching of a large number of ob-
jects.

4.2 Query Optimization Benchmarking

We are going to benchmark the RDF querying capabilities
of systems by challenging them to do non-trivial algorithms
for SPARQL query optimization. In this, the characteristic
properties of the RDF data model which set it apart from the
relational model (and thus require novel optimization tech-
niques) will be used:

http://www.tpc.org/reports/status/default.asp
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The RDF Model is Verbose Unlike the relational model,
where one record typically describes one entity, RDF data is
more voluminous: one entity is described by several triples.
Consider a simple SQL query over the table Person with all
necessary attributes:

SELECT Name, Age, Gender
FROM Person
WHERE ID = 42

An equivalent SPARQL query will have the following
form:

SELECT ?name ?age ?gender
WHERE {

?person <hasName> ?name.
?person <hasAge> ?age.
?person <hasGender> ?gender.
?person <hasID> "42"}

Since most of RDF systems store data in triple stores, ex-
ecuting this query will require performing three self-joins
on variable ?person, as opposed to a simple scan needed
for a relational database on table Person to execute its SQL
equivalent. For the query optimizer this means a rapid ex-
plosion of the plan search space. For example, a join of six
tables becomes a join of eighteen tables (Q2 of TPC-H in
SQL and SPARQL), and the number of possible plans grows
from 6! = 720 to 18! = 6.4e15. This clearly calls for differ-
ent efficient search space pruning techniques, and a good
benchmark should stress it.

RDF Data is Highly Correlated Correlated data is a chal-
lenge already for the relational query optimizer. Usually, for
simplicity the optimizer assumes that values of attributes
are uniformly distributed, and values of two different at-
tributes are independent, so that Prob(A = a1&&B = b1) =
Prob(A = a1) ·Prob(B = b1). In reality, however, the values
of attributes frequently depend on each other (the so-called
value correlations): for example, the name and the coun-
try of origin of a person are strongly correlated. It has been
shown that uniformity and independence assumptions lead
to exponential growth of selectivity estimation errors when
the number of joins in the query grows [13]. This effect only
becomes more severe in RDF systems since the number of
joins in the SPARQL query is larger than in the correspond-
ing SQL query.

Another, RDF-specific, type of correlation is struc-
tural correlation. As an example, consider triple patterns
(?person, <hasName>, ?name) and (?person,
<hasAge>, ?age). Clearly, the two predicates
<hasName> and <hasAge> almost always occur to-
gether (i.e., in triples with same subjects), so the selectivity
of the join of these two patterns on variable ?person is just

the selectivity of any of the two patterns, say, 1e–4. The in-
dependence assumption would force us to estimate the selec-
tivity of the join as sel(σP=hasName) · sel(σP=hasAge) = 1e–8,
i.e. to underestimate the size of the result by 4 orders of mag-
nitude!

The combination of the two types of correlations is
also quite frequent: Consider an example of triple pattern
(?person, <isCitizenOf>, <United_States>)
over the Yago dataset [26]. Now, the individual selectivities
are as follows:

sel(σP=isCitizenOf ) = 1.06 × 10−4

sel(σO=United_States) = 6.4 × 10−4

while combined selectivity is

sel(σP=isCitizenOf∧O=United_States) = 4.8 × 10−5

We see that both P = <isCitizenOf> and O =
<United_States> are quite selective, but their con-
junction is in three orders of magnitude less selective than
the mere multiplication of two selectivities according to
the independence assumption. The value of the predicate
(which corresponds to the “structure” of the graph) and the
value of the object here are highly correlated for two rea-
sons. First, the data in the English Wikipedia is somewhat
US-centric, and therefore almost half of the triples with
P = <isCitizenOf> are describing US citizens. Sec-
ond, the <isCitizenOf> nearly requires the object to
be a country, demonstrating a structural correlation between
fields P and O .

Capturing the correlations for RDF databases is both im-
portant and more challenging than for relational systems: all
explicit structure (like schema, metadata) present in the re-
lational DBMS, are absent here, and the system has to infer
such information from implicit correlations. The optimizer
has to, consequently, take into account the correlations when
estimating the cardinality of the (partial) plans. Therefore,
the benchmark queries that address the issue of correlations
will lead to advances in query optimization techniques.

Path Traversals in SPARQL Path queries specified with
regular expressions on traversed predicates are part of
SPARQL 1.1 standard. Note that, in principle, we would
be able to translate this query into the standard SPARQL
1.0 [23] (and therefore into SQL) disjunctive query with
union and several potentially long chain joins, if we knew
the length of the paths and the exact schema in advance.
However, this assumption contradicts the schema-free na-
ture of RDF data, since it requires a priori knowledge about
the path structure. The path queries are thus an intrinsic
property of the RDF data model. As an example consider
the following set of triples:
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(Albert Einstein, bornIn, Ulm)
(Ulm, locatedIn, Baden-Württemberg)

(Berlin, locatedIn, Germany)

and the SPARQL query:

SELECT ?person
WHERE {

?person <bornIn> ?place.
?place <locatedIn>* <Germany> }

This query finds all the people born in Germany by
matching the entities-places that can reach Germany via sev-
eral instances of the <locatedIn> predicate (using the
transitive closure on the predicate), and then finding the per-
sons that are related with the <bornIn> predicate to that
places.

Dynamic RDF Databases The issue of updates is entirely
overlooked by existing RDF benchmarks. First, the bulk
load time is of great interest, since efficient query process-
ing usually requires heavy indexing, and time for creating
and updating these indexes needs to be quantified. Sec-
ond, there is a clear need for transaction support with full
ACID guarantees, which have not been fully investigated by
the RDF research community. Moreover, concurrent updates
will greatly complicate query processing. We note that the
update capabilities have recently become the W3C recom-
mendation for SPARQL 1.1.

4.3 Graph Query Benchmarking

The following technical issues are of interest for the bench-
mark design in graph databases:

Query Language Currently there is no query language
universally accepted by all graph databases. LDBC plans
to review which languages have been proposed for graph
database and their main features, to survey graph data ac-
cess methods, and suggest the proper syntaxes for defining
data and query workloads

Basic Operations There are operations like finding the di-
ameter of the graph, betweenness, clustering coefficient,
which currently are inexpressible in the graph query lan-
guages, but required by applications. The impedance mis-
match that occurs between the programming language and
the graph database API when implementing such operations,
is a potential challenge for systems and should be exploited
by the benchmarks.

Algorithms for Disk-Based Graphs When dataset sizes
grow and the workload touches the large share of data
in the single query, then data is frequently read from the
secondary storage. The benchmark should address this in

order to encourage systems to make good use of mem-
ory hierarchy (e.g., main memory—SSD—disk). In many
cases, an in-memory solution would be prohibitively expen-
sive, although would deliver a good throughput. Using the
cost/throughput metric will rule out such solutions.

4.4 Reasoning and Integration Benchmarking

Current RDF systems support some level of reasoning,
typically concentrating on extended RDFS [6] and some
OWL [17] primitives (e.g. subClassOf, subPropertyOf,
sameAs, sameIndividualAs, equivalentProperty, equivalent-
Class, partOf), but at the same time this issue is largely over-
looked by existing benchmarks. The experiments suggest
that for such limited reasoning forward chaining, that is the
materialization of all inference results is practical in that it
has a reasonable effect on database size.

An open question, however, is what happens when the
user switches to scenario-dependent reasoning rules that are
not necessarily expressed as RDFS/Horst rules. These rule-
sets may be formulated in terms of OWL, but may just as
well exceed it: for example, how does the level of social
connectedness correlate with the frequency of product re-
turns or negative product reviews. Here rules are expressed
sometimes as recursive counts and sums of events and the
queries touch a large fraction of the data. In this situation it
may no longer be affordable to pre-compute the results of
reasoning, and some combination of backward and forward
reasoning will perform better. Benchmarks should therefore
use extended reasoning rules to demonstrate trade-offs of
backward and forward chaining.

RDF use cases often involve enriching existing data with
public data from Linked Open Data cloud. This process of
creating and curating links is highly labor intensive and there
are no metrics or benchmarks that quantify the progress.
Two types of metrics to measure in this scenario are qualita-
tive (based on precision and recall) and quantitative (speed).
As part of integration problems, the support for RDF ETL
tool-chain will be also investigated, including the integra-
tion of existing datasets with public LOD sources.

5 Use-Case Scenarios

To get a plausible set of queries from the users prospective,
we turn our attention to two scenarios: semantic publishing
and social network analysis.

5.1 Semantic Publishing

The basic idea of semantic publishing to help journal-
ists/editors/staff spend more of their time concentrating on
content and less time editing/designing web pages. Here, the



128 Datenbank Spektrum (2013) 13:121–129

content produced and tagged by journalists and editors will
be rendered on a web page automatically and presented in
the proper context, using semantic annotations among me-
dia items coupled with the reasoning capabilities of RDF
stores.

The characteristics often found in semantic publishing
scenarios are:

– Large datasets
– Moderately stable and well-structured publishing-specific

ontologies
– Stream of updates with dense spikes at certain times (both

inserts and deletes), with updates running concurrently
– Lightweight inference (expressivity equivalent to RDFS

with some OWL primitives)

A typical workload will include CRUD operations on ob-
jects (articles and other journalistic assets), where objects
are read much more frequently than updated. The object
metadata connects different articles via a tagging ontology
and domain specific ontologies.

The LDBC Technical User Community (TUC) hosts
among others the BBC who has agreed to contribute its
datasets and workloads in order to fully define this scenario.

5.2 Social Network Analysis

The analysis of online data based on activities of users in
social networks plays an important role to detect trends in
the use of products or opinions about the quality of a cer-
tain brand. Marketing companies now analyze for their cus-
tomers how information propagates in different integrated
social networks like Twitter, blogs and on-line media. The
objective is to understand the roles of people in those net-
works like who are initiators of information, who are fol-
lowers, etc. This information is precious for the purpose of
knowing those who have a strong influence with their mes-
sages, either for positive or negative reasons. The actions to
be taken in those cases range from the pure “in kind” in-
centive to an initiator of positive information, to the removal
of an advertising campaign in case of the detection of neg-
ative information by an influential person in the network, or
a rapid propagation of a negative comment.

In all those cases, the analysis of the individuals, their in-
teractions and the propagation of the information they inject
in the network calls for the use of graph technology. In some
cases, there is a need to evaluate the information network
in a very fast way, like in the detection of positive/negative
information. The marketing companies are interested in a
benchmarking effort of the type proposed in this project for
the purpose of finding the fastest possible graph database
management for this type of on-line social network analy-
sis.

We are planning to construct the analytical queries on top
of the Social Intelligence Benchmark [22].

6 Linked Data Benchmark Council

The goal of the LDBC effort is to establish the Linked Data
Benchmark Council as a non-profit organization and make it
a successful, lasting organization, supported by the RDF and
graph database industry. Broad industry participation is an
important goal of the project, and the letters of support from
industry partners give an indication that it is achievable.

Once LDBC is successful, commercial and marketing
concerns will start to play an important role in how the vari-
ous member organizations interact with it. For this purpose,
it is imperative that LDBC is designed such that it is ca-
pable of handling conflict situations in an orderly and fair
way. For this we look at the example of the Transaction Pro-
cessing Council (TPC), which has a firm statutory basis and
democratic processes and committee structures in place to
handle such situations.

Auditing Process The auditing process of the council is
inspired by that of the TPC benchmarks. It is anticipated
that vendors will benchmark their products on their own
premises using the optimum hardware and software deploy-
ment for their products and this is in keeping with estab-
lished best practice. The typical process for publishing a
benchmark result would be as follows:

– A vendor decides to run the benchmark.
– After the vendor has internally experimented with pro-

visioning the system under test with appropriate hard-
ware/software and tuning it accordingly and is satisfied
with the results, the vendor may decide to publish.

– For the benchmark to be published, the run should be
audited by an auditor that was previously certified by
LDBC. In practice, this need would be met by the au-
ditor having remote login to the system under test for the
duration of the test.

– The result would be published with all relevant documen-
tation by LDBC on its portal.

– In the event of results being challenged, the LDBC foun-
dation can arbitrate in the matter, with all proceedings be-
ing on public record.

Many TPC benchmark results are obtained on equipment
that would be unlikely in practical deployments, i.e. unusu-
ally large configurations. Also with LDBC, our approach is
to allow vendors to benchmark on the equipment of their
choice, and similarly to the TPC, the benchmarks will allow
for this with an appropriate metric, i.e. something similar to
a cost-per- transaction.

7 Conclusions

In this paper we presented the Linked Data Benchmarking
Council, the initiative towards RDF/Graph benchmarking.
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We would like to invite the readers to join this commu-
nity initiative by sharing their user experience, testing their
systems and participating in the LDBC-related events.9 We
hope that, similarly to relational databases, adequate bench-
marking will advance research in many aspects of RDF and
Graph data management.
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